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Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating
tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected
heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples
spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers
and cancers, we identi�ed 30 recurring cellular states strongly linked to malignancy, including hypoxia
and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing
dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found
differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced
ANXA1 levels promoted monocyte differentiation toward M1 macrophages and in�ammatory responses,
whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and
cancer-associated �broblast transformation by increasing TGF-β production. Our spatiotemporal analysis
further provided insights into mechanisms responsible for immunosuppression and a potential target to
control evolution of precancer and mitigate the risk for cancer development.

Main
Carcinogenesis, the process by which normal cells evolve into malignant ones, involves the expansion of
speci�c clones within both normal and diseased niches. This transformation is orchestrated by intricate
interactions among immune, stromal, and precancer cells. Preventing cancer is the ultimate goal,
necessitating a profound comprehension of precancer biology and a meticulous dissection of the disease
development course. While large-scale genomics efforts have provided tremendous insight into
fundamental neoplastic processes by documenting the commonality and diversity of various genetic and
transcriptional alterations across diverse cancer types 1, premalignant lesions have not been explored in
depth. Currently, many breakthroughs have been made in precision prevention and therapeutics. For
example, RANK-L inhibitors have shown promise in preventing/delaying mammary tumor onset 2, and
preventive cancer vaccines such as bivalent, quadrivalent, and nonavalent human papillomavirus (HPV)
vaccines have proven effective in preventing high-grade cervical intraepithelial lesions (HSIL) 3–5. These
advances are attributed to the in-depth studies of the sequential molecular events and mechanisms
underlying oncogenesis in BRCA1/2 + carriers and cervical intraepithelial neoplasia patients in the
precancerous stage. Some interventions for speci�c cancer prevention have been approved by FDA, but
these are not comprehensive enough to address various types of cancers. Moreover, researchers have
made some progress in understanding cancer development and metastasis. However, existing databases,
such as TISCH, predominantly focus on pro�ling invasive/advanced tumors, leaving a great deal of
unknown about cancer predisposition and the complex interactions within the architecture of
premalignant environment (PME). Therefore, in this study, we developed a core precancer-to-cancer
transition atlas (PCTanno) by compiling 62 single-cell RNA sequencing (scRNA-seq) datasets comprising
1396 samples and covering 13 major tissue types. Global and tissue-/cell-type-speci�c biomarkers are
invaluable in detecting early-stage lesions and dissecting the sequential molecular and cellular events
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that promote oncogenesis, paving the way for novel prevention and interception strategies. PCTanno
provided comprehensive characterizations for genes involved in multistage tumorigenesis across diverse
human tissue types and mapped cell composition and cell state changes during the malignant
transformation from healthy tissues to precancer (e.g., cirrhosis) to cancer (e.g., HCC).

Accumulative evidence suggests that precancer stem cells arise from clonally mutated tissue stem cells
that disrupt normal tissue homeostasis 6. Aging, in�ammation, and environmental stressors may induce
precancer cells to undergo malignant reprogramming and acquire the so-called ‘self-renewal’ capacity 6.
This process may induce further phenotypic alterations in tissue stem cells, leading them to transition
into cancer stem cells (CSCs). Hence, it becomes imperative to address the issues of when and how
aging and systemic in�ammation-related mechanisms govern the generation of precancer stem cells and
their subsequent malignant transformation. In this context, we identi�ed distinct stem-like cell
subpopulations in diseased tissues that displayed appreciable variations in biophysical properties, such
as subclusters of proliferating, EMT-like, and senescent cells during the malignant progression. Once
oncogenic pathways are initiated, tissue stem cells can engage in abnormal molecular crosstalk with
their surroundings, culminating in a considerable remodeling of the tumor microenvironment (TME)
during the benign-to-malignant transition 37. Our analysis revealed that ANXA1 expression levels in stem
cells were decreased from the healthy to the precancerous stages but gradually elevated along malignant
transformation paths. This indicates different roles of ANXA1 in premalignant stages, where reduced
ANXA1 levels foster proin�ammatory cytokine production, leading to aggressive and/or prolonged
in�ammatory responses. In contrast, in carcinomas, it is upregulated in CSCs to promote the
transformation of M1 macrophages into the M2 phenotype and normal �broblasts into cancer-associated
�broblasts (CAFs) by increasing TGF-β production, potentially driving malignancy via FPR activation. Our
spatiotemporal analysis delineated the forces driving tumorigenesis and provided insights into the tissue
microenvironment for both precancer and cancer, including mechanisms of ‘homeostasis-imbalance‐
malignancy’ change during disease escalation.

Results

1. Global view of single-cell transcriptome analyses of
tumorigenesis in 13 tissues
To systematically decipher the multistage tumorigenesis across various tissue types, we searched for and
prioritized all publicly available studies that reported scRNA-seq data for human premalignant lesions,
which covered 13 commonly affected tissues. We next collected transcriptomic datasets for
corresponding healthy and cancerous samples. In total, these data encompassed 1,281 samples from
1,256 patients across adjacent non-tumor (ADJ), precancer and tumor, as well as 135 healthy controls
from 57 studies. Following the removal of low-quality cells, we retained a total of 4,972,145 cells across
different stages, integrating data to create a comprehensive resource (Fig. 1A). Subsequently, through
sub-clustering cells from respective tissue types, stromal and immune cells were projected into low-
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dimensional subspaces and annotated with 71 major subtypes of tissue microenvironment cells. We
analyzed healthy and diseased epithelial cells separately and annotated them into 58 tissue-speci�c cell
types (see Method details). The annotation was based on previously established canonical marker genes
(Table S1) following a pipeline from Granja et al. 2019 7 and Becker et al. 2022 8. To facilitate broader
access and understanding, we established the PCTanno platform and provided all data at the website
(https://ccsm.uth.edu/PCTfuncDB/index.html). PCTanno provides systematic functional annotations of
the dynamic biological processes involved in tumorigenesis, including the cell annotations, cell
composition by disease state, uniform manifold approximation and projection (UMAP) plots (Fig. 1B),
inferred copy number variation (CNV), somatic mutations, and further downstream analyses described
below. Our commitment is to consistently expand PCTanno by incorporating new datasets and
functionalities across a diverse set of tissue types, to achieve a high-resolution understanding of
clinically relevant transitions and gain new aspects of the development and evolution of malignancy.

2. Highly enriched stem-like cells in precancer and cancer
stages
We analyzed epithelial cells from healthy donors and those with different disease states. The normal
references composed of healthy epithelial cells from 13 tissues were constructed respectively, in which
cell types were annotated using previously reported biomarkers. For example, there are stem cell
populations with high expression of EPCAM, CD24, SOX9, ANPEP, and CD47 in the liver, DLL1, LAMC2,
and TP63 in the prostate, LGR5, OLFM4, and ASCL2 in colorectum tissues (Fig. 2A). Then, the diseased
cells were projected into the normal subspace. Intriguingly, epithelial cells from more malignant stages
were prone to project closer to stem cells, whereas benign samples projected relatively evenly throughout
the epithelial compartment (Fig. 2B). Moreover, many mature cell types (e.g., ABS in CRC, EE in GC and
CRC, CILIA in EEC and IAC) were depleted from the cancer samples (Fig. 2C). This suggested an
increasing stem-like phenotype existed in epithelial cells as they transformed from normal to more
advanced lesions.

We employed CytoTRACE to predict differentiation states for each epithelial cell within samples. Healthy
stem cells exhibited high CytoTRACE scores, transitioning into differentiated cells with lower scores
(Fig. 2D, E, Figure S1A) and forming a relatively uniform distribution across stem-like, transitioning, and
differentiated cells. In contrast, precancers (AD, CAG with IM, AAH) and cancers (MSS, GC, AIS and IAC)
yielded a distribution skewed toward cells with high predicted stem potential (Fig. 2D). Stem-like cells
from benign tissues such as NAFLD, NEOLP and N_HPV generally displayed lower stemness scores when
compared with cirrhosis, LP, HSIL_HPV and tumors (indicating less differentiation) (Fig. 2D, Figure S1B).
Interestingly, stem-like cells in precancers such as BPH, cirrhosis, and AK exhibited scores similar to those
of cancers, even surpassing stemness scores in malignancies (e.g., BRCA1-mut and LP, Figure S1B). This
similarity in stemness suggests the presence of CSCs. Remarkably, single cells from tumor samples
exhibited a strikingly elevated CNV score, particularly conspicuous in hepatocarcinoma stem cells,
accompanied by a higher mutation load compared to non-malignant cells within the epithelial
compartment across most tissues (Fig. 2F, Figure S1B). This observation underscores the presence of
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signi�cant aneuploid genomes and accumulation of mutations in the malignant stage. Conversely,
abundant mutants were detected in premalignant lesions of the cervix, breast, and oral cavity (Fig. 2F,
Figure S1C), indicating that persistent exposure to the mutagens, such as HPV virus and excessive
hormones, contributes to chronic in�ammation, inducing the DNA damage and genomic instability during
the early tissue response to injury. The inference drawn is that HPV DNA integration into the host genome
may confer a selective advantage to HPV-infected epithelial cells in this process. Certain mutations may
endow a growth advantage or resistance to cell death, facilitating their persistence in the precancerous
stage.

