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Dementia Severity Index: A Threshold-Based Approach to Classifying

Dementia Level

Shivani Ranjan1 and Lalan Kumar2∗

Abstract— Dementia is marked by a progressive decline
in cognitive and emotional capacities, presenting significant
challenges to daily functioning. This includes prominent neu-
rodegenerative disorders like Alzheimer’s disease (AD) and
Frontotemporal dementia (FTD). Recent advancements in elec-
troencephalogram (EEG) sensors and processing tools, project
it as a potential biomarker for detecting neuronal and cognitive
changes associated with various dementia types. Investigations
related to characterization and differentiation are yet to be
explored for range identification and assigning quantitative
values to resting state EEG from different dementia conditions.
In this study, two features that capture the band-specific
alterations are computed for each subject. These attributes
formed the basis of the Dementia Severity Index (DSI), a
threshold-based methodology designed to categorize individuals
into AD, FTD, and HC from resting EEG. The introduced
thresholding technique underwent validation using machine
learning methodologies, specifically the k-nearest neighbors
algorithm (kNN) and random forest (RF), achieving accuracies
of 81.6% and 81.37%, respectively. The classification outcomes
of derived DSI from F1 and F2 are compared. The DSI

corresponding to significant feature F1 is validated on two
diverse EEG datasets. The study aims to contribute to the field
by providing a set of dementia indexes capable of distinguishing
between AD and FTD-based dementia and discriminating
against HC. Additionally, the ability of significant features to
reflect cognitive performance is explored using the Spearman
correlation coefficient (r) to quantify the relationship between
predicted Mini-Mental State Examination (MMSE) and actual
MMSE scores. The study also delves into the variations in
sensor and source domain classification using features F1

and F2. The findings of the proposed approach hold promise
for capturing a range of values that can effectively classify
AD, FTD, and HC, while also offering the advantage of
computationally efficient classification when compared with the
existing subjective assessment.

I. INTRODUCTION

Dementia is characterized by a progressive decline in

cognitive function that hinders daily functioning and impacts

movement, desire, and reaction time [1]. It is a neurodegen-

erative disorder leading to the degeneration of nerve cells in

the brain, causing impaired intercellular communication [2],

[3]. The anticipated number of diagnosed dementia cases is

poised to double every 20 years, potentially reaching 65.7

million by 2030 [4]. The likelihood of experiencing dementia

rises with age, starting at around 1% between ages 60 and

64 and escalating to 24–33% for individuals aged 85 and

above [5]. Early-onset dementia, appearing before 65, and
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late-onset dementia, appearing after this age, present distinct

challenges. Dementia, stemming from various causes, may

also be reversible if diagnosed timely [6].

The primary causes of early-onset dementia are

Alzheimer’s disease (AD) and Frontotemporal dementia

(FTD). AD predominantly affects the hippocampus and

memory-associated areas [7], while FTD primarily impacts

the frontal and temporal lobes, influencing behavior and

language [8]. Distinguishing between F and A based on

factors such as diminished focus, executive function, or

decreased memory has often yielded uncertain or conflicting

outcomes [9]. Given the frequent misdiagnosis of AD and

FTD, there is a critical need to develop a more accurate

method of differentiating these conditions.

A variety of screening tools, such as the Clinical Demen-

tia Rating (CDR) [10], Mini-Mental State Exam (MMSE)

[11], Montreal Cognitive Assessment (MoCA) [12], and

Addenbrooke’s Cognitive Examination III (ACE-III) [13],

are widely employed for the detection of cognitive im-

pairment. Among these tools, the Clinical Dementia Rating

(CDR) stands out as the most well-known and extensively

researched dementia staging instrument [14]. Moreover, Ad-

denbrooke’s Cognitive Examination III (ACE-III) plays a

crucial role in dementia diagnosis, particularly in distinguish-

ing between Alzheimer’s and frontotemporal dementia [13].

The MMSE, owing to its practical utility and widespread

availability, is predominantly utilized for the detection of

cognitive impairment [15]. These screening tools assess

questionnaire performance, specifically designed to capture

functional measures. However, it’s important to note that

these screening tools exhibit lower sensitivity to the effects

of education and premorbid intelligence. These assessments

involve an extensive rater certification process and require

approximately 30 minutes for administration. Additionally,

they demand clinical judgment during both the administra-

tion and scoring processes [14], [13].

