Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S (2014) Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiol Mol Biol Plants 20: 411–423. https://doi.org/ 10.1007/s12298-014-0250-6
Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breeding 30: 345–354. https://doi.org/10.1007/s11032-011-9625-3
Bimpong IK, Manneh B, Diop B, Ghislain K, Sow A, Amoah NKA, Gregorio G, Singh RK, Ortiz R, Wopereis M (2014) New quantitative trait loci for enhancing adaptation to salinity in rice from Hasawi, a Saudi landrace into three African cultivars at the reproductive stage. Euphytica, 200: 45–60. https://doi.org/10.1007/s10681-014-1134-0
Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philip Agric Sci 65: 68–76.
Chen C, Norton GJ, Price AH (2020) Genome-wide association mapping for salt tolerance of rice seedlings grown in hydroponic and soil systems using the Bengal and Assam Aus panel. Front Plant Sci 11: 576479. https://doi.org/10.3389/fpls.2020.576479
Chen M, Presting G, Barabzuk WB, Goicoechea JL, Blackmo B, Fang G, Kim H, Frisch D, Yu Y, Sun S, et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14: 537–545. https://doi.org/10.1105/tpc.010485
Chen Z, Feng Z, Kang H, Zhao J, Chen T, Li Q, Gong H, Zhang Y, Chen X, Pan X, Liu W, Wang G, Zuo S (2019) Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Sci 26: 21–31. https://doi.org/10.1016/j.rsci.2018.12.002
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2): 80–92. https://doi.org/10.4161/fly.19695
Courtois B, Ahmadi N, Khowaja F, Price AH, Rami J-F, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: Meta-analysis from a drought QTL database. Rice 2, 115–128. https://doi.org/10.1007/s12284-009-9028-9
Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, Kroj T, Morel J-B (2016) Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol 16:17. https://doi.org/10.1186/s12870-016-0711-x
Emon RM, Islam MM, Halder J, Fan Y (2015) Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces. Crop J 3: 440–444. https://doi.org/10.1016/j.cj.2015.04.006
Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PloS Genet 7: e1002221. https://doi.org/10.1371/journal.pgen.1002221
Feng Z, Kang H, Li M, Zou L, Wang X, Zhao J, Wei L, Zhou N, Li Q, Lan Y, Zhang Y, Chen Z, Liu W, Pan X, Wang G, Zuo S (2019) Identification of new rice cultivars and resistance loci against rice black-streaked dwarf virus disease through genome-wide association study. Rice 12: 49. https://doi.org/10.1186/s12284-019-0310-1
Ganie SA, Borgohain MJ, Kritika K, Talukdar A, Pani DR, Mondal TK (2016) Assessment of genetic diversity of Saltol QTL among the rice (Oryza sativa L.) genotypes. Physiol Mol Biol Plants 22:107–114. https://doi.org/10.1007/s12298-016-0342-6
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132: 851–870. https://doi.org/10.1007/s00122-019-03301-8
Garg R, Jhanwar S, Tyagi AK, Jain M (2010) Genome-wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice. DNA Res 17(6): 353–367. https://doi.org/10.1093/dnares/dsq023
Ghasemia S, Khoshgoftarmanesha AH, Afyunia M, Hadadzadehb H (2014) Iron (II)–amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Sci Hortic 165: 91–98. https://doi.org/10.1016/j.scienta.2013.10.037
Goodman SN (2001) Of p-values and Bayes: a modest proposal. Epidemiology 12: 295–297. https://doi.org/10.1097/00001648-200105000-00006
Haque T, Elias SM, Razzaque S, Biswas S, Khan SF, Jewel GM, Rahman MdS, Juenger TE, Seraj ZI (2020) Natural variation in growth and physiology under salt stress in rice: QTL mapping in a Horkuch × IR29 mapping population at seedling and reproductive stages. bioRxiv 2020: 03.01.971895. https://doi.org/10.1101/2020.03.01.971895
Harkenrider M, Sharma R, De Vleesschauwer D, Tsao L, Zhang X, Chern M, Canlas P, Zuo S, Ronald PC (2016) Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS One 11:e0147310. https://doi.org/10.1371/journal.pone.0147310