Shifting our attention to speci�c mutated genes associated with intratumor heterogeneity (ITH) across a
thousand tumors 9, we observed a noteworthy pattern. The top 10 mutated genes, including NCOR1 and
NPM1 were frequently identi�ed in stem-like cells, suggesting that stem- cell expansion often initiates
tumorigenesis driven by these early mutations (Fig. 2G, Table S2). Furthermore, we noted that alterations
in TP53, RB1, TP53I3 and CDKN2A, known to be associated with apoptotic responses and cell cycle
arrest, were highly enriched in stem-like cells of tumors, were highly enriched in stem-like cells of tumors,
such as in cases of ATC, DCIS and PDAC (Fig. 2G, Table S2). These �ndings propose that precancer cells
within the tissue speci�c stem cell compartment may give rise to an expanded progenitor population
undergoing malignant regeneration and immune evasion, promoting the propagation of malignant stem
cells in the context of extrinsic and intrinsic factors 6. Nonetheless, how and when the cellular origins of
tumors affect the development of precancerous lesions and clinical prognosis remain to be uncovered.

3. Mapping microenvironment cell composition and
molecular changes along malignant transformation
Stem cells are recognized as pivotal contributors to cellular biological functions, possessing remarkable
capacities for self-renewal and differentiation. However, dysregulation of self-renewal during aging and
persistent microenvironmental and macroenvironmental stressors can lead to cancer 6. This prompts an
exploration into whether stem-like cells within the epithelial compartment can exhibit a continuum across
diverse tissues and how the states of other cells in the tissue microenvironment dynamically change
along this malignant continuum. To address this, we established a transcriptional malignancy index for
each tissue type by identifying the differentially expressed genes (DEGs) in precancerous and cancerous
lesions. Speci�cally, we compared the gene expression pro�les of stem-like cells in diseased tissues with
those in healthy donors. The obtained DEGs between the stem-like cells of each specimen and their
healthy controls allowed us to calculate the principal components of the log2FC of these DEGs.
Subsequently, we ordered the samples based on their positions along a spline �t in this space (Fig. 3A).
The position in this ordering can be interpreted as the location/pseudo-time along a continuum ranging
from healthy tissues to malignancies. Our analysis revealed a stereotyped progression in gene expression
variations between normal and diseased stem-like cells, culminating in invasive tumors. Based on the
expression dynamics analysis, we observed that the expression of HNF4A gradually increases as
precancerous lesions approach malignant transformation in the gastrointestinal tract (Fig. 3B). Notably,
different patterns of HNF4A usage were observed in precancer stages (e.g., AD v.s. SER, liver cirrhosis v.s.
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NAFLD, and SIM v.s. CAG). In precancers, HNF4A decreases to drive WNT signaling, while in carcinomas,
it is upregulated in CSCs to drive malignancy. This aligns with previous �ndings associating HNF4A
knockdown with an upregulation of WNT pathway signaling molecules, and HNF4A loss drives metabolic
reprogramming at an early stage of pancreatic cancer progression 10. Moreover, our SCENIC analysis 11

identi�ed HNF4A as a transcription factor (TF) speci�cally enriched in hepatocytes of HCC and NAFLD
but not in healthy tissues, with its target genes (e.g., IRS1 and FGFR3) exhibiting similar expression
dynamics (Fig. 3C, Figure S2A, Table S3). Consistent with prior work, increased gene expression and
chromatin accessibility of HNF4A motifs were reported only after the transformation to CRC 8. The forced
re-expression of HNF4α, along with the application of all-trans retinoic acid, demonstrated effectiveness
in reducing the number of liver CSCs and potentiating the chemotherapeutic effect 12. As HNF4A acts as
a selective agonist of the peroxisome proliferator-activated receptor gamma (PPARγ), our analyses
suggest its potential as a novel biomarker and target for cancer prevention. Furthermore, we observed
upregulated regulon activities for NCOR1, a frequently mutated gene, in stem-like cells of both cirrhosis
and HCC (Fig. 3C), showing increased expressions along malignant progression (Fig. 3B). Additionally,
GPX2, a glutathione peroxidase acknowledged for its upregulation in CRC 8, exhibited elevated expression
in HCC, ESCC, and cSCC, as well as their premalignant stages (Figure S2B). GPX2 functions to alleviate
oxidative stress through the reduction of hydrogen peroxide, thereby facilitating both tumorigenesis and
metastasis 13.

To gain a comprehensive understanding of the TME landscapes, we next examined the cellular
compositions and molecular features of immune, stromal, epithelial and endothelial lineages across
different stage groups. Within the immune compartment (Figure S2C), we found that plasma cells (PLA),
NK, and in�ammatory monocytes (INMON) were highly enriched in precancerous lesions, and regulatory
T cells (TREG), neutrophils (NEUT) and germinal center B cells (GC) in both precancer and cancer stage.
M2 macrophages (M2MAC), CD4+ follicular helper (TFH), T-17 helper (TH17), and CD8+ terminally
exhausted cells (CD8TEREX) were observed to be speci�cally enriched in cancers when compared to
benign and healthy tissues (Fig. 3D). These implicated the potential mechanisms in facilitating immune
evasion and inducing immune tolerance in more malignant tissues. SCENIC analysis revealed the higher
activity of GATA3, IKZF2, BATF, RORA and FOXP3 in Tregs of each stage across tissue types (Table S3).
In addition, HLF and ARID5B were identi�ed as TFs of Tregs in precancer stages (e.g., N_HPV, AAH,
NEOLP, EOLP), while regulons such as FOXO1 and STAT5B were speci�cally detected in cancers (e.g., IDC,
AIS, MIAC, IAC and PDAC). Similarly, for INMON, FOXO3 and IRF5 were common TFs in healthy and early-
stage tissues (e.g., BRCA1-mut); speci�cally, PRDM4 was the TF in precancer stages (e.g., Goiters and
HT) while ATF2 and RUNX1 were enriched in cancers (e.g., ESCC and IDC, Figure S2D, Table S3). Multiple
types of �broblasts and endothelial cells were identi�ed for the stromal compartment (Fig. 3D, Figure
S2C). Among distinct subpopulations of �broblasts, myo�broblasts (MYOFIB) were found to be enriched
in both PME and TME (Fig. 3D), while hepatic or pancreatic stellate cells (HSC/PSC), intermediate CAFs
(INCAF) and pericytes (PERI) with high expression of RGS5 were signi�cantly enriched in malignant
stages (Fig. 3D). Additionally, upregulated TF activities in MYOFIB/HSC were noted for PATZ1 in
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preneoplastic stages (e.g., Cirrhosis, AK, and CAG), while CEBPZ and SOX6 demonstrated elevated
activities in malignant (e.g., cSCC and HCC) stages (Figure S2D, Table S3).

