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Abstract

We conduct a quantitative analysis contrasting human-written English news text
with comparable large language model (LLM) output from from six different
LLMs that cover three different families and four sizes in total. Our analysis spans
several measurable linguistic dimensions, including morphological, syntactic, psy-
chometric, and sociolinguistic aspects. The results reveal various measurable
differences between human and AI-generated texts. Human texts exhibit more
scattered sentence length distributions, more variety of vocabulary, a distinct
use of dependency and constituent types, shorter constituents, and more opti-
mized dependency distances. Humans tend to exhibit stronger negative emotions
(such as fear and disgust) and less joy compared to text generated by LLMs,
with the toxicity of these models increasing as their size grows. LLM outputs
use more numbers, symbols and auxiliaries (suggesting objective language) than
human texts, as well as more pronouns. The sexist bias prevalent in human text
is also expressed by LLMs, and even magnified in all of them but one. Differences
between LLMs and humans are larger than between LLMs.

Keywords: Large Language Models, Computational Linguistics, Machine-generated
text, Linguistic Biases
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Fig. 1: We gather contemporary articles from the New York Times API and use their
headlines plus the 3 first words of the lead paragraph as prompts to LLMs to generate
news. We use four LLMs from the LLaMa family (7B, 13B, 30B and 65B sizes), Falcon
7B and Mistral 7B. We then compare both types of texts, assessing differences in
aspects like vocabulary, morphosyntactic structures, and semantic attributes

1 Introduction

Large language models (LLMs) (Radford et al., 2018; Scao et al., 2022; Touvron et al.,
2023) and instruction-tuned variants (OpenAI, 2023; Taori et al., 2023) output fluent,
human-like text in many languages, English being the best represented. The extent to
which these models truly understand semantics (Landgrebe and Smith, 2021; Søgaard,
2022), encode representations of the world (Li et al., 2022), generate fake statements
(Kumar et al., 2023), or propagate specific moral and ethical values (Santurkar et al.,
2023) is currently under active debate. Regardless, a crucial factor contributing to
the persuasiveness of these models lies, in the very first place, in their exceptional
linguistic fluency.

A question that arises regards whether their storytelling strategies align with the
linguistic patterns observed in human-generated texts. Do these models tend to use
more flowery or redundant vocabulary? Do they exhibit preferences for specific voices
or syntactic structures in sentence generation? Are they prone to certain psychome-
tric dimensions? However, contrasting such linguistic patterns is not trivial. Firstly,
the creators of these models often insufficiently document the training data used.
Even with available information, determining the extent of the training set’s influ-
ence on a sentence or whether it is similar to an input sample remains challenging.
Second, language is subject to cultural norms, social factors, and geographic varia-
tions, which shape linguistic preferences and conventions. Thus, to contrast linguistic
patterns between humans and machines, it is advisable to rely on a controlled envi-
ronment. However, little effort has been made to measure differences, if any, in syntax,
grammar, and other linguistic aspects between the two types of texts. Instead, atten-
tion has primarily been on explicit biases like societal and demographic biases (Liang
et al., 2021).
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Research contributions and objectives

We study six generative large language models: Mistral 7B (Jiang et al., 2023), Falcon
7B (Almazrouei et al., 2023) and the four models (7B, 13B, 30B and 65B) from the
LLaMa family (Touvron et al., 2023). We contrast several linguistic patterns against
human text using English news text. To do so, we recover human-generated news
and ask the models to generate a news paragraph based on the headline and first
words of the news. We query the New York Times Archive API to retrieve news
published after all the models used were released, to guarantee sterilization from the
training set. We analyze various linguistic patterns: differences in the distribution
of the vocabulary, sentence length, part-of-speech (PoS) tags, syntactic structures,
psychometric features such as the tone of the news articles and emotions detectable
in the text, and sociolinguistic aspects like gender bias. We depict an overview in
Figure 1. We also explore if these disparities change across models of different sizes
and families.

2 Related work

Next, we survey relevant work to the subject of this paper: (i) analyzing inherent
linguistic properties of machine-generated text, (ii) distinguishing between machine-
and human-generated texts, (iii) applications of machine-generated text to economize
human labor and time, (iv) generating synthetic text to perform data augmentation,
and (v) examining the propagation of biases through data extracted from the Internet.

2.1 Analysis of linguistic properties of AI-generated text

Cognitive scientists (Cai et al., 2023) have exposed models such as ChatGPT to exper-
iments initially designed for humans. They verified that it was able to replicate human
patterns like associating unfamiliar words to meanings, denoising corrupted sentences,
or reusing recent syntactic structures, among other abilities. Yet, they also showed
that ChatGPT tends to refrain from using shorter words to compress meaning, as well
as from using context to resolve syntactic ambiguities. Similarly, Zhou et al. (2023)
conducted a thorough comparison between AI-created and human-created misinfor-
mation. They first curated a dataset of human-created misinformation pertaining to
the COVID-19 pandemic. Then, they used these representative documents as prompts
for GPT-3 to generate synthetic misinformation. By analyzing and contrasting the
outputs from both sources, the study revealed notable differences. AI-made fake news
tended to be more emotionally charged, using eye-catching language. It also frequently
raised doubts without proper evidence and jumped to unfounded conclusions. Very
recently, Xu et al. (2023) have shed light on the lexical conceptual representations
of GPT-3.5 and GPT-4. Their study demonstrated that these AI language models
exhibited strong correlations with human conceptual representations in specific dimen-
sions, such as emotions and salience. However, they encountered challenges when
dealing with concepts linked to perceptual and motor aspects, such as visual, gusta-
tory, hand/arm, or mouth/throat aspects, among others. With the goal of measuring
differences across both types of texts, Pillutla et al. (2021) introduced MAUVE, a
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new metric designed to compare the learned distribution of a language generation
model with the distributions observed in human-generated texts. Given the inherent
challenge in open-ended text generation, where there is no single correct output, they
address the issue of gauging proximity between distributions by leveraging the con-
cept of a divergence curve. Following the release of this work as a preprint, other
authors have studied the text generated by language models from a linguistic point
of view. Mart́ınez et al. (2023) developed a tool to evaluate the vocabulary knowl-
edge of language models, testing it on ChatGPT. Other works have also evaluated
the lexical abundance of ChatGPT and how it varies with regards to different param-
eters (Mart́ınez et al., 2024). Linguistic analysis is proving to be a valuable tool in
understanding LLM outputs. In the line of our work, Rosenfeld and Lazebnik (2024)
conducted a linguistic analysis of the outputs from three popular LLMs, concluding
that this type of information can be used for LLM attribution on machine-generated
texts.

