Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Polme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. doi:10.1038/s41586-018-0386-6
Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček Č, Voříšková J (2011) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6:248–258. doi:10.1038/ismej.2011.95
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. doi:10.1016/j.soilbio.2016.03.017
Barabasi A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. doi:10.1038/nrg2918
Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal 6:343–351. doi:10.1038/ismej.2011.119
Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:1–14. doi:10.3389/fmicb.2014.00219
Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2. Appl Environ Microbiol 80:3103–3112. doi:10.1128/aem.04034-13
Boddy L, Frankland J, West (2008) Ecology of Saprotrophic Basidiomycetes. Elsevier, Amsterdam
Brown ME, Chang MCY (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. doi:10.1016/j.cbpa.2013.11.015
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6:1621–1624. doi:10.1038/ismej.2012.8
Chao Y, Liu W, Chen Y, Chen W, Zhao L, Ding Q, Wang S, Tang Y-T, Zhang T, Qiu R-L (2016) Structure, Variation, and Co-occurrence of Soil Microbial Communities in Abandoned Sites of a Rare Earth Elements Mine. Environmental Science Technology 50:11481–11490. doi:10.1021/acs.est.6b02284
Chen Y-L, Xu T-L, Veresoglou SD, Hu H-W, Hao Z-P, Hu Y-J, Liu L, Deng Y, Rillig MC, Chen B-D (2017) Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol Biochem 110:12–21. doi:10.1016/j.soilbio.2017.02.015
Core Team R (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: Networks, competition, and stability. Science 350:663–666. doi:10.1126/science.aad2602
Dawud SM, Raulund-Rasmussen K, Ratcliffe S, Domisch T, Finér L, Joly FX, Hättenschwiler S, Vesterdal L, Ostertag R (2017) Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct Ecol 31:1153–1162. doi:10.1111/1365-2435.12821
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9:3033. doi:10.1038/s41467-018-05516-7
DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl Environ Microbiol 77:6295–6300. doi:10.1128/aem.05005-11
Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R (2019) Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Front Microbiol 10:e17000. doi:10.3389/fmicb.2019.01519
Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045. doi:10.1128/aem.68.6.3035-3045.2002
Eichorst SA, Kuske CR (2012) Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing. Appl Environ Microbiol 78:2316–2327. doi:10.1128/aem.07313-11
Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE (2016) Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Appl Environ Microbiol 82:2363–2371. doi:10.1128/aem.03640-15
Fabian J, Zlatanovic S, Mutz M, Premke K (2017) Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. The ISME Journal 11:415–425. doi:10.1038/ismej.2016.131
Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. doi:10.1038/nrmicro2832
Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. doi:10.1038/nrmicro.2017.87
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839
Folman LB, Gunnewiek PJAK, Boddy L, de Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. Fems Microbiology Ecology 63:181–191. doi:10.1111/j.1574-6941.2007.00425.x
Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087. doi:10.1111/j.1461-0248.2005.00813.x
Freedman Z, Eisenlord SD, Zak DR, Xue K, He Z, Zhou J (2013) Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biol Biochem 66:130–138. doi:10.1016/j.soilbio.2013.07.010
Ge Z-W, Brenneman T, Bonito G, Smith ME (2017) Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 418:493–505. doi:10.1007/s11104-017-3312-z
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Haettenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. doi:10.1016/j.tree.2010.01.010
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. doi:10.1038/nrmicro2795
Hattenschwiler V (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. doi:10.1016/s0169-5347(00)01861-9
Henkel TW, Terborgh J, Vilgalys RJ (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. Mycol Res 106:515–531. doi:10.1017/S0953756202005919
Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs: 503–522
IPCC (2007) Intergovernmental Panel on Climate Change 2007:Climate Change 2007. The Physical Science Basis, Geneva
Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630. doi:10.1111/j.1469-8137.2005.01354.x
Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A (2012) Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. Fems Microbiology Ecology 82:551–562. doi:10.1111/j.1574-6941.2012.01420.x
Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Kristufek V, Wubet T, Herrmann S, Buscot F, Tarkka MT (2013) Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. Bmc Microbiology 13:205. doi:10.1186/1471-2180-13-205
Landi P, Minoarivelo HO, Brannstrom A, Hui C, Dieckmann U (2018) Complexity and stability of ecological networks: a review of the theory. Popul Ecol 60:319–345. doi:10.1007/s10144-018-0628-3
Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM, Fierer N (2018) Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal 12:1794–1805. doi:10.1038/s41396-018-0089-x
Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. Fems Microbiology Ecology 59:418–427. doi:10.1111/j.1574-6941.2006.00240.x
Llado S, Lopez-Mondejar R, Baldrian P (2017) Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol Mol Biol Rev 81. doi:10.1128/MMBR.00063-16
Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229. doi:10.1038/nrmicro3400
Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Luis Quero J, Garcia-Gomez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitan J, Gutierrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang D, Woods NN, Yuan X, Zaady E, Singh BK (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA 112:15684–15689. doi:10.1073/pnas.1516684112