We further calculated the fractional contributions of each cell type to each sample as a function of
position in the malignancy index. Some cell subpopulations showed strong correlations with disease
progression along the index. In the epithelia, stem-like cell fractions in the samples gradually increased
throughout the malignant transformation process. Conversely, the number of enterocytes decreases as
adenomas transformed into carcinomas. In the secretory compartment, we observe a decreasing trend in
fractions of pit mucous cells (PMC) and chief cells (CHIEF) with neoplastic transformation of the pre-
cancerous gastric mucosa. In carcinomas, there was a general lack of differentiation toward the secretory
lineage, resulting in the elimination of goblet cells (GOB, Fig. 3E). This aligns with a previous study
documenting a reduction in goblet cells in non-mucinous colon adenocarcinomas 8. Knocking down
MUC2, a mucin protein associated with goblet cells, resulted in an increased formation of adenomas and
carcinomas in mice 8, implying that the loss of immature and mature goblet cells could potentially
contribute to tumorigenesis 14. In the immune cell compartment, the proportions of NK, dendritic cells
(DC) and progenitor exhausted CD8 + T cells (CD8TEXP) in liver tissues decreased as the disease
progressed. However, GC cells increased in the colorectum and esophagus, TREG in the breast and
M2MAC in the pancreas increased (Fig. 3E, Figure S2E). To further evaluate the functional variations in
these evolving microenvironment cells as disease escalated, we analyzed the curated gene signatures
(See Methods) and mapped the related molecular changes along malignancy continuum. AUCell
algorithm 11 was designed to score the activity of a gene set in each cell. Here we utilized AUCell to
delineate the transcriptional patterns of �ve major cell types. For instance, as the malignant progression
occurred in liver, lung, oral cavity and thyroid tissues, CD8 + T-cell activation & effector molecules (e.g.,
FGFBP2, CX3CR1, FCGR3A and KLRG1), high cytotoxicity gene signature and T cell receptor (TCR)
signaling gradually increased from the initial stages (Fig. 3G, Figure S2F). Moreover, we noted a
progressively accelerated expression of stress response gene signatures (e.g., stress-related heat shock
genes such as HSPA1A and HSPA1B), and the expression of nuclear factor (NF)-κB signaling, a key
regulator of cellular stress response, was also enhanced (Fig. 3G). Advanced tumor tissues displayed
increased expression of adhesion, IFN response, anergy and exhaustion-related signatures (Fig. 3G). In
line with prior �ndings 15, CD8 + TEX cells can express high levels of cytotoxicity markers, indicating likely
antigen experience (Figure S2F, G). CD4 + T cells gradually expressed anti-apoptosis, effector function
genes and TCR signaling signatures. They markedly expressed co-stimulatory molecules (e.g., TNFRSF4,
TNFRSF9, TNFRSF18), adhesion, and IFN response signatures in the very late stage of cancer. The
metabolic switch of T cells along disease progression was in accordance with their dynamic changes in
activation and effector functions. Notably, CD4 + and CD8 + neoantigen-reactive tumor-in�ltrating
lymphocytes (TILs) exhibited distinct signatures across different stages (Figure S2G). In the examined
tissues, advanced stages showed increased levels of neoantigen-speci�c T cell signatures along with
higher mutational burden (Fig. 2F, Figure S1C, Figure S2F, G), indicating an active immune response
against the tumor. T cell exhaustion, characterized by reduced cytokine production and increased
expression of inhibitory receptors in response to chronic antigen stimulation (e.g., neoantigens, HBV, HPV
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and cancer testis antigens), has been recognized as a primary mechanism of immune escape by cancers
16,17. Intriguingly, this trend of T lymphocytes was reversed during disease progression in the cervix,
endometrium, pancreas, and prostate tissues (Fig. 3G, Figure S2F), with higher levels of NeoTCR8/4
signatures and mutation load found in the precancerous stage compared to those in advanced tumors
(Figure S2G). We inferred that heterogeneous distribution and functional patterns of T cells during
multistage tumorigenesis across various solid tissues mirror inter- and intra-tumor heterogeneity,
emphasizing the broad impact of tissue types on the states of T cell subpopulations. Additionally, NK
cells exhibited the lowest cytotoxicity but the highest stress score in advanced tumors. Other TME cells
also underwent drastic reprogramming during malignant transition, with macrophages shifted from the
M1 to M2 state and �broblasts transitioned from an in�ammatory CAF (iCAF) to a dominant
myo�broblastic CAF (myCAF) phenotype (Fig. 3F). These observations suggested that the stromal cell
remodeling and immune suppression in the TME accompanied the acquisition of stemness by tumor
cells and coincided with plasticity onset and progression.

In summary, our observations concerning the enrichment of innate immune cells, such as INMON and NK
in the early precancerous phases re�ect the activation of innate immunity and its rapid onset in response
to harmful stimuli such as microbial infection. Various leukocytes (e.g., macrophages, NK, and DC) bridge
innate and speci�c immunity and hold a dominant position in immune surveillance and clearance of
abnormal epithelial cells. If pro-in�ammatory stimuli persist during the epithelial wound-healing process,
chronic in�ammation may ensue, leading to the persistence of in�ammatory factors and tissue damage.
Various phenotypically distinct immune/stromal subclusters may dynamically shift and closely interact
with other PME/TME cells, playing a critical role in tumorigenesis and cancer evolution.

4. Heterogeneity of transcriptional programs in stem-like cells.

Cancer cells exhibit heterogeneity in their degree of differentiation, ranging from stem- or progenitor-like
to fully differentiated. Gene expression programs are often used to characterize different cell identities
and cell activities. To better understand advanced and highly heterogeneous tumors, we investigated the
intratumor heterogeneity (ITH) programs through transcriptomic pro�ling of stem-like cells from tumors
and their originating lesions. We then characterized the expression programs for each diseased sample
using non-negative matrix factorization (NMF) approach (see Method details) 9,18. Of note, the number of
programs varies for each disease across the 13 tissues. To �nd the recurrent patterns of ITH in stem-like
cells and decipher consensus modules consisting of coexpressed genes within all expression programs,
we next clustered these coexpressed genes to gene modules using K-means clustering (Fig. 4A, Figure
S3A). After �ltering out gene modules annotated with ‘unknown’ (due to low quality data or doublets), we
summarized a total of 30 ITH programs across 13 tissues (Fig. 4A, Figure S3A), named as meta-
programs (MPs). For each sample, we used AUCell score to represent the activity of each MP and then
calculated the correlations between 30 expression programs and stemness (measured by CytoTRACE).
The stronger correlations (R > = 0.7) were observed for MYC, Hypoxia, Cellcycle-G2M, Translation-
initiation, EMT-related, Epithelial-senescence, Metabolism and Cellcycle-G0Arrest (Fig. 4B). More
speci�cally, Cellcycle-G2M in the oral cavity and skin tissues, Epithelial-senescence (EpiSen) and Hypoxia
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in oral cavity, MYC in colorectum, Translation-initiation as well as Cellcycle-G0Arrest in thyroid were found
to concurrently and highly correlated with our de�ned malignancy index and stemness (Fig. 4B, Figure
S3B). This indicated that these six MPs were crucial for acquisition of stemness and tumorigenic
properties during malignant transformation. We found that MPs may be expressed variably or uniformly
in a given precancer/cancer sample across different tissue types, but the extent to which the expression
of these critical programs varies along the process of tumorigenesis remains to be uncovered.

To better understand the mechanisms governing the generation of precancer cells as well as their
malignant transformation, we sought to unravel the distinctive features acquired or lost during the
progression from benign to malignant stages. We �rst utilized Leiden algorithm 19 to cluster all diseased
epithelial cells into multiple subclusters (e.g., 24 clusters identi�ed in liver-diseased tissues, Figure S3C).
Next, we employed RNA velocity analysis to delve into those subclusters of diseased epithelia and infer
epithelial cell transition trajectories (Fig. 4C). However, when we combined data from multistage epithelial
cells (e.g., HCCs, NAFLD, and cirrhosis), ITH increased signi�cantly as liver epithelia transitioned from
precancerous to cancerous states (as shown in Fig. 4C). It suggested that stem-like cells in HCC may
arise from cirrhotic stem cells, subsequently differentiated into HCC hepatocytes. Malignant hepatocytes
also appeared to acquire a degree of stemness and engaged in dedifferentiation into a stem cell-like state
(Fig. 4C). We thus focused on the critical cell subpopulations (i.e., stem-like cells) involved in the
malignant transformation of 13 diseased tissues. We turned to performing Leiden sub-clustering analysis
using stem-cell expression data from precancer and cancer samples, thereby reducing the intrinsic
complexity and heterogeneity of diseases by dissecting state transition in cancer cell-of-origin. The
number of stem cell subpopulations identi�ed in different tissues varied. For example, 20 stem-cell
subclusters (ranging from C0 to C19) were identi�ed in the liver (as shown in Fig. 4D). To gain further
insights into the transition trajectories within these identi�ed subclusters, we conducted a subsequent
RNA velocity analysis to elucidate their directionality embedded on a diffusion map (Fig. 4D).