Hossain H, Rahman MA, Alam MS, Singh RK (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agro Crop Sci 201: 17–31. https://doi.org/10.1111/jac.12086
Hou X, Tong H, Selby J, Dewitt J, Peng X, He ZH (2005) Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol 139: 1704–1716. https://doi.org/10.1104/pp.105.066910
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S (2017) Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants 3: 17009. https://doi.org/10.1038/nplants.2017.9
Hu S, Tao H, Qian Q, Guo L (2012) Genetics and molecular breeding for salt-tolerance in rice. Rice Genomics Genet 3: 39–49. https://doi.org/10.5376/rgg.2012.03.0007
Huang M, Liu X, Zhou Y, Summers RM, Zhang Z (2019) BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8(2): giy154. https://doi.org/10.1093/gigascience/giy154
Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N, Li N, Li C, Sun C, Li L, Chen R, Xu Z, Zhu J, Deng X (2018) A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice. Plant Mol Biol 96: 5–16. https://doi.org/10.1007/s11103-017-0668-7
Kang H, Wang Y, Peng S, Zhang Y, Xiao Y, Wang D, Qu S, Li Z, Yan S, Wang Z, Liu W, Ning Y, Korniliev P, Leung H, Mezey J, McCouch SR, Wang GL (2016). Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. Mol Plant Pathol 17: 959–972. https://doi.org/10.1111/mpp.12340
Khan MSA, Hamid A, Karim MA (2008) Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). J Agron & Crop Sci 179: 163–169. https://doi.org/10.1111/j.1439-037X.1997.tb00512.x
Kumar V, Singh A, Amitha Mithra SV, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2): 133–145. https://doi.org/10.1093/dnares/dsu046
Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D (2020) Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice 13: 55. https://doi.org/10.1186/s12284-020-00416-1
Lekklar C, Pongpanich M, Suriya-arunroj D, Chinpongpanich A, Tsai H, Comai L, Chadchawan S, Buaboocha T (2019) Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics 20: 76. https://doi.org/10.1186/s12864-018-5317-2
Li H, Zhou SY, Zhao WS, Su SC, Peng Y (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69: 337–346. https://doi.org/10.1007/s11103-008-9430-5
Li Q, Yang A, Zhang WH (2016) Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J Exp Bot 67(22): 6431–6444. https://doi.org/10.1093/jxb/erw407
Li X, Zheng H, Wu W, Liu H, Wang J, Jia Y, Li J, Yang L, Lei L, Zou D, Zhao H (2020) QTL mapping and candidate gene analysis for alkali tolerance in japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice 13: 48. https://doi.org/10.1186/s12284-020-00412-5
Liao Y, Lin K, Chen C, Chiang C (2016) Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol Breeding 36: 22. https://doi.org/10.1007/s11032-016-0446-2
Liu C, Chen K, Zhao X, Wang X, Shen C, Zhu Y, Dai M, Qiu X, Yang R, Xing D, Pang Y, Xu J (2019) Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice 12: 88. https://doi.org/10.1186/s12284-019-0349-z
Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12: 183. https://doi.org/10.1186/1471-2229-12-183
McCouch SR, Wright MH, Tung CW, Maron LG, McNally KL, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P, et al (2016) Open access resources for genome wide association mapping in rice. Nature Comm 7: 10532. https://doi.org/10.1038/ncomms10532
Mohammadi-Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the Saltol QTL. Afr J Biotechnol 7: 730–736. https://doi.org/10.3233/JAD-130647
Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Mapping quantitative trait loci associated with the yield and yield components under reproductive stage salinity stress in rice (Oryza sativa. L). J Genet 92: 433–443. https://doi.org/10.1007/s12041-013-0285-4
Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6): 1161–1173. https://doi.org/10.1093/aob/mcm052
Moradi F, Ismail AM, Gregorio GB, Egdane JA (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Ind J Plant Physiol 8: 105–116.
Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomic 11(2): 293–305. https://doi.org/10.1007/s10142-010-0203-2
Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu ZY (2020) Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. Plant Biotechnol J 18: 172–184. https://doi.org/10.1111/pbi.13184
Nayyeripasand L, Garoosi GA, Ahmadikhah A (2021) Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice 14(1): 9. https://doi.org/10.1186/s12284-020-00433-0
Ning X, Sun Y, Wang C, Zhang W, Sun M, Hu H, Liu J, Yang L (2018) A rice CPYC-Type glutaredoxin OsGRX20 in protection against Bacterial blight, methyl viologen and salt stresses. Front Plant Sci 9: 111. https://doi.org/10.3389/fpls.2018.00111
Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, Tarpley L, Eizenga GC, McGrath SP, Zhao FJ, Islam MR, Islam S, Duan G, Zhu Y, Salt DE, Meharg AA, Price AH (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PloS One 9(2): e89685. https://doi.org/10.1371/journal.pone.0089685
Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51(3): 366–377. https://doi.org/10.1111/j.1365-313X.2007.03149.x
Qi D, Han L, Zhang S (2005) Methods of characterization and evaluation of salt or alkaline tolerance in rice. J Plant Genet Resour 6: 226–230. https://doi.org/10.3969/j.issn.1672-1810.2005.02.021
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141–1146. https://doi.org/10.1038/ng1643
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7): e47. https://doi.org/10.1093/nar/gkv007
Rohila JS, Edwards JD, Tran GD, Jackson AK, McClung AM (2019) Identification of superior alleles for seedling stage salt tolerance in the USDA rice mini-core collection. Plants 8: 472. https://doi.org/10.3390/plants8110472
Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkermeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antioxid Redox Sign 7(7-8): 919–929. https://doi.org/10.1089/ars.2005.7.919
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012: 217037. https://doi.org/10.1155/2012/217037
Singh RK, Flowers TJ (2010) Physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M, Ed. Handbook of Plant and Crop Stress, 3rd edition. Taylor and Francis, Boca Raton, 901–942. https://doi.org/10.1201/b10329-44
Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100: 14672–14677. https://doi.org/10.1073/pnas.2034667100
Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140: 613–623. https://doi.org/10.1104/pp.105.073734
Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17: 171–180. https://doi.org/10.1007/s11248-007-9082-2
Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28: 2082–2083. https://doi.org/10.1093/bioinformatics/bts313
Theerawitaya C, Samphumphuang T, Tisarum R, Siangliw M, Cha-um S, Takabe T, Toojinda T (2020) Expression level of Na+ homeostasis-related genes and salt-tolerant abilities in backcross introgression lines of rice crop under salt stress at reproductive stage. Protoplasma 257: 1595–1606. https://doi.org//10.1007/s00709-020-01533-w
Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3: 148–160. https://doi.org/10.1007/s12284-010-9053-8
Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76: 115–127. https://doi.org/10.1111/tpj.12277
Tyczewska A, Wozniak E, Gracz J, Kuczynski J, Twardowski T (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36: 1219–1229. https://doi.org/10.1016/j.tibtech.2018.07.008
Veena VSR, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17(4): 385–395. https://doi.org/10.1046/j.1365-313x.1999.00390.x
Veyrieras J, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8: 49. https://doi.org/10.1186/1471-2105-8-49
Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y (2016) Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genet 12(2): e1005844. https://doi.org/10.1371/journal.pgen.1005844
Wang R, Cheng Y, Ke X, Zhang X, Zhang H, Huang J (2020) Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis. Comput Biol Chem 85: 107188. https://doi.org/10.1016/j.compbiolchem.2019.107188
Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller AJ, Xu G (2015) Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot 66(1): 317–331. https://doi.org/10.1093/jxb/eru425
Xia Y, Yin S, Zhang K, Shi X, Lian C, Zhang H, Hu Z, Shen Z (2018) OsWAK11, a rice wall-associated kinase, regulates Cu detoxification by alteration the immobilization of Cu in cell walls. Environ Exp Bot 150: 99–105. https://doi.org/10.1016/j.envexpbot.2018.03.005
Yadav SK, Singla-Pareek SL, Kumar M, Pareek A, Saxena M, Sarin NB, Sopory SK (2007) Characterization and functional validation of glyoxalase II from rice. Protein Expr Purif 51(1): 126–132. https://doi.org/10.1016/j.pep.2006.07.007
Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10: 615–620. https://doi.org/10.1016/j.tplants.2005.10.002
Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X (2020) rMVP: A Memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. bioRxiv 2020: 08.20.258491. https://doi.org/10.1101/2020.08.20.258491
Zelm EV, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71: 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40: 996–1003. https://doi.org/10.2135/cropsci2000.404996x
Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127: 235–245. https://doi.org/10.1023/A:1020262932277
Zhang H, Li Y, Yao X, Liang G, Yu D (2017) POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis. Plant Physiol 175(1): 543–554. https://doi.org/10.1104/pp.17.00794
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42: 355–360. https://doi.org/10.1038/ng.546
Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: 467. https://doi.org/10.1038/ncomms1467