2.2 Identification of synthetically-generated text

This research line aims to differentiate texts generated by machines from those
authored by humans (Crothers et al., 2023), thus contributing to accountability and
transparency in various domains. This challenge has been addressed from different
angles including statistical, feature-based methods (Nguyen-Son et al., 2017; Fröhling
and Zubiaga, 2021) and neural approaches (Rodriguez et al., 2022; Zhan et al., 2023).
Yet, Crothers et al. (2022) recently concluded that except from neural methods, the
other approaches have little capacity to identify modern machine-generated texts.
Ippolito et al. (2020) observed two interesting behaviors related to this classification
task: (i) that fancier sampling methods for generation (e.g., nucleus or untruncated
random sampling) are helpful to better at deveiving humans, but conversely make the
detection for machines more accessible and simple, and (ii) that showing longer inputs
help both machines and humans to better detect synthetically-generated strings.
Munir et al. (2021) showed that it was possible to attribute a given synthetically-
generated text to the specific LLM model that produced it, using a standard machine
learning classification architecture that used XLNet (Yang et al., 2019) as its back-
bone. In a different line, Dugan et al. (2020) studied whether humans could identify the
fencepost where an initially human-generated text transitions to a machine-generated
one. There are also methods that have been specifically designed to generate or detect
machine-generated texts for highly sensible domains, warning about the dangers of
language technologies. The SCIgen software (Stribling et al., 2005) was able to create
semantically non-sense but grammatically correct research papers, whose content was
accepted at some conferences with poor peer-review processes. More recently, Liao
et al. (2023) showed that medical texts generated by ChatGPT were easy to detect:
although the syntax is correct, the texts were more vague and provided only only gen-
eral terminology or knowledge. However, this is a hard task and methods to detect
AI-generated text are not accurate and are susceptible to suffer attacks (Sadasivan
et al., 2023).
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2.3 Natural language annotation and data generation using

LLMs

The quality of current synthetically-generated text has encouraged researchers to
explore their potential for complementing labor-intensive tasks, such as annotation
and evaluation. For instance, He et al. (2022) generated synthetic unlabeled text tai-
lored for a specific NLP task. Then, they used an existing supervised classifier to
silver-annotate those sentences, aiming to establish a fully synthetic process for gen-
erating, annotating, and learning instances relevant to the target problem. Related,
Chiang and Lee (2023) investigated whether LLMs can serve as a viable replacement
for human evaluators in downstream tasks. Particularly, they conducted experiments
where LLMs are prompted with the same instructions and samples as provided to
humans, revealing a correlation between the ratings assigned by both types of eval-
uators. Moreover, there is also work to automatically detect challenging samples in
datasets. For instance, Swayamdipta et al. (2020) already used the LLMs fine-tuning
phase to identify simple, hard and ambiguous samples. Chong et al. (2022) demon-
strated that language models are useful to detect label errors in datasets by simply
ranking the loss of fine-tuned data.

LLMs can also contribute in generating high-quality texts to pretrain other models.
Previous work has used language models to generate synthetic data to increase the
amount of available data using pretrained models (Kumar et al., 2020). Some examples
of downstream tasks are text classification (Li et al., 2023), intent classification (Sahu
et al., 2022), toxic language detection (Hartvigsen et al., 2022), text mining (Tang
et al., 2023), or mathematical reasoning (Liu et al., 2023b), inter alia. Synthetic data
is also used to pretrain and distill language models. Data quality has been shown to
be a determinant factor for training LLMs. Additional synthetic data can contribute
to scale the dataset size to compensate a small model size, getting more capable small
models. LLMs have allowed to generate high-quality, synthetic text that is useful to
train small language models (SLM). One of such cases is (Eldan and Li, 2023). They
generated high quality data with a constrained vocabulary and topics using GPT-
3.5 and 4 to train SLM that show coherence, creativity and reasoning in a particular
domain. The Phi models family (Gunasekar et al., 2023; Li et al., 2023a; Javaheripi
et al., 2023) showed the usefulness of synthetic data in training high-performance but
SLMs. The authors used a mixture of high-quality textbook data and synthetically-
generated textbooks to train a highly-competent SLM. Moreover, it has been used
to create instruction tuning datasets to adequate LLMs behavior to user prompts
(Peng et al., 2023). Synthetic data can also help preventing LLMs from adapting their
answers to previous human opinions when they are not objectively correct (Wei et al.,
2023). However, although useful, synthetically-generated data may harm performance
when the tasks or instances at hand are subjective (Li et al., 2023).

Synthetic datasets provide data whose content is more controllable, as LLMs tend
to reproduce the structure of the datasets they have been trained on. Most LLMs are
trained totally or partially on scraped data from the web, and such unfiltered internet
data usually contain biases or discrimination as they reproduce the hegemonic view
(Bender et al., 2021). Some widely-used huge datasets such as The Pile (Gao et al.,
2020) confirm this. Authors extracted co-occurrences on the data that reflect racial,
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religious and gender stereotypes, which are also shown in some models. Some datasets
are filtered and refined to improve the quality of the data. However, they still reproduce
the biases in it (Penedo et al., 2023). Moreover, Dodge et al. (2021) did an extensive
evaluation of the data of the C4 dataset (Raffel et al., 2020), pointing out filtering
certain information could increase the bias on minorities. Prejudices on the data are
reproduced on the LLMs trained on them, as some studies have pointed out (Weidinger
et al., 2021). LLMs show the same biases that occur in the datasets, ranging from
religious (Abid et al., 2021) to gender discrimination (Lucy and Bamman, 2021).