Similar analyses were carried out across 13 tissues, identifying one to three trajectories within each
(Fig. 4E, Figure S3C). For instance, two pronounced directional �ows were observed from cirrhotic stem-
like cells (C1 and C11) towards HCC subclusters (C0 and C7), respectively (Fig. 4E). Along the C1 to C0
transition path (Trajectory 1, Fig. 4E), notable increases were observed in cellular senescence, damage
response, MHC I & II processing and presentation, fetal signatures, and cell cycle G0 arrest signature
scores (Fig. 4F). Interestingly, a notable uptick in mutational load within C0 compared with C1 was noted
(Fig. 4G). This observation is consistent with that MHC-IIhigh stem cells represent a deeper quiescent state
and are more resistant to stress-induced proliferation than MHC-IIlow stem cells 20,21. These �ndings
underscore the pivotal role of cellular senescence in tumorigenesis and suggest that mutation-
accumulated stem cells in C0 gained a clonal advantage during aging by upregulating their surface
expression of MHC class II molecules. In addition, RNA velocity analysis showed cirrhotic stem cells in
C11 exhibited another directional �ow toward C15 and C7 (Fig. 4E). Along C11 to C7 (Trajectory 2),
decreased cellular senescence, fetal and quiescence signature but increased S and G2M cell cycle scores
were observed (Fig. 4F), indicating restoration of proliferative capacity. Escape from proliferation arrest
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had been reported in certain circumstances, such as reactivation of telomerase activity or deletion of
CDKN2A 22. Genomic events regarding C7 HCC cells harboring CDKN2A mutations and displaying the
highest mutation load further supported the resumption of proliferation of stem-like cells in a quiescence-
(or G0)-like state (Fig. 4F, G).

Next, we shifted our attention from stem-like cell clusters to clinical implications within them. Using our
integrated scRNA-seq pro�le as a reference, we pro�led the cellular components of each sample in the
corresponding TCGA cohorts using CIBERSORTx 23. The results showed that the cellular composition
inferred by deconvolution correlated with clinical features of TCGA patients. Particularly, the percentage
of several transitional populations showed signi�cant difference in tumor and adjacent normal tissues
and notable associations with clinical features, mutations, and TME components of TCGA tumors (Figure
S3D, Table S4). These inferred stem-cell proportions could also predict the OS or DFS of TCGA patients,
such as C9 and C14 in breast, C1 in colorectum, C0 and C15 in liver, etc. (Fig. 4H). Compared with healthy
stem cells, several transitioning clusters from precancer tissues were enriched in signaling pathways that
regulate in�ammation initiation, such as NF-kB signaling, JAK-STAT, toll-like receptor (TLR) and mitogen-
activated protein kinase (MAPK) pathways (Fig. 4I, Table S5). This implicated the crosstalk of precancer
stem cells between tumorigenesis and in�ammatory processes. Most intriguingly, EpiSen was inevitably
enriched in critical transitional stem cell populations involved in malignant transformation across 13
tissues (Fig. 4J), which was reminiscent of senescence-associated stemness. In addition to EpiSen, many
malignant stem-like cell clusters exhibited strong enrichment of EMT, Hypoxia, TGF-β pathway and
Autophagy (e.g., C14 in the cervix, C0 in the liver, C14 in the lung, C4 in the pancreas and C5 in the thyroid,
Table S5), indicating that hypoxia signaling appeared to involve in the activation of stem cell stress
signaling by expressing some stemness regulation genes, such as TGF-β, to induce dormancy, stimulate
autophagy, promote cell survival and maintenance of stem cell identity, as well as promote EMT 24. The
inferred fractions of these dormant stem cells were signi�cantly correlated with higher TGF-β response in
TCGA bulk data, further validating the observations from our single-cell analyses (Figure S3E).
Nevertheless, the mere detection of a senescence-like cellular state, e.g., in BRCA1+/mut breast tissues
(C14), colon adenomas (C17) and other malignancies, does not indicate whether these cells have a
tumor-suppressive or pro-tumorigenic functional role.

5. Alterations in cell-cell interactions over time and master pro-tumorigenic mediators.

To comprehensively compare and quantify the differences between cellular states in malignant
transformation, we identi�ed DEGs between each pair of core clusters from each trajectory, such as C4
v.s. C9, C9 v.s. C14 in breast, C0 v.s. C1 and C7 v.s C15 in the liver (avg_log2FC > = 0.25, pct.1 > = 0.25, and
pct.ratio > = 1.5). In addition, we endeavored to detect the transition genes by calculating Spearman’s rank
correlation between the inferred pseudo-time and gene expression of all stem-like cells along each
trajectory (with FDR < 0.05). Subsequently, based on the consensus of related MPs, we generated gene
signatures that speci�cally re�ect characteristics of different stem cellular states. Spearman correlation
analyses were performed on gene expression levels and AUCell scores of each MP. Genes signi�cantly
correlated with AUCell scores (FDR < 0.05) were considered meta-program genes. To obtain speci�c gene
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signatures involved in malignant transition, we identi�ed (1) DEGs that distinguish the diseased stem-like
cells from normal-like cells (Pseudo-Bulk – DEGs, FDR < 0.05 and log2FC > 0.25), (2) DEGs between stem-
cell subcluster, (3) transition genes, and (4) MP genes, and then intersected them to generate malignant
transformation-related (PCT) gene signatures (Fig. 5A). Subsequently, the geometric mean of the
Spearman correlation coe�cients for each gene from 13 tissues were calculated. Finally, 100 top-ranked
genes sorted by geometric mean value were �ltered into PCT genes for each MP (Fig. 5A).

To seek for gene(s) in 30 core sets of PCT signatures that may drive stem-cell in�ammation and aging 6

during loss of tissue homeostasis and precancer development, we then analyzed the dynamics of stem
cell crosstalk with the microenvironment along our identi�ed pseudotime axis. We identi�ed 989
signi�cant ligand-receptor pairs which revealed intercellular communication between 62 transitioning
stem cell subpopulations and corresponding immune and stromal cells using CellChat 25 (Table S6).
Several predicted interactions related to cytokines/chemokines in in�ammatory response were frequently
observed in epithelial stem cells and other PME cells during the transition from tissue homeostasis to
pathological lesions. For instance, we observed extensive crosstalk of TNF-TNFRSF1A, CCL2-ACKR1,
CXCL2-ACKR1, and CXCL12-CXCR4 in Breast-C14, Cervix-C5, Liver-C15, and Prostate-C14, suggesting their
role in proin�ammation and leukocyte recruitment (Fig. 5B, Figure S4A). This contribution likely leads to
macrophage M1 polarization while inhibiting the invasion and migration of damaged epithelial cells 26.
It’s worth noting that these ligand-receptor interactions involved in wound repair after tissue damage (like
CXCL12-CXCR4 axis), potentially exert a two-edged effect in regulating anti-tumor immune responses
(e.g., Prostate-C14 and Oral cavity-C18) and promoting tumor cell growth (e.g., Prostate-C34 and Liver-C0,
Fig. 5B, Figure S4A) 27. We also noticed unique cellular crosstalk at different stages. Strikingly,
interactions between the TIGIT receptor in lymphocytes (e.g., TREG and CD8TEREX) and NECTIN2/3
ligands in dendritic, mesenchymal and endothelial cells were found at C4 of breast cancer, but not at C9
and C15 stages of preneoplastic BRCA1+/mut breast tissues, showing the multiple immunosuppressive
signals in the Breast-C4 TME. Additionally, FIB, INMON, and DC expressed TGFB1 to communicate with
ECM-receptor, indicating that TGF-β signaling of C4 tumors may regulate �broblasts activity and
modulate ECM production and components (Fig. 5C, Figure S4B). Furthermore, interaction between stem
cells and ICAF, INCAF, VFIB, PERI, HSC, INFIB or END via FN1-ITGAV + ITGB1 and FN1-SDC1 were detected
in Cervix-C8, Colon-C1, Liver-C7, Oral calvity-C3 and Prostate-C34 (Fig. 5C). This indicates that extensive
stromal remodeling occurs during tumorigenesis in infected or injured tissues, acquiring EMT-like features
(e.g., FN1) in transitioning stem-like cells and showing high expression levels of SDC1 in �broblasts,
which is linked to aggressive phenotypes and poor survival (Fig. 4I, Fig. 5D, Figure S4C). FN1 from the
Stress and Platelet-activation program was highly expressed in those ‘hybrid’ cells undergoing plasticity
changes, but somewhat less in other transitional stem clusters (Fig. 5A, Figure S4C). This �nding
suggests that during physiochemical stress situations, pro-tumorigenic �broblasts in close proximity can
provide the fertile ‘soil’ to the cancer ‘seed’, further in�uence platelet activation, which produced pro-
angiogenic and growth factors that facilitate tumor growth and survival, as well as promoting the
metastatic potential of tumor cells 28. In addition, dynamic shift of HSC/VFIB to SMC/MYOFIB that highly
expressed ACTA2 and MYH11 was observed in the liver, colon, and prostate diseased tissues (Fig. 5E),
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consistent with the aforementioned accumulation of MYOFIB and HSC in precancerous stage (Fig. 3E).
These observations were also in line with that type I collagen, enriched in activated myo�broblastic HSC,
promoted proliferation, tumor development and related to elevated HCC risk in patients 29.