Functional assessment is essential for distinguishing nor-

mal aging from mild cognitive impairment (MCI) and MCI

from AD. Additionally, they aid in tracking A progression

and differentiating AD from other dementia cases. Neu-

roimaging techniques, such as magnetic resonance imaging

(MRI) [16], [17], [18] and single-photon emission tomogra-

phy (SPET) [19], have significantly contributed to diagnosing

AD and FTD [9]. One takes such functional and behavioral

assessment after displaying considerable neurodegeneration

and it may lead to irreversible condition. Consequently, fore-

casting the onset of AD or FTD holds crucial implications.

A timely diagnosis is imperative, as treatment can enhance



the quality of life by delaying the onset of worsening

symptoms [20]. Early detection is challenging but helps

in safety measures, planning for money and legal matters,

and providing emotional support. This assists patients and

families in dealing with the challenges. Therefore, there is

a need for innovative detection techniques that can timely

identify AD and FTD cases, and ultimately improve the

prognosis for affected individuals.

The electroencephalogram (EEG) has garnered significant

attention in both research and clinical practice over the

past two decades due to its potential as a non-invasive

instrument with sensitivity for diagnosing dementia and

classifying its severity [21]. An EEG-based approach is

preferred for dementia diagnosis and classification due to its

non-invasiveness, cost-effectiveness, widespread availability,

and faster processing speed compared to other neuroimaging

devices [21].

Previous studies have delved into the differences in quan-

titative EEG among patients with FTD and AD. Spectral

analysis of delta and theta frequencies, coupled with episodic

memory, has emerged as a robust predictor of FTD and

AD. Notably, AD patients exhibit higher diffuse delta/theta

activity and lower central/posterior fast frequency bands than

H [22], [23]. Furthermore, FTD and AD patients demonstrate

diffusely higher theta power in the power spectrum, along

with decreased alpha2 and beta1 values in the central and

temporal regions [24]. Another study observed lower alpha1

activity in the orbital frontal and temporal lobes of FTD pa-

tients, accompanied by higher delta and lower beta1 activity

in the frontal and parietal lobes, respectively, when compared

to HC [25]. However, the existing research has primarily

concentrated on the spectral and quantitative information of

EEG signals obtained from scalp electrodes. Limited studies

have explored the dynamics to achieve a quantitative value

for assessing cognitive decline in FTD, AD, and HC from

scalp EEG. Investigations related to characterization and

differentiation are yet to be explored for range identification

leading to assigning a quantitative value to different dementia

conditions during rest.

The objective of the present study is to introduce a

thresholding-based approach using the Dementia Severity

Index (DSI) to assess dementia levels and classify AD,

FTD, and HC cases. Employing EEG source imaging and

spectral analysis of spatially distributed information, the

study aims to establish a quantitative threshold that can

distinguish between different types of dementia and H.

Machine learning algorithms such as Random Forest (RF)

and K-nearest neighbor (kNN) are utilized to validate the

DSI based classification. The study leverages resting-state

EEG, which is particularly advantageous for patients as it

requires minimal cooperation and causes negligible stress.

Additionally, to validate the robustness of the threshold-

based DSI approach, the proposed method is applied to two

online EEG datasets: the first containing all three cases (AD,

FTD, and HC), while the second contains only AD and HC

cases. The proposed method exhibits significant potential for

real-time applications in identifying FTD and AD in healthy

individuals, offering reduced computational processing and

a low-cost solution.

II. METHODS AND MATERIALS

The schematic methodology description to investigate the

classification of AD, FTD, and HC based on dementia

severity index (DSI) using features (F1, F2) is elucidated

in Figure 1.

A. Data

The data for this study was collected from 88 subjects at

the Department of Neurology of AHEPA General University

Hospital in Thessaloniki, Greece. The subjects were divided

into three groups: 36 with Alzheimer’s disease (AD), 23 with

Frontotemporal dementia (FTD), and 29 Healthy Controls

(HC) [26]. The Mini-Mental State Examination (MMSE) was

used to assess cognitive and neuropsychological function.

The MMSE score ranges from 0 to 30, with lower scores

indicating greater cognitive decline. The mean (SD) MMSE

scores for the AD, FTD, and HC groups were 17.75 (4.5),

22.17 (8.22), and 30 (0), respectively. The mean (SD) ages

of the AD, FTD, and HC groups were 66.4 (7.9), 63.6

(8.2), and 67.9 (5.4) years, respectively. The disease duration

was assessed in months, with a median value of 25 and

an interquartile range (IQR) of 24 to 28.5 months. No

comorbidities were reported for the AD group.

B. EEG Recording

Publicly available EEG data from the 88 participants

[26] is utilized in this study. The data was recorded using

Nihon Kohden EEG 2100 clinical device. In accordance with

the 10-20 international system, 19 scalp electrodes were

positioned accompanied by two reference electrodes (A1 and

A2) on the mastoids for impedance monitoring. Prior to each

recording, skin impedance was confirmed to be below 5 kΩ.