3 Data preparation

Next, we will delve into our data collection process for both human- and machine-
generated content, before proceeding to the analysis and comparison.

3.1 Data

We generate the evaluation dataset relying on news published after the release date
of the models that we will use in this work. This strategy ensures that they did not
have exposure to the news headlines and their content during pre-training. It is also
in line with strategies proposed by other authors - such as Liu et al. (2023) - who take
an equivalent angle to evaluate LLMs in the context of generative search engines. The
reference human-generated texts will be the news (lead paragraph) themselves.

Crawling

We use New York Times news, which we access through its Archive API1. Particularly,
we gathered all articles available between October 1, 2023, and January 24, 2024,
resulting in a dataset of 13,371 articles. The articles are retrieved in JSON format,
and include metadata such as the URL, section name, type of material, keywords,
or publication date. Figure 2 shows some general information about the topics and
type of articles retrieved. We are mainly interested on two fields: the headline and the
lead paragraph. The lead paragraph is a summary of the information presented in the
article. We discarded the articles that had an empty lead paragraph. The collected
articles primarily consist of news pieces, although around 26% also include other types
of texts, such as reviews, editorials or obituaries.

Rationale for focusing on English and the news domain

The choice to focus on English texts in our research is guided by a couple of con-
siderations. Firstly, the LLMs we use (as detailed in Section 3.2) are English-centric.
LLaMa’s dataset comprises over 70% English content, and Falcon’s even higher at
over 80%. With Mistral, the specifics of the training data were not disclosed, adding
an extra layer of complexity. In this context, it is worth noting that a model trained
predominantly on data from specific demographics or regions might develop a bias
towards those linguistic patterns, potentially overlooking others. The clarity around

1https://developer.nytimes.com/docs/archive-product/1/overview
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Fig. 2: Treemaps for the ‘section name’ and ‘type of material’ fields of the crawled
articles

the influence of diverse linguistic inputs on model performance is also limited, further
complicating a fair analysis.

Secondly, studying additional languages presented extra logistical challenges. Col-
lecting non-English news texts was difficult, especially with the reliance on paid or
services with very limited capabilties for access to quality sources. The abundance and
accessibility of English news sources, like the New York Times, greatly facilitated our
collection of analyzable content under usable licenses.

3.2 Generation

Let H = [h1, h2, ..., hN ] be a set of human-generated texts, such that hi is a tuple of
the form (ti, si) where ti is a headline and si is a paragraph of text with a summary
of the corresponding news. Similarly, we will define M = [m1,m2, ...,mN ] as the set
of machine-generated news articles produced by a LLM such that mi is also a tuple of
the from (t′

i
, s′

i
) where t′

i
= ti and s′

i
= [w′

1, w
′
2, ..., w

′
|si|

] is a piece of synthetic text. For
the generation of high-quality text, language models aim to maximize the probability
of the next word based on the previous content. To ensure that the models keep on
track with the domain and topic, we initialize the previous content with the headline
(the one chosen by the journalist that released the news) and the first three words of
the human-generated lead paragraph to help the model start and follow the topic.2

Formally, we first condition the model on ci = t′
i
· si[0:2] and every next word (i ≥ 3)

will be predicted from a conditional distribution P (w′
i
|ci · s

′
i[3:t−1]).

To generate a piece of synthetic text s′, we condition the models with a prompt
that includes the headline and first words, as described above, and we keep generating
news text until the model decides to stop.3 We enable the model to output text

2In preliminary experiments, certain LLM outputs encountered difficulties in adhering to a minimal
coherent structure when a minimum number of the body’s words were absent from the prompt. Also note
that the LLMs we are using are not instruction-tuned, and thus prompting engineering is not particularly
suitable, nor the goal of this work.

3In preliminary experiments, we explored hyperparameter values that generated fluent and coherent texts:
temperature of 0.7, 0.9 top p tokens, and a repetition penalty of 1.1.
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without any forced criteria, except for not exceeding 200 tokens. The length limit
serves two main purposes: (i) to manage computational resources efficiently4, and (ii)
to ensure that the generated content resembles the typical length of human-written
lead paragraphs, making it comparable to human-produced content. We arrived at
this limit after comparing the average and standard deviation of the number of tokens
between humans and models in early experiments.

3.3 Selected models

We rely on six pre-trained generative language models that are representative within
the NLP community. These models cover 4 different sizes (7, 13, 30 and 65 billion
parameters) and 3 model families. We only include different sizes for LLaMa as results
within the same family are similar, and larger models need considerably more compute.
We briefly mention their main particularities below:

LLaMa models (LL) (Touvron et al., 2023)

The main representative for our experiments will be the four models from the LLaMa
family, i.e. the 7B, 13B, 30B, and 65B models. The LLaMa models are trained on a
diverse mix of data sources and domains, predominantly in English, as detailed in Table
1. LLaMa is based on the Transformer architecture and integrates several innovations
from other large language models. In comparison to larger models like GPT-3 (Brown
et al., 2020), PaLM (Chowdhery et al., 2023), and Chinchilla (Hoffmann et al., 2022),
LLaMa exhibits superior performance in zero and few-shot scenarios. It is also a good
choice as a representative example because the various versions, each with a different
size, will enable us to examine whether certain linguistic patterns become closer or
more different to humans in larger models.