Notably, several ligand-receptor pairs such as LGALS9-CD44/CD45, laminins-integrins and MIF-CD74 + 
CXCR4 were signi�cantly enriched in the communication between transitional stem cells and myeloid
subsets (e.g., NEUT, INMON, M2MAC, etc., Fig. 5F). The MIF-CD74 + CXCR4 interaction can exert an
immunosuppressive role by affecting downstream MAPK signaling pathway effectors 30. Most
interestingly, ANXA1-FPR1/2 of the ANNEXIN pathway was activated in the malignant transition of 11
tissues (Fig. 5F). ANXA1, one of the representative genes in four stem-cell MPs (i.e., EpiSen, Stress,
Unfolded-protein-response and Interferon/MHC-II), is highly expressed in most healthy human tissues, but
silenced in nonalcoholic steatohepatitis 31 and early onset of esophageal and prostate carcinoma 32. The
expression levels of ANXA1 in stem cells decreased from the healthy to the precancerous stage but
gradually increased along our identi�ed malignant transformation paths (Fig. 5G, Figure S4D). The
expression of ANXA1 receptor genes, including FPR1, FPR2, and FPR3, was enriched in myeloid cells and
elevated in most malignant stages (e.g., M2MAC and INMON, Fig. 5H, Figure S4D). Additionally, we
observed a pronounced elevation in the in�ammatory response scores of transitioning stem
subpopulations at the starting point of trajectories when ANXA1 expression was depressed during tissue
damage (Fig. 5I). Conversely, as malignancy progression, positive correlations were noted between higher
ANXA1 expression levels and the GSVA score of the TGF-β signaling, implying the involvement of ANXA1
in promoting TGF-β activation from epithelial stem cells (Fig. 5J, Figure S4E).

6. Spatiotemporal ANXA1 expression patterns in heterogeneous tumor ecosystems facilitate
immunosuppression of the microenvironment.

To further investigate the spatial architecture of transitioning stem subpopulations and distinct TME
clusters during disease progression, we analyzed the spatial transcriptome (ST) data from breast, cervix
and liver-diseased tissue samples. The cell components in each spot were determined by SpaCET using
our integrated scRNA-seq data as the reference. We also deconvoluted the cell-type composition of each
region in one HPV-negative normal cervix sample based on scRNA-seq data from the healthy cervix. The
dynamic expression levels of ANXA1 were con�rmed by ST data analysis, demonstrating a substantial
increase in the bulk levels of ANXA1 RNA (located in both healthy epithelium and tumor spots) along
malignant transition routes (Fig. 6A). Since ST data has not yet reached single-cell resolution, ANXA1
also exhibited strong expression in myeloid and mesenchymal spots of cancers and elevated in
advanced stages (Figure S5A). It is still challenging to validate several transitional stem clusters with ST
data (e.g., Liver-C0). Under these circumstances, tumor epithelial regions may have both stem-like and
CAF features. As expected, activation of the ANNEXIN pathway and Retinoic Acid (RA) were observed
among stem-like, myeloid, and mesenchymal subclusters, as inferred through spatially-proximal cell-cell
communication analysis using CellChat V2 (Fig. 6B, Figure S5B). These �ndings are consistent with
previous studies highlighting the role of CAF-secreted ANXA1 in imparting stem cell-like properties to
cancer cells 33. Additionally, research has shown that the N-terminal peptide of AnxA1 initiates a signaling
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cascade through FPR2, leading to the polarization of macrophages towards the M2 phenotype 34.
Subsequently, we aimed to delve into the spatial heterogeneity of tumors in more depth. Our results
showed that the spots of FIB-INMON interactions with co-expression of ANXA1-FPR3 and TGFB1-
TGFBR1/2 in the breast tumor sample are close to the C9 but distant to the C4 population (Fig. 6C, D,
Figure S5C). Two different cancer cell states in ST data displayed distinct enrichment pathways,
consistent with GSVA analysis of scRNA-seq data. Proximal C9 cells clustered separately from other
tumor cells and showed senescent phenotype, while distal C4 spots exhibited hypermetabolic features
and higher activity of oncogenic pathways, such as KRAS and EGFR signaling as well as DAP12
interactions (with myeloid cells) (Fig. 6E). We speculate that the senescent state of C9 cells in breast
tumors is triggered by hypoxia and dysregulation of microenvironmental growth factors like TGF-β and
NOTCH signaling. This, in turn, enhances ANXA1-FPR1/2/3 crosstalk, facilitating the reprogramming of
�broblasts and promoting the shift into an immunosuppressive environment from the PME. Last, we
examined the bulk levels of ANXA1 RNA in TCGA data and observed a signi�cant correlation of ANXA1
with CAF activation marker genes (FAP, ACTA2, COL6A3, MMP1 and TGF-β), wound healing-myCAF, ecm-
myCAF, and TGFβ-myCAF gene signatures, as well as M2-like signatures of tumor-associated
macrophages (TAMs) (Fig. 6F). This further con�rmed that ANXA1 plays an important role in inducing
immunosuppressive TME by mediating the transformation of normal �broblasts into CAFs and
macrophages M2 polarization. Additionally, our de�ned EpiSen signature was also signi�cantly and
positively associated with stromal cell fractions and TGF-β response in TCGA tumors (Figure S5D).

Discussion
Malignant progression from precancerous stages to cancer, is driven by the sequential acquisition of
genetic alterations in oncogenes and tumor suppressor genes, resulting in uncontrolled cell proliferation
35. The "bad luck" theory posits that random mutations in self-renewing stem cells contribute to cancer
development by generating malignant, self-renewing daughters that propagate cancer 36. Emerging
evidence underscores the role of extrinsic factors like in�ammation, metabolism, and wounding in
predisposing tissues to heightened cancer vulnerabilities 37. However, the mechanisms through which
oncogenic mutations in healthy tissue stem cells might trigger intrinsic environmental changes,
potentially circumventing the need for multi-step mutagenesis, remain less understood.

In this study, we observed a progressive enrichment of stem-like cells within the epithelium as the lesion
aggravated. The inherent "self-renewal" properties of these cells enable the maintenance of a stem-cell
pool, indicating that they are long-lived and capable of dividing without differentiation 6. Consequently,
these specialized niches emerge as probable cells of origin for cancers and crucial regulators of cancer
risk. Indeed, Chen et.al. proposed a perspective about adenomatous tumorigenesis in which neoplastic
cells of colon tissues originate from DNA replication-induced mutations in continuously renewing stem
cells 14. In our single-cell analysis of 13 tissues, we compared the gene expression pro�les of stem-like
cells in diseased tissues with those in healthy donors. We proposed that these stem cells form a potential
malignancy continuum; therefore, we estimated the pseudo-time along disease progression (ranging from
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healthy to cancer state) as the malignancy index. We believe that the changes in gene expression along
this malignancy progression can implicate tumorigenesis mechanisms and help identify potential
diagnostic and therapeutic targets for both dire precancerous lesions and malignancies. Notably, we
observed that the frequently mutated gene NCOR1 exhibited upregulated regulon activities in stem-like
cells from both cirrhosis and liver cancer. NCOR1 facilitates the interaction of several nuclear proteins
that regulate the transcription rates of metabolic stress-induced genes 38. NCOR1 functions as a negative
modulator for hepatic de novo fatty acid synthesis (FAS) and mitochondria energy adaptation, playing
distinct roles in regeneration or carcinogenesis 39. Lee et al. found that chaperone-mediated autophagy
dysregulation during liver aging impairs hepatic fatty acid oxidation through the accumulation of NCoR1
40. Furthermore, we identi�ed phenotypically distinct immune and stromal subclusters by delineating the
composition and molecular changes of PME and TME cells along malignant transition. The dynamics of
these subpopulations exhibited close associations with stem-like cells, potentially exerting in�uence on
immune activation, homeostasis imbalance, exhaustion, and suppression over time and thus playing a
crucial role in tumorigenesis and cancer progression.