The EEG data was sampled at a rate of 500 Hz with a

resolution of 10 uV/mm. Both anterior-posterior bipolar and

referential montages were employed, with Cz serving as the

common reference.

C. Pre-processing

The EEG data underwent rigorous preprocessing using

MATLAB [27] and the EEGLAB plugin [28]. Initial steps

involved band-pass filtering (0.5-45 Hz) employing a But-

terworth filter and re-referencing to A1-A2 [26]. To remove

non-cerebral artifacts, the Artifact Subspace Reconstruction

Routine (ASR) [29] was applied. This technique surpassed

conventional artifact rejection thresholds (0.5-second win-

dow, 17 standard deviations) by identifying and eliminating

bad data periods that significantly improves the data quality.

Subsequently, Independent Component Analysis (ICA) was

employed to decompose the EEG data into independent

source activities [30]. Several ICA components may rep-

resent muscle and eye movement artifacts. The EEGLAB

”ICLabel” tool was utilized to automatically identify and

exclude such artifact-related components classified as ”eye

artifacts” or ”jaw artifacts.” This ensured the retention of

neural components that enhanced the signal-to-noise ratio.



TABLE I: Table represents the demographic information of the data

Group N MMSE mean MMSE std.dev Age mean Age std.dev Disease duration median Disease duration IQR

AD 36 17.75 4.5 66.4 7.9 25 24

FTD 23 22.17 8.22 63.6 8.2 25 24

HC 29 30 0 67.9 5.4 25 24

Fig. 1: Schematic flow diagram utilized to investigate the classification of AD, FTD, and HC based on DSI using features

(F1, F2).

D. Sensor to source mapping

EEG source localization seeks to identify the primary

cortical current sources generating the measured scalp poten-

tials [31], [32]. This approach overcomes the limitations of

electrode cross-correlation due to volume conduction effects

[32]. The localization pipeline comprises of forward and

inverse problem solving.

1) Potential, Current Relationship - The Forward Prob-

lem: The forward problem establishes the relationship be-

tween cortical currents and scalp potentials using a lead

field matrix [33]. This matrix simulates the propagation of

currents through various head tissues (scalp, skull, brain)

using Neumann and Dirichlet boundary conditions [34].

Mathematically, this relationship is expressed as

V = AS̃ + Z (1)

where V is EEG scalp potential, A is lead field matrix, S̃
is cortical source current, and [Z] is sensor noise matrix.

The lead field matrix was computed using the Numerical

Boundary Element Method (BEM) [35]. Brainstorm toolbox

[36] was utilized for this purpose. The selection facilitated

efficient and accurate modeling of the influence of head

tissues on current propagation. The preprocessed EEG data

from 19 channels was spatially interpolated to 31 channels

to augment sensor density and enhance source localization

precision [37], [38], [39]. The default cortex model, featuring

15002 vertices, was employed for source estimation. It

is noteworthy that the typical number of considered EEG

channels is still around 30, while the estimated number of

current dipoles is approximately 15,000.

2) sLORETA - The Inverse Problem: The inverse problem

in EEG source localization builds upon the established lead

field matrix (A) from the forward problem. Its objective is

to estimate the hidden cortical source (or vertices) current

signal (S̃) that best explains the recorded scalp potentials.

To account for potential inaccuracies in the estimated source

currents, a noise perturbation matrix (Z) is incorporated into

the model. In this study, the standard low-resolution electrical

tomography (sLORETA) [40] method is employed as the

inverse solution method. sLORETA leverages the principle of

spatial smoothness, assuming that neighboring brain regions

are more likely to be engaged in the same neural process

[41]. This assumption finds further support in the known

anatomical and functional connectivity within the brain. By

enforcing spatial coherence and consistency in the estimated

electrical activity across adjacent voxels, sLORETA seeks to

enhance the accuracy and localization precision of the source

maps [42]. The source (or vertices) matrix S̃ is estimated by

solving the following optimization problem:

min
S

F = ||V −AS||2 + λ||S|| (2)



The solution to the optimization problem using sLORETA is

given as [42]

S̃ = AT
[

AAT + λH
]+

V = AsLORETAV (3)

where H is the average reference operator and and

AsLORETA is the inverse Kernel that relates the recorded

scalp potential V to the cortical source current (or vertices)

estimate S̃.

For a more in-depth examination of the cortical source (or

vertices) currents defined by the matrix S̃ obtained through

source localization, the entire brain underwent parcellation

into distinct regions of interest. This study utilized the

Desikan Killiany Atlas [43] for a detailed analysis featuring

68 regions. Within each region, the respective cortical source

current signals were averaged, yielding a set of time series

that represent the average activity in each brain region.