Falcon 7B (F7B) (Almazrouei et al., 2023)

Introduced alongside its larger variants with 40 and 180 billion parameters, it is trained
on 1.5 trillion tokens from a mix of curated and web datasets (see Table 1). Its archi-
tecture relies on multigroup attention (an advanced form of multiquery attention),
Rotary Embeddings (similar to LLaMa), standard GeLU activation, parallel atten-
tion, MLP blocks, and omits biases in linear layers. We primarily chose this model to
compare the results in the following sections with those of its counterpart, LLaMa 7B,
and to explore whether there are significant differences among models of similar size.

Mistral 7B (M7B) (Jiang et al., 2023)

It surpasses larger LLaMa models in various benchmarks despite its smaller size. Its
distinctive architecture features Sliding Window Attention, Rolling Buffer Cache, and
Prefill and Chunking. The training data for Mistral 7B is not publicly disclosed, and to
fight against data contamination issues, our analysis only includes articles published
after the model’s release. The choice of this model as an object of study follows the

4We ran the models on 2xA100 GPUs for 3 days to generate all texts. To address memory costs, we use
8-bit precision.
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Table 1: Size and training data of the models used in our experiments

Family Size Tokens Data sources

LLaMa

7B 1T English CommonCrawl (67%), C4 (15%),
13B 1T GitHub (4.5%), Wikipedia (4.5%),
30B 1.5T Gutenberg and Books3 (4.5%), ArXiv (2.5%),
65B 1.5T Stack Exchange (2%)

Falcon
RefinedWeb-English (76%), RefinedWeb-Euro (8%),

7B 1.5T Gutenberg (6%), Conversations (5%)
GitHub (3%), Technical (2%)

Mistral 7B ? ?

same thinking we used for the Falcon model. We want to see how well Mistral 7B does
and how its new features stack up against models of the same size.

4 Analysis of linguistic patterns

In this section, we compare human- and machine-generated texts. We first inspect the
texts under a morphosyntactic optic, and then focus on semantic aspects.

4.1 Morphosyntactic Analysis

To compute linguistic representations, we rely on Stanza (Qi et al., 2020) to perform
segmentation, tokenization, part-of-speech (PoS) tagging, and dependency and con-
stituent parsing. For these tasks, and in particular for the case of English and news
text, the performance is high enough to be used for applications (Manning, 2011;
Berzak et al., 2016), and it can be even superior to that obtained by human anno-
tations. This also served as an additional reason to focus our analysis on news text,
ensuring that the tools we rely on are accurate enough to obtain meaningful results.

4.1.1 Sentence length

Figure 3 illustrates the length distribution for the LLMs in comparison to human-
generated news articles. We excluded a few outliers from the plot by ignoring sentences
with lengths over 80 tokens. The six LLMs exhibit a similar distribution across dif-
ferent sentence lengths, presenting less variation when compared to human-generated
sentences, which display a wider range of lengths and greater diversity. Specifically,
the models exhibit a higher frequency of sentence generation within the 10 to 30 token
range compared to humans, whereas humans tend to produce longer sentences with
greater frequency.

4.1.2 Richness of vocabulary and lexical variation

We analyze the diversity of vocabulary used by the LLMs and compare them against
human texts. We consider the total number of tokens (words), the count of unique
tokens, and the Type-Token Ratio (TTR). The TTR is a measure of lexical variation
and is calculated by dividing the number of types (i.e., unique tokens) by the total
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Fig. 3: Sentence length distribution for the human-written texts and each tested
language model. M stands for Mistral, F for Falcon and LL for LLaMa

number of tokens. Table 2 presents the results. Human texts displayed a higher diver-
sity of unique tokens compared to most LLMs — except for the 65B LLaMa model —
despite using fewer total tokens. This resulted in a higher TTR and a richer vocabulary.

In terms of model size, we see that all LLaMa versions have a similar number
of unique tokens and TTR, but there is a moderate increasing trend as model size
increases. Comparing models of the same size (LLaMa 7B, Falcon 7B, and Mistral
7B), Falcon 7B is the model that uses the fewest unique tokens (in absolute terms) by
a wide margin. However, it shows the same TTR as LLaMa 65B, as it also tends to
generate shorter texts and thus the ratio is similar. Finally, Mistral 7B has the lowest
TTR and the second lowest number of unique tokens.

Table 2: Statistics related to the vocabulary
of the articles generated by humans and each
tested language model

Model Tokens Unique Type-token ratio

Human 676 591 39 058 0.058
M7B 741 489 34 399 0.041
F7B 606 020 29 262 0.048
LL7B 843 087 37 553 0.045
LL13B 809 551 37 091 0.046
LL30B 790 059 38 390 0.049
LL65B 824 739 39 881 0.048
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Table 3: UPOS frequencies (%) in human- and LLM-generated texts

UPOS H M7B F7B LL7B LL13B LL30B LL65B

NOUN 19.69 17.85 17.72 17.75 17.44 17.64 17.74
PUNCT 11.88 10.92 12.14 10.77 10.91 11.43 11.22
ADP 11.36 10.58 10.30 10.75 10.63 10.70 10.69
VERB 9.97 10.37 9.23 10.26 10.23 10.14 10.29
PROPN 9.61 8.75 9.44 9.14 9.18 9.52 9.50
DET 9.04 9.00 10.72 8.65 8.64 8.76 8.63
ADJ 7.58 6.69 6.74 6.86 6.76 6.73 6.77
PRON 5.32 7.12 6.11 7.08 7.33 6.96 6.93
AUX 3.81 5.77 6.02 5.65 5.74 5.50 5.41
ADV 3.26 3.41 2.61 3.58 3.68 3.41 3.49
CCONJ 2.65 2.72 2.52 2.68 2.70 2.61 2.67
PART 2.43 2.76 2.80 2.64 2.63 2.52 2.58
NUM 1.77 1.95 1.98 2.02 1.98 2.05 2.02
SCONJ 1.41 1.84 1.37 1.84 1.85 1.71 1.72
INTJ 0.12 0.08 0.08 0.08 0.08 0.08 0.09
SYM 0.09 0.17 0.19 0.19 0.19 0.18 0.18
X 0.03 0.03 0.02 0.05 0.04 0.06 0.07