Subsequently, we annotated the different stem cell states that recurred across tissue types using 30
transcriptional programs. These programs re�ected current events that shape cellular states, such as cell
cycle phases, and their short-term responses to surrounding cells, cytokines, and nutrients (or lack
thereof) 9. Thirty MPs also revealed a high degree of plasticity in epithelial stem cells. Among them, MYC,
Cellcycle-G2M, EpiSen, EMT-related, and hypoxia strongly correlated with both malignancy and stemness.
This suggests that some subpopulations may warrant innovative therapeutic approaches. For instance,
combination therapies may target coexisting cellular states, while differentiation therapies may
potentially transition cells from an aggressive state (e.g., massively proliferative and invasive) to a more
benign or responsive state (e.g., senescent cells hypersensitized to microenvironmental IFNγ) 41. Our
velocity analysis unveiled that within malignant transition trajectories, multiple populations of senescent
stem cells exhibited concurrent activation of hypoxia signaling and TGF-β, creating an oncogenic milieu
with signi�cant pro-tumorigenic effects. It has been proposed that TGFβ can stabilize HIFα protein; under
chemotherapy-induced stress, HIF1α can enhance glutathione synthesis, promote the acquisition of CSC
phenotype, and reshape the CSC population in tumors by constraining their differentiation capacity 42.
We argue that those identi�ed senescent clusters with poor prognosis appear to be early-stage malignant
progenitors that entered into proliferative quiescence in response to TGF-β. Therefore, TGF-β-induced
dormancy might protect stem-like metastasis-initiating cells from immune surveillance, preserving these
cells for eventual relapse 43.

We observed that ANXA1 is highly expressed in healthy humans and that the dynamic expression level of
ANXA1 is closely related to malignant transformation. Increasing evidence indicates that AnxA1 triggers
macrophage reprogramming towards a resolving phenotype, serving as a pivotal step in restoring tissue
homeostasis 44. AnxA1 functions by inducing neutrophil apoptosis, modulating monocyte recruitment,
and enhancing the macrophage clearance of apoptotic cells. However, the expression of ANXA1 was
reduced in epithelial stem subclusters within the injured tissues, and subsequently increased in malignant
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stem cells that exhibit excessive senescence or proliferation. This suggests a unique role of ANXA1 in
precancerous stages, where its reduction contributes to increased production of proin�ammatory
cytokines, leading to aggressive and/or prolonged in�ammatory responses 45. In contrast, in carcinomas,
ANXA1 expression gradually increases as lesions approach malignant transformation to allow and
promote the transformation of �broblasts into CAFs (enhanced by increased TGF-β production), thereby
driving malignancy possibly through FPR activation 46. This aligns with prior research demonstrating that
AnxA1 de�ciency exacerbates insulin resistance and metabolic impairment in mice on an obesogenic diet
47 and aggravates lobular in�ammation and hepatic �brosis in experimental NASH 48. These effects are
associated with enhanced macrophage recruitment as well as their pro-in�ammatory M1 phenotype and
activity 48. Furthermore, both intracellular ANXA1 and externalized ANXA1 were reported to be involved in
tumor growth and involved in invasion process 46. Our spatiotemporal analysis suggested that
immunosuppression in the TME promoted by ANXA1/FPR interaction could be a strategy for
tumorigenesis and progression. In this context, different cell subpopulations may dynamically cooperate
within the tumor ecosystem, leading to higher �tness of the tumor as a whole. Speci�cally, under the
downregulated states of ANXA1 expression in the PME, precancer stem cells acquire resistance to
apoptosis and programmed cell death, thereby ensuring their longevity, and evading innate and adaptive
immune responses. This leads to the generation of self-renewing CSCs, in part by becoming dormant in
protective microenvironments. These cells can further employ an active self-protective mechanism by
entrapping local myeloid cells and T cells to construct a prosurvival niche, obtaining a clonal advantage.
For example, within TME, increased activation of retinoic acid (RA) can drive intra-tumoral monocytes
differentiated toward TAMs but shift away from differentiating into DCs via suppression of IRF4 49;
ANXA1 promotes alternative macrophage polarization to enhance breast cancer growth 50. Macrophages
compete with DCs to degrade the tumor-associated antigens (TAA), preventing the initiation of antigen
presentation and inducing immune tolerance 51. Moreover, AnxA1, known to regulate the nuclear
localization of EGFR, promotes T cell dysfunction by favoring the EGFR/STAT3 transcriptional activities
in cancer cells, enhancing immune evasion and tumor progression 52. Our analysis showed that
�broblasts activated in response to in�ammation in the PME would persist and transform into CAFs
characterized by high expression of ANXA1 levels and TGFβ-myCAF signatures in the TME. This
indicated that quiescent CSCs might inhibit DC in�ltration and promote Tregs expansion and the
functional reprogramming of TAMs and CAFs, further contributing to the exhaustion of CD8 + T cells.
Hence, through these mechanisms, senescent cells (e.g., Breast-C9) may mediate the downregulation of
immune surveillance to bene�t other proliferative cells (e.g., Breast-C4). However, apart from related
mediators such as ANNEXIN and RA signaling, the mechanisms underlying TGF-β activation and the
cooperative effects of minority senescent cells in promoting population-wide cancer cell survival remain
to be determined.

In conclusion, by analyzing data from 1396 samples across 13 major tissues, we dissected the
heterogeneous microenvironment during malignant transformation. We identi�ed 30 recurring cellular
states strongly associated with malignancy in transitional stem cell-like subpopulations highly enriched
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in precancerous and cancer stages. By analyzing spatiotemporal ANXA1 expression patterns, we further
con�rmed the potential mechanism of ANXA1 in manipulating tissue microenvironments by mediating
immune response through recruitment of the neutrophils and monocytes, which skew to M1
macrophages in the PME, and by promoting immune suppression that favors M2 macrophage
polarization and transformation of normal �broblasts into CAFs during malignant development (Fig. 7).
Our results provided a systematic view of cancer origins, and suggested that restoring and maintaining
the balance of in�ammation and their mediators (e.g., AnxA1/FPRs signaling) may represent a novel
approach to control the evolution of precancerous lesions and mitigate the risk for cancer development.

Limitations of the study
First, the lack of matched data between precancerous and cancer samples across the 13 tissues hampers
single-cell lineage-tracing analysis of genetic subclones, as it relies on inferred CNV and mutations from
the same patient. Second, despite a su�cient sample size for analyzing tumor initiation mechanisms
after excluding the metastases, potential prior treatments in included cancer specimens may in�uence
the observed tumorigenesis landscape. Third, intra-patient heterogeneity, particularly a modest number of
epithelial stem cells in speci�c tissues, presents challenges for malignancy transformation analysis.
Fourth, our analysis primarily concentrates on the precancer-to-cancer transition, leaving aspects like
local expansion, metastasis, and therapeutic resistance to be explored. Hence, further investigations in
more re�ned patient, animal and organoid data are essential for a comprehensive understanding of
dynamic transition in TME cells and their remodeling in various contexts. Lastly, the absence of
experimental validations may limit our ability to fully support multiple observations described in the
manuscript.

Methods
1. Data curation, Preprocessing, and Quality Control. A total of 62 scRNA-seq datasets, which include
1396 samples (healthy, adjacent non-cancer, premalignant lesion, and cancer specimens) were curated to
build a tumorigenesis atlas. These datasets were obtained from previously published studies, covering 13
major tissue types (that is, breast, cervix, colorectum, endometrium, esophagus, liver, lung, oral cavity,
pancreas, prostate, skin, stomach, and thyroid) 29,53–59. We excluded the distant metastatic tumor
samples (e.g., colorectal liver metastases) for lineage-speci�c cell clustering. The data accession
numbers and references for these datasets are provided on the website
(https://ccsm.uth.edu/PCTfuncDB/). Before conducting downstream analysis, we excluded cells with
low-quality transcriptomes following similar �ltering steps. Speci�cally, cells with detected genes < 200
and > 7,000, and cells with more than 25% mitochondrial reads were removed. The doubletFinder_v3()
function from DoubletFinder (version 2.0.3) was used for each sample with principal components set to
be 1:20, nExp was set to 0.08 × nCells2/10,000, pN to 0.25 and pK to 0.09. We applied two commonly
used batch correction algorithms, harmony (version 0.1.1) and BBKNN (version 1.5.1) to evaluate the
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signi�cance of the batch effect. After rigorous doublets and batch effects removal, the integrated single-
cell transcriptomes for three major cell types (epithelial, immune, and stromal) were retained, respectively.