This process resulted in scout time series matrices S̃R that

capture the brain region data. These matrices (V , S̃, and S̃R)

provide the foundation for subsequent feature extraction and,

ultimately, the computation of the DSI .

Fig. 2: Cortex map representation of rP (α, θ, δ) alterations

observed in AD, FTD and HC. The image is generated using

Brainstorm Toolbox

E. Feature Extraction

In this Section, the computation of DSI from Power

Spectral Density (PSD) is detailed.

1) Power Spectral Density: The estimated cortical source

signals (S̃, S̃R) and processed scalp potential (V ) are uti-

lized for spectral analysis using power spectral density to

scrutinize the distribution of power across various frequency

bands. In particular, delta (δ: 0.5–4 Hz), theta (θ: 4–8 Hz),

and alpha (α: 8–12 Hz) bands known for their association

with altered functioning in dementia, are studied [44]. These

bands are correlated with distinct cognitive and neurological

processes, encompassing slow-wave sleep (delta), attention

and memory (theta), and neuronal synchronization and inhi-

bition (alpha) [45].

The power spectral density for the measured or estimated

parameters (V, S̃, S̃R) is computed using the Welch method

implemented in the Brainstorm toolbox [46], [36]. This

method is selected for its capability to handle non-stationary

signals. Following the PSD computation, relative power ratio

(rP ) for frequency band B is proposed to be computed as

rPB =

∫

f∈B
P (f)df

∫ fmax

fmin

P (f)df
(4)

where, P (f) denotes PSD function,
∫

f∈B
P (f)df indicates

power over frequency band B, and
∫ fmax

fmin

P (f)df is the

power over the entire frequency range of interest (δ : 0.5−
4Hz, θ : 4 − 8Hz, α : 8 − 12Hz, β : 12 − 29Hz, γ :
30− 45Hz)

The relative power quantifies the power distribution across

different frequency bands, reflecting the contribution of spe-

cific brain rhythms to the overall activity. Thus the ratio

offers a normalized assessment of the power in band B
relative to the overall frequency range, and hence, mitigating

the impact of inter-subject variability. The potential varia-

tions captured by the ratio rP is illustrated in Figure 2 that

depicts a varying spatial distribution pattern for each case

(AD, FTD, HC), and band (alpha, delta, theta). A decrease

in alpha and an increase in theta and delta power may be

observed from HC to AD. These bands were chosen due to

their known associations with cognitive functions and their

reported dysregulation in dementia cases [47].

Fig. 3: Figure visually presents the different patterns across

AD, FTD, and HC using F1 and F2. The Brainstorm toolbox

is used to generate the plot.

2) Dementia Severity Index Computation: A decrease in

alpha and an increase in theta and delta power for FTD

and AD cases, are utilized in this Section to formulate the

DSI . Subsequently, DSI will be employed for dementia

classification. Following two specific feature sets are derived



utilizing Equation 4.

F1 =
rPα

rPθ

(5)

F2 =
rPα

rPδ

(6)

DSI is now constructed using the feature sets (F1 and

F2) as follows:

DSI =











0, 0 < Fi ≤ T1

1, T1 < Fi ≤ T2

2, Fi > T2

(7)

where, T1 and T2 are the thresholds that delineate severity

levels detailed in Section III-B. The definition of DSI
suggests that the lower values will correspond to potentially

greater dementia severity. The dementia severity classifi-

cation using DSI is additionally validated using machine

learning algorithms applied to the derived feature sets Fi

as detailed in Figure 4. The performance metrics and the

associated procedure followed in classification, are detailed

next.

Fig. 4: Schematic diagram for classification of AD, FTD,

and HC with and without thresholding approaches. Here,

DSIand ML denote the dementia severity index and machine

learning, respectively.

F. Classification

1) Performance Metrics: Random Forest (RF) and K-

nearest neighbor (kNN) algorithms are employed to validate

the effectiveness of the classification approach. Both the

algorithms make use of a rigorous 10-fold cross-validation

procedure, ensuring robust and generalizable results. The

classification (distinguishing AD, FTD, and HC) perfor-

mance is evaluated using the standard metrics (accuracy,

sensitivity, and specificity), defined as

Accuracy =
TN + TP

TN + TP + FN + FP
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

where TP , TN , FP , and FN correspond to True Positive,

True Negative, False Positive, and False Negative, respec-

tively.