4.1.3 Part-of-speech tag distributions

Table 3 presents the frequency of universal part-of-speech (UPOS) tags (Petrov et al.,
2012) for both human and LLM-generated texts. Figure 4 shows relative differences
observed across humans and each model, for a better understanding of the relative use
of certain grammatical categories. Overall, the behavior of LLMs and their generated
text tends to be consistent among themselves, yet shows differences when compared
to human behavior, i.e., they exhibit in some cases a greater or lesser use of certain
grammatical categories. To name a few, humans exhibit a preference for using certain
kinds of content words, such as nouns and adjectives. Humans also use words tagged as
punctuation symbols more often (except when compared to Falcon), which may be con-
nected to sentence length, as human users tend to rely on longer sentences, requiring
more punctuation. Alternatively, the language models exhibit a pronounced inclina-
tion towards relying on categories such as symbols or numbers, possibly indicating an
extra effort by language models to furnish specific data in order to sound convincing.
Moreover, they write pronouns more frequently; we will analyze this point later from a
gender perspective. Comparing LLM families, Mistral and LLaMa show a similar use
of POS tags, with Mistral being the model that resembles humans the most. Falcon,
however, has some strong anomalies in POS tags such as DET or ADV. Regarding model
size, the larger the model, the greater the similarity with humans. Nevertheless, dif-
ferences between differently-sized models are much smaller than between models and
humans.
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Fig. 4: Percentage differences, following Table 3, in the use of each UPOS category
for each tested language model in comparison to humans

4.1.4 Dependencies

Dependency arc lengths

Table 4 shows information about the syntactic dependency arcs in human and
machine-generated texts. In this analysis, we bin sentences by length intervals
to alleviate the noise from comparing dependency lengths on sentences of mixed
lengths (Ferrer-i-Cancho and Liu, 2014). Results indicate that dependency lengths and
their distributions are nearly identical for all the LLMs except Falcon and the human
texts, which both tend to use longer dependencies than the texts by the rest of the
LLMs. This finding holds true for every sentence length bin for Falcon, and for all but
the first (length 1-10) in the case of human texts, so we can be reasonably sure that
it is orthogonal to the variation in sentence length distribution between human and
LLM texts described earlier. It is also worth noting that, in spite of the similarities
between humans and Falcon in terms dependency lengths, their syntax is not that
similar overall: there is a substantial difference in directionality of dependencies, with
Falcon using more leftward dependencies than both humans and other LLMs. The fact
that Falcon-generated texts are not really human-like in terms of dependency syntax
is further highlighted in the next section, where we consider a metric that normalizes
dependency lengths.

Optimality of dependencies

We compare the degree of optimality of syntactic dependencies between human texts
and LLMs. It has been observed in human language that dependencies tend to be
much shorter than expected by chance, a phenomenon known as dependency length
minimization (Ferrer-i-Cancho, 2004; Futrell et al., 2015). This can be quantified in a
robust way (with respect to sentence length, tree topology and other factors) by the Ω
optimality score introduced in Ferrer-i Cancho et al. (2022). This score measures where
observed dependency lengths sit with respect to random word orders and optimal word
orders, and is defined as: Ω = Drla−D

Drla−Dmin
, where D is the sum of dependency lengths

in the sentence, Drla is the expected sum of lengths, and Dmin is the optimal sum of
lengths for the sentence’s tree structure. For optimally-arranged trees D = Dmin and
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Table 4: Statistics for dependency arcs in sentences of different lengths
for the texts generated by human writers and each tested language
model. The meaning of the columns is as follows: (%L, %R) percentage
of left and right arcs, (l̄) average arc length, (l̄L, l̄R) average left and
right arc length, (σl) standard deviation of arc length, (σlL

, σlR
) stan-

dard deviation of left and right arc length, and number of sentences

l Model %L %R l̄ l̄L l̄R σl σlL
σlR

# Sent

1
-1
0

Human 49.40 50.60 2.37 2.89 1.84 1.67 1.90 1.17 4 719
M7B 50.94 49.06 2.37 2.93 1.83 1.65 1.88 1.16 6 190
F7B 52.08 47.92 2.39 2.99 1.84 1.62 1.84 1.15 4 596
LL7B 50.68 49.32 2.37 2.95 1.81 1.65 1.88 1.14 6 114
LL13B 50.42 49.58 2.37 2.94 1.81 1.65 1.88 1.14 6 711
LL30B 49.97 50.03 2.37 2.92 1.81 1.65 1.89 1.14 6 808
LL65B 50.23 49.77 2.36 2.91 1.81 1.64 1.87 1.15 6 652

1
1
-2
0

Human 58.36 41.64 3.19 4.62 2.17 3.12 3.87 1.86 6 179
M7B 59.76 40.24 3.12 4.63 2.10 3.03 3.80 1.74 12 113
F7B 61.41 38.59 3.20 4.79 2.19 3.06 3.85 1.83 9 265
LL7B 59.74 40.26 3.11 4.63 2.09 3.03 3.81 1.72 12 361
LL13B 59.69 40.31 3.12 4.63 2.11 3.03 3.81 1.75 12 762
LL30B 59.62 40.38 3.12 4.63 2.11 3.03 3.80 1.76 13 039
LL65B 59.43 40.57 3.13 4.63 2.10 3.04 3.81 1.75 12 767