2. Construction of Healthy Epithelial Reference and Projection of Diseased Cells. We �rst constructed a
normal epithelial reference using epithelial cells from healthy donors. After normalizing the data with
normalizeData() function in Seurat (version 4.3.0), the iterative LSI dimensionality reduction was
computed using four total iterations (clustering resolution of 0.1, 0.2, 0.4, 0.8) based on a pipeline from
Granja et al 2019 7. For each iteration, the ribosomal protein genes, mitochondrial-encoded genes, and
HLA genes were �ltered out; the top 3,200 most variable genes were identi�ed from the remaining genes.
We computed term frequency-inverse document frequency (TF-IDF) transformation on these genes,
performed SVD on the transformed matrix, and provided dimensions 1:32 of this reduction as input to
Seurat’s shared nearest neighbor clustering a resolution of 0.1. Then, cell clusters were identi�ed with an
increased resolution for the next three iterations. Also, we computed the log(counts per million)
transformation using the “edgeR” package (version 3.36.0) and found the top 3,200 variable genes
across the clusters. A TF-IDF transformation was computed on these variable genes, and an SVD was
then performed on the transformed matrix. Dimensions 1:32 were retained, and clusters were identi�ed
using functions �ndNeighbors() and �ndCluster() in Seurat. After the �nal dimensionality reduction, we
found that using the iterative LSI approach with 32 dimensions allowed us to denoise the data and limit
batch effect, which was useful for the projections. Similarly, as described by Becker et al. 2022 8, this �nal
LSI dimensionality reduction was provided as input to compute a UMAP representation of the data, and
the cells were clustered using a resolution of 1.0. The resulting clusters were then annotated based on
maker genes. The projection of cells into the LSI subspace de�ned for healthy liver epithelial cells was
done following the procedure described previously. Brie�y, when computing the TF-IDF transformation on
healthy reference epithelial cells, we stored the colSums, rowSums, and SVD. To project cells from
additional samples into this subspace, we �rst zero out rows based on the initial TF-IDF rowSums. We
next calculated the term frequency by dividing it by the column sums and computed the inverse
document frequency from the previous TF-IDF transformation. These were then used to compute the new
TF-IDF. The resulting TF-IDF matrix was projected into the previously de�ned SVD. Cells were classi�ed by
identifying their 25 nearest neighbors in the LSI subspace using get.knnx in R and then classifying the
cell as the most common annotation for those 25 nearest neighbors.

3. Expression Dynamics Analysis and De�nition of Malignancy Index. To delineate transcriptomic
changes occuring on the phenotypic continuum from healthy tissues to precancer and to cancer, we
performed expression dynamics analysis by identifying differentially expressed genes (DEGs) between
stem-like cells in each pre-malignant sample and tumor sample. Then, we de�ned the malignancy index
through principal component analysis on log2FC of DEGs between stem cells from all precancerous
lesions and cancers against all healthy samples. This analysis is based on the long-held view of
oncogenesis that cancer cells arise from an aberrant dedifferentiated stem-like state. DEGs displaying a
Wilcoxon False Discovery Rate (FDR) ≤ 0.05 and |log2FC | ≥ 0.5 in ≥ 2 samples were considered
signi�cantly differential and retained for further analysis.
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4. Non-negative matrix factorization (NMF) and module detection. By using the NMF R package (version
0.23.0) 60, the NMF algorithm was performed separately on the identi�ed stem cells of each diseased
tissue. All these steps were performed like previous studies 9,18. Speci�cally, NMF was applied on each
SCTransform result for different rank values, and then we extracted consensus modules for each optimal
NMF rank that was identi�ed for each sample. We utilized NMF programs in each sample to characterize
the ITH patterns that vary among its stem-like cells, each summarized by its top-scoring genes.

5. Regulon network prediction. The activity of transcription factor regulons was evaluated by SCENIC
(version 1.0.1) 11. In brief, regulons were detected by calculating the co-expression of TFs and genes,
followed by motif analysis. AUCell score, ranging from 0 to 1, was then calculated by the algorithm for
each cell to evaluate the activity level for each TF regulon. The regulon analyses were implemented
independently for different main cell types.

6. RNA velocity and pseudotime analysis. Individual sample BAM �les were used to recount the spliced
reads and unspliced reads using the “run-dropest” or “run10x” command in velocto (version 0.17.17).
Then, the dynamic velocity model from scvelo (version 0.1.25) 61 was used for the RNA velocity analysis.
In brief, after the gene selection and normalization, the �rst- and second-order moments were calculated
with scv.pp.moments() function. The full splicing kinetics were recovered with scv.tl.recover_dynamics()
function and the velocities were obtained with scv.tl.velocity() function in dynamical mode. The velocities
were projected onto diffusion maps and visualized as streamlines with
scv.pl.velocity_embedding_stream() function. The spliced vs. unspliced phase portraits of individual
genes were visualized with scv.pl.velocity(). The latent time of cells was obtained with
scv.tl.recover_latent_time() function. For samples without BAM �les, we ran monocle3 analysis by
processing the raw scRNA-Seq UMI count matrix with R package Seurat (version 4.3.0). Raw UMI counts
were normalized to total UMI counts per cell using the negative binomial regression method, and the top
3,000 highly variable genes were selected using the variance-stabilizing transformation (VST) method
implemented in the “SCTransform” function 62 in Seurat. Batch effects were corrected across samples
using Harmony. We then used the “cluster_cells, learn_graph, and order_cells” functions with default
parameters in the monocle3 R package (version 1.0.0) 63. The pseudo-times were inferred by using
pseudotime() function on the �nal monocle object.

7. Differentiation potential prediction with CytoTRACE. The CytoTRACE algorithm developed by Gulati et
al. 64 is a scoring method inferring the relative developmental potential of single cells based on gene
counts per cell. To obtain a score that represents its stemness within the given dataset, we performed
CytoTRACE based on the default recommended settings with all epithelial single-cell transcriptomes of
13 tissues, including healthy, precancerous, and cancer samples.

8. Single-cell somatic mutation detection and Copy number variation (CNV) analysis. SComatic is a tool
that provides functionalities to detect somatic single-nucleotide mutations in high-throughput single-cell
genomics and transcriptomics data sets, such as single-cell RNA-seq. We run SComatic to detect somatic
mutations in scRNA-seq data with aligned sequencing reads in BAM format for all epithelial cells. The
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input BAM �le contains the cell type barcode information in the cell barcode tag "CB" generated from Cell
Ranger or other drop-seq tools. We also applied a fathmm �lter 65 to all cells. Based on this machine
learning approach, each mutant of a single cell was assigned a score about the likelihood of a given
SNV/INDEL to be pathogenic. Only variants computationally predicted to be pathogenic (fathmm score > 
0.7) were retained in further analysis.

By using healthy epithelial cells as the reference data, the initial CNV value of each diseased cell was
estimated by the infercnvpy method (version 0.4.2) based on the transcriptomic pro�les as described by
Puram et al. 66. To evaluate the CNV level of each single cell to predict the malignancy of cells, we de�ned
the CNV score by calculating the mean squares of CNV values across the genome.

9. Gene sets for functional enrichment analyses. We primarily used signatures from MsigDB, including
the following collections of gene sets: Gene Ontology (C5.GOBP, C5.GOCC and C5.GOMF), Hallmark (H)
and REACTOME (C2.CP.REACTOME). We also added additional signatures (Metaplasia, Senescence and
CancerG0Arrest) of epithelial cells curated from the literature 9,14,67. Based on these GO terms and
signatures, functional annotation on gene modules identi�ed by NMF was implemented in the
‘clusterPro�ler’ package. Additionally, �ve curated gene signatures of T-cell, myeloid cells, �broblasts, and
NK cells 68–72 together with above-mentioned gene sets and our de�ned MPs were utilized to assess the
signature scores in related cell subsets based on the AUCell, GSVA and ssGSEA method. Signatures with
an FDR-adjusted P < 0.05 were considered signi�cantly enriched. For pathway activity analysis on TCGA
bulk data, GSVA was also used to evaluate the enrichment of related gene sets.

10. Cell-cell communication analysis. We inferred cell-cell interactions (CCI) and constructed
communication networks among our identi�ed malignant-transitioning stem-like cells and other
PME/TME cells using CellChatDB.human in CellChat (version 2) 25. Then, we used the netVisual_circle()
function to show the strength or weakness of CCI networks from the target cell cluster to different cell
clusters. Finally, the netVisual_bubble() function shows the bubble plots of signi�cant ligand-receptor
interactions between the target cell cluster and other subclusters.