Makkonen M, Berg MP, Handa IT, Haettenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041. doi:10.1111/j.1461-0248.2012.01826.x
Maron P-A, Mougel C, Ranjard L (2011) Soil microbial diversity: Methodological strategy, spatial overview and functional interest. CR Biol 334:403–411. doi:10.1016/j.crvi.2010.12.003
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi:10.1038/nrmicro1341
Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC, Price LB, Keim P, Hungate BA (2015) Linking soil bacterial biodiversity and soil carbon stability. The ISME Journal 9:1477–1480. doi:10.1038/ismej.2014.205
Millard P, Singh BK (2010) Does grassland vegetation drive soil microbial diversity? Nutr Cycl Agroecosyst 88:147–158. doi:10.1007/s10705-009-9314-3
Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RJ, Pottsl JM (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Journal of Ecology: 50–61
Murphy J, Riley JP (1958) A Sigle-Solution Metnod for The Determination of Soluble Phosphate in Sea Water. Journal of the Marine Biological Association of the United Kingdom 1:9–14. doi:10.1017/S0025315400014776
Nacke H, Thuermer A, Wollherr A, Will C, Hodac L, Herold N, Schoening I, Schrumpf M, Daniel R (2011) Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. Plos One 6:e17000. doi:10.1371/journal.pone.0017000
Nakayama M, Imamura S, Taniguchi T, Tateno R (2019) Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil? For Ecol Manage 446:238–250. doi:10.1016/j.foreco.2019.05.042
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan. Community Ecology Package
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610. doi:10.1111/j.1469-8137.2006.01931.x
Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal 7:1852–1861. doi:10.1038/ismej.2013.66
Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For Ecol Manage 309:19–27. doi:10.1016/j.foreco.2013.02.034
Prescott CE, Vesterdal L (2013) Tree species effects on soils in temperate and boreal forests: Emerging themes and research needs. For Ecol Manage 309:1–3. doi:10.1016/j.foreco.2013.06.042
Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N, Klironomos J (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95. doi:10.1111/ele.12381
Qiao M, Qi W, Liu H, Bai Y, Qu J (2016) Formation of oxygenated polycyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons during aerobic activated sludge treatment and their removal process. Chem Eng J 302:50–57. doi:10.1016/j.cej.2016.04.139
Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927. doi:10.1111/j.1365-2486.2012.02639.x
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sorensen SJ, Tamminen MV, Timonen S (2016) Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. Fems Microbiology Ecology 92:fiw087. doi:10.1093/femsec/fiw087
Sasse J, Martinoia E, Northen T (2018) Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci 23:25–41. doi:10.1016/j.tplants.2017.09.003
Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, van Dorst J, Ji M, Ferrari BC, Grogan P, Chu H, Snape I (2014) Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem 78:10–20. doi:10.1016/j.soilbio.2014.07.005
Smith SE, Read D (2008) Mycorrhizal Symbiosis. 3rd Edition. Academic Press, San Diego
Staley JT, Anna-Louise R (2003) Biodiversity of Microbial Life: Foundation of Earth's Biosphere. Wiley-Liss, New York (NY)
Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. The ISME Journal 10:346–362. doi:10.1038/ismej.2015.116
Thoms C, Gleixner G (2013) Seasonal differences in tree species' influence on soil microbial communities. Soil Biol Biochem 66:239–248. doi:10.1016/j.soilbio.2013.05.018
Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557. doi:10.1126/science.1107851
Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK (2016) Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. The ISME Journal 10:2593–2604. doi:10.1038/ismej.2016.65
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43. doi:10.1038/nature02340
Uroz S, Ioannidis P, Lengelle J, Cebron A, Morin E, Buee M, Martin F (2013) Functional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation. Plos One 8:e55929. doi:10.1371/journal.pone.0055929
Valaskova V, de Boer W, Gunnewiek PJAK, Pospisek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. The ISME Journal 3:1218–1221. doi:10.1038/ismej.2009.64
Valentin L, Rajala T, Peltoniemi M, Heinonsalo J, Pennanen T, Makipaa R (2014) Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood. Front Microbiol 5:230. doi:10.3389/fmicb.2014.00230
van der Heijden MGA, Hartmann M (2016) Networking in the Plant Microbiome. Plos Biology 14:e1002378. doi:10.1371/journal.pbio.1002378
Vitousek PM, Abei J, Howarth W, Likens R GE (1997) Human alteration of the global nitrogen cycle: sources and consequences. Nature Sciences Sociétés 5:85
Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a
Wang W, Zhang Q, Sun X, Chen D, Insam H, Koide RT, Zhang S (2020) Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biol Biochem 141:107690. doi:10.1016/j.soilbio.2019.107690
Whittaker RJ (2006) Island species-energy theory. J Biogeogr 33:11–12. doi:10.1111/j.1365-2699.2005.01442.x
Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-verlag, New York
Wu D, Zhang M, Peng M, Sui X, Li W, Sun G (2019) Variations in Soil Functional Fungal Community Structure Associated With Pure and Mixed Plantations in Typical Temperate Forests of China. Front Microbiol 10:1636. doi:10.3389/fmicb.2019.01636
Zhang P, Li B, Wu J, Hu S, Seabloom E (2018) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22:200–210. doi:10.1111/ele.13181
Zhang X, Johnston ER, Liu W, Li L, Han X (2016) Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Glob Change Biol 22:198–207. doi:10.1111/gcb.13080
Zifcakova L, Vetrovsky T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301. doi:10.1111/1462-2920.13026
Zwetsloot MJ, Kessler A, Bauerle TL (2018) Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol 218:530–541. doi:10.1111/nph.15041