2
1
-3
0

Human 60.40 39.60 3.64 5.52 2.41 4.42 5.71 2.68 6 153
M7B 61.00 39.00 3.53 5.50 2.26 4.28 5.65 2.33 10 449
F7B 62.51 37.49 3.62 5.70 2.38 4.32 5.72 2.46 8 222
LL7B 60.87 39.13 3.51 5.47 2.25 4.26 5.64 2.30 11 014
LL13B 60.86 39.14 3.53 5.49 2.27 4.27 5.64 2.34 11 017
LL30B 60.71 39.29 3.53 5.48 2.27 4.26 5.61 2.34 10 810
LL65B 60.47 39.53 3.53 5.47 2.26 4.28 5.63 2.35 10 884

3
1
-4
0

Human 60.84 39.16 3.90 6.07 2.50 5.49 7.32 3.19 4 770
M7B 60.48 39.52 3.79 5.95 2.38 5.35 7.15 2.98 4 676
F7B 61.98 38.02 3.89 6.11 2.52 5.35 7.16 3.12 4 064
LL7B 60.79 39.21 3.78 5.98 2.35 5.34 7.19 2.90 5 790
LL13B 60.51 39.49 3.79 5.96 2.38 5.33 7.14 2.93 5 280
LL30B 60.35 39.65 3.81 5.95 2.40 5.33 7.09 2.99 4 949
LL65B 60.35 39.65 3.79 5.95 2.37 5.31 7.10 2.93 5 430

+
4
1

Human 60.48 39.52 4.01 6.28 2.53 6.20 8.32 3.58 2 967
M7B 60.09 39.91 3.95 6.23 2.44 6.24 8.45 3.39 1 415
F7B 61.77 38.23 4.04 6.43 2.56 6.18 8.46 3.44 1 318
LL7B 59.83 40.17 3.97 6.25 2.44 6.24 8.41 3.43 2 035
LL13B 60.47 39.53 3.99 6.29 2.48 6.23 8.41 3.50 1 693
LL30B 60.21 39.79 3.98 6.24 2.49 6.21 8.34 3.53 1 579
LL65B 60.08 39.92 3.95 6.22 2.45 6.16 8.33 3.37 1 880

Ω takes a value of 1, whereas for a random arrangement it has an expected value of 0.
Negative values are possible (albeit uncommon) if dependency lengths are larger than
expected by chance.

Figure 5 displays the distribution of Ω values across sentences for human and
LLM-generated texts. The values were calculated using the LAL library (Alemany-
Puig et al., 2021). Results indicate that the distribution of Ω values is almost identical
between all of the LLMs, but human texts show noticeably larger values. This means
human texts are more optimized in terms of dependency lengths, i.e. they have shorter
dependencies than expected by a larger margin than those generated by the LLMs. At
a first glance, this might seem contradictory with the results in the previous section,
which showed that human texts had longer dependencies on average than non-Falcon
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Fig. 5: Ω value distribution for the human- and LLM-generated texts

LLM texts. However, there is no real contradiction as the object of measurement is
different, and in fact this is precisely the point of using Ω to refine and complement
the previous analysis. While previously we measured dependency distances in absolute
terms, Ω measures them controlling for tree topology, i.e., given the shape of a tree (e.g.
a linear tree which is arranged as a chain of dependents, or a star tree where one node
has all the others as dependents), are the words arranged in an order that minimizes
dependencies within possible with that shape? Thus, combining the results from both
sections we can conclude that while humans produce longer dependencies, this is due
to using syntactic structures with different topology, but their word order is actually
more optimized to make dependencies as short as possible. In turn, we also note that
while Falcon’s dependency lengths seemed different from the other LLMs (and more
human-like) in absolute terms, the differences vanish (with all LLMs including Falcon
having almost identical distributions, and humans being the outlier) when considering
Ω.

Dependency types

Table 5 lists the frequencies for the main syntactic dependency types in human and
machine-generated texts. We observe similar trends to the previous sections, with
LLM texts exhibiting similar uses of syntactic dependencies among themselves, with
Falcon being the most distinct model, while all of them present differences compared
to human-written news. In terms of the LLaMa models - same model in different sizes
- larger models are slightly closer to the way humans use dependency types. For the
full picture, Figure 6 depicts all relative differences in their use (humans versus each
LLM), but we briefly comment on a few relevant cases as representative examples. For
instance, nummod dependencies are more common in LLM-generated texts compared to
human texts. This is coherent with the higher use of the NUM tag in the part-of-speech
tag distribution analysis. Additionally, we observed higher ratios for other dependency
types, such as aux (for which the use of auxiliary verbs was also significantly higher
according to the UPOS analysis), copula and nominal subjects (nsubj). Furthermore,
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Table 5: Percentage of words generated by humans and each of the tested
LLMs that are labeled with a specific dependency type (deprel). We only
include relations with a frequency surpassing 1% within the human texts

deprel H M7B F7B LL7B LL13B LL30B LL65B

punct 11.88 10.92 12.15 10.78 10.91 11.44 11.23
case 11.69 10.81 10.75 10.98 10.76 10.89 10.85
det 8.88 8.81 10.59 8.45 8.43 8.56 8.43
amod 6.98 5.57 5.73 5.79 5.60 5.71 5.75
nsubj 6.09 7.20 6.89 7.00 7.21 7.11 7.02
obl 5.50 5.24 4.67 5.39 5.31 5.36 5.31
nmod 4.95 4.45 4.84 4.50 4.40 4.47 4.47
compound 4.87 4.04 4.46 4.20 4.13 4.27 4.33
obj 4.28 4.41 3.91 4.22 4.23 4.19 4.27
advmod 3.46 3.63 2.91 3.83 3.98 3.65 3.76
conj 3.07 2.80 2.71 2.83 2.79 2.73 2.83
mark 2.65 3.35 2.94 3.27 3.28 3.07 3.12
cc 2.63 2.73 2.54 2.72 2.73 2.63 2.69
nmod:poss 2.34 2.21 2.01 2.21 2.19 2.19 2.17
flat 2.04 1.67 1.72 1.79 1.80 1.92 1.91
aux 1.91 2.74 2.72 2.68 2.71 2.58 2.55
advcl 1.80 1.67 1.30 1.69 1.70 1.62 1.67
cop 1.26 1.98 2.28 1.90 2.02 1.92 1.86
acl:relcl 1.22 1.33 1.29 1.38 1.29 1.26 1.28
appos 1.19 0.85 1.07 0.92 0.92 0.99 1.00
nummod 1.14 1.16 1.16 1.22 1.21 1.23 1.21
xcomp 1.10 1.40 1.27 1.37 1.36 1.30 1.34
acl 1.06 0.93 0.84 0.92 0.87 0.88 0.93