11. Spatial transcriptome (ST) data analysis. We collected ST data from 4 cases of breast cancer, 1 case
of the normal cervix, 1 HSIL_HPV, 3 samples of cervix cancer and 1 liver cancer. The SpaCET R package
73 was used to perform deconvolution of spatial transcriptomic spots into cell types. The integrated
single-cell data for each tissue type was used as the reference, while the spatial transcriptomics data was
submitted as a query dataset. For spot-level cell-type assignment, spots were annotated for cell type
according to the largest deconvolution proportion as inferred by SpaCET. In addition, we also used
CellChat v2 to infer and visualize the potential CCI in ST data based on cell-type deconvolution results.

12. Statistical analysis. Standard tests employed in the present study comprised Student’s t-test,
Wilcoxon rank-sum test, Kruskal-Wallis test, and Chi-square test. These tests were utilized to assess
variations in continuous target or categorical variables across different subgroups for comparison. The
descriptions of statistical details and methods are indicated in the �gure legends, text, or methods. P-
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values were computed with a two-sided and unpaired Wilcoxon rank-sum test. Routine statistical
analyses of this study were performed in R v4.1.0, and a two-sided p-value below 0.05 was deemed
statistically signi�cant.
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Figure 1

Construction of a multistage tumorigenesis single-cell RNA atlas. (A) Bar graphs showing summary
statistics for the number of cells, samples collected by tissue (left) and their tissue compositions (right).
(B) The schematic depicts the study design, data collection (left) and work�ow of integration &
annotation for scRNA-seq datasets (right, liver tissue as an example).
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Figure 2

The meticulous dissection of epithelial compartment across diverse tissues along disease progression.
(A) Heatmap of expression for representative marker genes of liver, prostate, and colorectum epithelia. (B)
UMAP projection of scRNA-seq epithelial cells isolated from different disease stages of stomach tissues
(CSG, CAG, CAG with IM, WIM, SIM, and GC) and liver tissues (NAFLD, cirrhosis, and HCC) into the
manifold of healthy epithelial cells. Projected cells are colored by the nearest normal cells in the
projection, and normal epithelial cells (reference) are colored gray. A.X, A/X cell; CHIEF, Chief cell; D, D cell;
EE, enteroendocrine; GMC, Gland mucous cell; GOB, Goblet; MESC, metaplasia stem cell; PARI, parietal
cell; PMC, Pit mucous cell; STM, stem-like cells; CHO, cholangiocytes; HEP, hepatocytes. (C) The
proportions of four representative cell types in the epithelial lineage across stage groups. (D) Ridge plot
of CytoTRACE score distributions for different stages of bulk samples (top) and for only stem-like cells
(bottom). (E) UMAP showing the inferred development dynamics of healthy cells of 4 representative
tissues by RNA velocity. (F) Comparisons of inferred CNV scores and mutation load among different
stages and cell types of liver and cervix tissues. (G) Top, the frequency of the top 10 somatic mutations
across different epithelial cell types detected in scRNA-seq data; bottom, the frequency of mutations from
four representative cell cycle genes across cell types.
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Figure 3

Identi�cation and characterization of micro-environment cell composition and molecular changes along
malignancy progression. (A)Trajectories for malignant transformation in scRNA-seq datasets of four
representative tissues. (B) log2FC in expression of HNF4A and GPX2 in stem-like cells from each diseased
sample relative to stem-like cells in healthy samples plotted against the malignancy continuum de�ned in
A. (C) Heatmap showing the signi�cantly different activities of TFs among different cell types in the liver-
diseased tissues. Color overlays are regulon enrichment scores. (D) Comparisons of cell proportions of
immune cells (top panel) and stromal cells (bottom panel) across stage groups in 13 tissues. (E) Fraction
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of cell types in each sample from �ve representative tissues with different disease stages plotted against
the position of the sample in the malignancy index de�ned in A. (F) Heatmap illustrating expression
changes of curated gene signatures across �ve subclusters along malignant transitions of the liver (left)
and cervix (right) tissues.

Figure 4
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Transcriptional programs and precancer to cancer transformation routes. (A) Heatmaps of the
signi�cance of the overlap between individual tissue modules (hypergeometric test p-value) in four types
of tissues. The bar indicates the annotation for disease states and modules. Programs are ordered by
clustering and grouped into MPs. (B) Correlation of MPs with stemness and malignancy index. UMAP
plots showing the inferred development dynamics of diseased liver cells by RNA velocity colored by
sample type & cell type; (C) and of stem-like cells colored by sample type (D, left panel) and Leiden
subclusters (D, right panel). (E) Top panel, RNA velocity indicating two trajectories of stem-like cells
involved in cirrhotic to HCC transition. From left to right, they are colored by sample/cell type, Leiden
clusters, and latent time. The bottom panel showing simpli�ed trajectories across 13 tissues inferred by
RNA velocity analysis. (F) Line plots of changes for the representative transcriptional programs over
pseudotime. (G) Left panel, stem-like cells from trajectory 2 of liver tissues labeled with genomic
alterations in CDKN2A (left), mutation load (middle), and Leiden clusters (right). Right panel, difference of
genomic pro�les (including mutations and copy number alterations) among �ve representative clusters in
two trajectories of neoplastic transformation of cirrhosis. (H) Cox regression analysis showing that the
OS and DFS in TCGA patients were signi�cantly strati�ed by the median proportion of stem subclusters.
(I) Aberrant in�ammatory pathways enriched in transitional stem clusters at the start point in
corresponding malignant transition trajectories. (J) Representative pathways enriched in malignant or
benign stem clusters at the endpoint in related transition paths.
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Figure 5

Alterations in cell-cell communication along pseudo-time axis and identi�cation of master pro-
tumorigenic mediators. (A) The left diagram shows the generation process of the PCT gene signature.
Right, ten representative genes in 30 de�ned MPs. (B) Signi�cant cell-cell interactions of TNF and CXCL
pathways were identi�ed in PME cells. (C) Cell-cell interactions of NECTIN and TGF-β (left) pathways
identi�ed in TME cells from the Breast C4 stage and of FN1 signaling identi�ed in TME cells from
malignant stages of colon, liver, and prostate tissues. (D) CIBERSORTx-inferred proportions of stem cell
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clusters varied among different subtypes of TCGA tumors. (E) RNA velocities overlaid on the UMAP of
stromal cells from colon, liver, and prostate tissues, respectively. Arrows show the RNA velocity �eld. Dots
are colored according to stromal cell subsets. (F) The dot plot showing representative ligand-receptor
pairs signi�cantly enriched in communications between transitioning stem-like cells and myeloid subsets.
(G) The dot-line plot showing the dynamics of log-normalized ANXA1 RNA level in transitional stem cells
along malignant transformation. (H) Bubble chart showing the gene expression levels of formyl-peptide
receptors (FPRs) in the main cell types along malignant transitions based on the scRNA-seq data. (I) The
dot-line plots showing the in�ammatory pathway scores and the ANXA1 RNA levels in stem clusters from
the start point of transition trajectories. (J) The Scatterplots for correlations of ANXA1 expression levels
with the GSVA scores of TGF-β signaling.
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Figure 6

Spatially-resolved transcriptomics data revealing the transitional cell heterogeneity and potential
mechanisms responsible for both mediation of stem cell senescence and immune suppression induction.
(A) Barplots showing log-normalized ANXA1 RNA level in spatial stem-like spots of different stage
samples from three tissue types. (B) Spatial plots presenting signi�cant ANNEXIN and Retinoic Acid
signaling networks identi�ed in breast and cervix tissues. (C) Spatial distribution of C9-INMON (left), C4-
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INMON (middle) and FIB-INMON (right) colocalization in a breast cancer sample. Each dot represents an
ST spot. (D) Visualize ANXA1-FPR3 and TGF-β expression distribution on the breast cancer tissue. (E)
GSVA showing the signi�cant differential pathways between C9 (close) and C4 (distant) spots of a breast
cancer samples. (F) Correlation analysis on expression levels of ANXA1 with CAF-related makers (top)
and the GSVA scores of four gene signatures (bottom) based on TCGA bulk data.

Figure 7

Schematic diagram to conclude our results. Due to the loss of ANXA1, in�ammatory cells (e.g.,
monocytes) were recruited to the precancer stem-cell pool via aberrant in�ammatory pathways, including
NF-κB, MAPK, and JAK-STAT. During the progression from precancer stem cells to cancer stem-cell
propagation, the expression level of ANXA1 was gradually increased; macrophages with increased
expression of FPR1/2 (receptor of ANXA1) are polarized into the M2 phenotype; quiescent �broblasts in
the normal tissues are transitioned into activated �broblasts, and then transitioned to CAFs in response to
TGF-β. All these changes lead to immune evasive dormancy as well as further self-renewal of malignant
stem cells and leading to a more immunosuppressive microenvironment.
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