Fig. 6: Percentage differences, following Table 5, in the use of dependency relations
for each tested language model in comparison to humans

syntactic structures from LLMs exhibit significantly fewer subtrees involving adjective
modifiers (amod dependency type) and appositional modifiers (appos).
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Table 6: Statistics for constituents that arise in sen-
tences of different lengths for the text generated by
human writers and each tested LLM. The meaning of
the rows are: (l̄) average constituent length, (σl) stan-
dard deviation of constituent length, and number of
sentences

Model 1-10 11-20 21-30 31-40 +41

l̄

H 4.32 6.37 7.90 9.38 10.60
M7B 4.39 6.55 8.27 9.77 11.01
F7B 4.43 6.47 8.03 9.47 10.76
LL7B 4.40 6.57 8.33 9.89 11.19
LL13B 4.40 6.55 8.27 9.76 11.01
LL30B 4.40 6.49 8.21 9.68 10.86
LL65B 4.36 6.53 8.25 9.73 10.96

σ
l

H 2.35 4.64 6.97 9.19 11.24
M7B 2.35 4.66 6.92 9.13 11.18
F7B 2.33 4.63 6.80 8.94 11.01
LL7B 2.35 4.69 6.99 9.24 11.35
LL13B 2.33 4.68 6.95 9.14 11.19
LL30B 2.36 4.66 6.94 9.14 11.17
LL65B 2.34 4.68 6.96 9.17 11.23

#
S
en
t

H 4 679 6 180 6 154 4 770 2 966
M7B 6 108 12 113 10 448 4 678 1 414
F7B 4 575 9 266 8 211 4 011 1 318
LL7B 6 039 12 362 11 014 5 789 2 035
LL13B 6 627 12 762 11 018 5 279 1 693
LL30B 6 713 13 044 10 806 4 949 1 579
LL65B 6 569 12 765 10 844 5 430 1 880

4.1.5 Constituents

Constituent lengths

Table 6 shows the comparison between the distribution of syntactic constituent lengths
across both types of texts. While human-generated sentences, on average, surpass the
length of those generated by LLMs, the average length of a sentence constituent for
LLMs is observed to be greater than for humans. The standard deviation exhibits simi-
lar values across all models for each sentence length range. Similar to previous sections,
Falcon 7B also displays the largest differences among language models. Within the
LLaMa models, we can observe a clear decreasing trend with size which is broken by
the 65B model, for which constituent lengths increase again across most of the length
bins.
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Table 7: Percentage of spans generated by humans and LLMs labeled
with a specific constituent type. Only constituent types that conform
more than 1% of the human’s texts spans are shown

Type H M7B F7B LL7B LL13B LL30B LL65B

NP 42.91 40.17 40.02 40.69 40.54 39.96 41.42
VP 18.08 20.18 20.29 19.97 20.02 20.59 20.19
PP 14.12 12.91 12.69 12.94 12.81 12.62 12.81
S 11.79 13.09 13.31 13.12 13.12 13.40 13.27
SBAR 3.64 4.34 4.29 4.09 4.15 4.34 3.84
ADVP 2.39 2.50 2.62 2.44 2.49 2.37 1.86
ADJP 1.97 1.78 1.82 1.76 1.79 1.75 1.80
NML 1.73 1.43 1.43 1.47 1.52 1.40 1.66
WHNP 1.41 1.47 1.49 1.53 1.44 1.46 1.47

Constituent types

Table 7 and Figure 7 examine the disparities in constituent types between human- and
LLM-generated texts. Our focus was on constituent types that occur more than 1%
of the times. Comparing humans and LLMs, some outcomes are in the same line of
earlier findings: human-generated content displays heightened use of noun, adjective,
and prepositional phrases (NP, ADJP, and PP, respectively). On the contrary, there is
minimal divergence in the frequency of adverb phrases (ADVP) except for Falcon 7B,
which shows a great difference. human and LLM-generated texts, the latter exhibits
a more pronounced propensity for verb phrases (VP). Despite the similar frequency
of the VERB UPOS tag in human and LLM-generated texts, the latter exhibit a more
pronounced propensity for verb phrases (VP), consistent with the increased use of
auxiliary verbs (whose UPOS tag is AUX, not VERB) that we saw in previous sections.
Finally, we see that language models use a considerably larger amount of subordinate
clauses (SBAR). Regarding model families, results are similar to those of dependencies
and POS tags, but when looking at model size, previous trends are less obvious.

4.2 Semantic Analysis

As in the previous section, we are relying on state-of-the-art NLP models to accurately
analyze different semantic dimensions: (i) emotions, (ii) text similarities, and (iii)
gender biases, in an automated way.

4.2.1 Emotions

To study differences in the emotions conveyed by human- and LLM-generated outputs,
we relied on the Hartmann (2022) emotion model. Table 8 provides the percentage of
articles labeled with distinct emotional categories, including anger, disgust, fear,
joy, sadness, surprise, and a special tag neutral to denote that no emotion is
present in the text. Figure 8 depicts the percentage of articles associated with each
emotion for each large language model used, as compared to human-written texts.
As anticipated in journalistic texts, a substantial majority of the lead paragraphs are
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Fig. 7: Percentage differences, following Table 7, in the use of constituent labels for
each tested language model in comparison to humans

classified as neutral. This category accounts for over 50% of the texts across all models
and human-generated samples, with the LLM-generated text demonstrating a slightly
higher inclination towards neutrality.

Concerning the remainder of the samples, human texts demonstrate a greater
inclination towards negative and aggressive emotions like disgust and fear. However,
humans and LLMs generated roughly the same amount of angry texts. In contrast,
LLMs tend to generate more texts imbued with positive emotions, such as surprise and
especially joy. The LLMs also produce many sad texts, a passive but negative emo-
tion, yet less toxic than emotions such as anger or fear. Across LLaMa models, fear
increases as the number of parameters grows (from LLaMa 13B), making them more
akin to human texts. Since LLaMa (version 1 models) were not fine-tuned with rein-
forcement learning with human feedback, we hypothesize the main source contributing
to this issue might be some pre-processing steps used for the LLaMa models, such as
removing toxic content from its data. Yet, LLaMa’s technical report (Touvron et al.,
2023) mentioned an increase in model toxicity as they scaled up in size despite using
the same pre-processing in all cases, which is coherent with our findings. When looking
at families, Mistral comes closest to expressing emotions in a way similar to humans,
and Falcon expresses more joy and less anger and surprise than the rest of the models.

4.2.2 Text similarity

We conducted an analysis of the cosine semantic similarity between lead paragraphs
generated by various LLMs and their human-authored counterparts. Our objective
was to investigate the impact of model sizes on the semantic similarity between these
texts. To achieve so, we used a a state-of-the-art sentence similarity model called
all-mpnet-base-v25 (Reimers and Gurevych, 2019). Figure 9 illustrates the distribu-
tion of the similarity scores obtained from our analysis. Results show that smaller-sized

5https://huggingface.co/sentence-transformers/all-mpnet-base-v2

18

https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Table 8: Percentage of articles generated by humans and LLMs that are
labeled with different emotions

Model
Emotion

anger disgust fear joy neutral sadness surprise

H 8.04 9.35 10.77 8.30 52.16 8.51 2.87
M7B 7.29 7.65 8.34 9.80 53.83 9.72 3.37
F7B 6.11 8.32 8.77 8.53 56.55 8.99 2.73
LL7B 7.13 7.19 8.68 8.97 55.57 9.43 3.01
LL13B 7.72 7.41 8.69 9.00 53.95 9.72 3.51
LL30B 7.39 7.45 8.61 9.54 54.23 9.59 3.19
LL65B 7.45 8.26 9.25 9.10 53.65 8.80 3.49

Fig. 8: Relative difference of emotion labels of articles generated by different LLMs
in comparison to human texts

LLMs do not necessarily result in a decrease in sentence similarity compared to the
human-authored texts. Differences across families are negligible.

4.2.3 Gender bias

Although related as well with our study with part-of-speech tag distribution, we here
separately analyze the proportion between masculine and feminine pronouns used in
both human- and LLM-generated text. Based on the morphological output by Stanza,
we find the words that are pronouns have the features Gender=Masc and Gender=Fem,
respectively. Results in Table 9 indicate that the already biased human texts use male
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Fig. 9: Similarity scores between the sentences generated by the LLMs and human
text

Table 9: Male-to-female ratio of pronouns used by the text
generated by humans and each LLM

Model Male-Female ratio Difference with humans

H 1.71 -
M7B 1.74 3.06 %
F7B 1.64 -7.54 %
LL7B 1.86 14.30%
LL13B 1.89 17.13 %
LL30B 1.87 15.73 %
LL65B 1.88 17.04 %

pronouns 1.71 times more frequently than female pronouns. This is exacerbated by all
models but Falcon 7B, which, although still heavily biased towards male pronouns,
reduces the bias by 7.5%. LlaMa models, on the contrary, use around 15% more male
than female pronouns in comparison to humans. This quantity is roughly the same
for every size. Mistral 7B lies in the middle, with a slight increase of the male-female
ratio of 3% with regards to human text.

5 Conclusion

This paper presented a comprehensive study on linguistic patterns in texts produced
by both humans and machines, comparing them under controlled conditions. To keep
up with current trends, we used modern generative models. To ensure the novelty
of texts and address memorization concerns, we fed the LLMs headlines from news
articles published after the release date of the models. The study revealed that despite
generating highly fluent text, these models still exhibited noticeable differences when
compared to human-generated texts. More precisely, at the lexical level, large language
models relied on a more restricted vocabulary, except for LLaMa 65B. Additionally, at
the morphosyntactic level, discernible distinctions were observed between human and
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machine-generated texts, the latter having a preference for parts of speech displaying
(a sense of) objectivity - such as symbols or numbers - while using substantially
fewer adjectives. We also observed variations in terms of syntactic structures, both
for dependency and constituent representations, specifically in the use of dependency
and constituent types, as well as the length of spans across both types of texts. In
this respect our comparison shows, among other aspects, that all tested LLMs choose
word orders that optimize dependency lengths to a lesser extent than humans; while
they have a tendency to use more auxiliary verbs and verb phrases and less noun and
prepositional phrases. In terms of semantics, while exhibiting a great text similarity
with respect to the human texts, the models tested manifested less propensity than
humans for displaying aggressive negative emotions, such as fear or anger. Mistral 7B
generated texts whose emotion distributions are more similar to humans than those
of LLaMa and Falcon models. However, we noted a rise in the volume of negative
emotions with the models’ size. This aligns with prior findings that associate larger
sizes with heightened toxicity (Touvron et al., 2023). Finally, we detected an inclination
towards the use of male pronouns, surpassing the frequency in comparison to their
human counterparts. All models except Falcon 7B exacerbated this bias.
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