2) Validating Feature Ability to Reflect Cognitive Perfor-

mance: To further assess the feature capacity to capture

individual variations in cognitive performance, a correlation

with Mini-Mental State Examination (MMSE) score [48]

is additionally investigated. The Spearman rank correlation

coefficient (r) [49] is employed to quantify the relationship

between actual MMSE scores and predicted MMSE values.

The actual MMSE score is assessed through standard MMSE

administration, while the predicted MMSE is derived from

the computed features (F1, F2) using linear regression. The

correlation analysis evaluates the effectiveness of the features

in reflecting individual variations in cognitive performance.

Initially, S̃, F1 and F2 features are examined to identify

which feature shows the highest correlation. Subsequently,

the effective feature correlation across all brain regions

is indicated using S̃R. High correlation coefficients would

suggest a strong association between the features and actual

MMSE scores, demonstrating the potential of these features

as valuable tools for assessing cognitive decline in dementia

patients.

To ensure robust and independent assessments, the Leave-

One-Out cross-validation (LOOCV) method is adopted [50].

In this approach, the regression model is trained on data from

all subjects except one, who serves as the ”left-out” subject

for prediction. This process is repeated iteratively, leaving

out each subject once. Hence, this method provides a more

reliable estimate of the model’s generalizability.

3) Dimensionality Reduction in MMSE Prediction:: The

proposed feature sets (F1, F2) capture spatial information

from 15002 source (or vertices) points (S̃) and 68 regions

(S̃R) for each subject. This high dimensionality poses poten-

tial computational challenges for the linear regression model

to predict MMSE scores. To overcome this, neighborhood

component analysis (NCA) is implemented for dimensional-

ity reduction.

NCA is a powerful machine learning technique that can

effectively transform the high-dimensional data into a sig-

nificantly lower-dimensional space (e.g., twodimensions)
[51]. In particular, NCA is utilized here to convert each

S̃ and S̃R features into two dimensions. This reduction

is achieved while critically preserving the key information

relevant to MMSE prediction. The NCA implementation

facilitates efficient and accurate MMSE prediction using

the reduced-dimension features (F1, F2), highlighting their

potential as a practical tool for assessing cognitive decline

in dementia patients.

III. EXPERIMENTAL CONDITIONS AND RESULTS

A. Experimental Conditions

The study utilizes preprocessed time series signals (V ,

S̃, and S̃R) as inputs for computing relative band power

(rP ) in delta, theta, and alpha frequency bands, as detailed

in SectionII-E.1. To comprehensively explore the effect of

potential variations in rP across temporal scales, rP for

various non-overlapping time window segments ranging from

2 to 40 seconds is computed. These rP values, obtained for

each window segment across the entire time series signal and



Fig. 5: This figure depicts the distribution of mean F1 ratios for different brain lobes across subjects with AD, FTD, and HC.

Each data point represents the mean F1 value for a specific lobe in an individual subject. The violin plots show the probability

density of these mean F1 values for each lobe across all subjects within each group (AD, FTD, HC). T1 and T2 denote two

chosen threshold levels. Wider sections of the violin plots, particularly around T1 and T2, indicate a higher probability of

subjects within that group falling within the corresponding F1 range for that specific lobe (i.e., higher probability for values

near 0.9 and 2).

TABLE II: The table illustrates a comparison between the

sensor and source domains, showcasing the superior perfor-

mance of F1 and F2 computed from the source domain scout

time series signals in contrast to the 19-channel time series

signals in the sensor domain for the classification of AD,

FTD, and HC.

Feature Model
Accuracy

(Source)

Accuracy

(Sensor)

F1

kNN 87.88± 2.99 67.54±1.84
RF 86.25±2.09 65.66±1.61

F2

kNN 81.96±2.50 66.782±2.16
RF 78.01±3.89 66.141±3.17

all subjects were utilized as features for classification into

three classes: AD, FTD, and HC. RF algorithm was utilized

for this. To identify the optimal temporal representation for

subsequent analysis, a data-driven approach was employed.

In particular, classification accuracy was evaluated for each

window segment, taking S̃R as input. The accuracy is

presented in Table III. It may be noted that the 20-second

window yields the highest classification accuracy of 89.2%.

Hence, a window segment of 20 seconds was utilized for

computing rP for further analysis. This approach ensured

that the chosen window size captures the most informative

temporal dynamics of the rP features for characterizing

group differences. For each frame, F1 and F2 and their

TABLE III: Mean classification accuracy of RF classifier

for classifying the AD, FTD, HC cases at different time

windows.

Window (sec) Classification

4 77.6

8 88.4

16 88.7

20 89.2

24 87.4

30 76.4

40 70.4

corresponding DSI values were computed from rP . It is

to note that for a given EEG data of length L(= 240s)
from Ns(= 88) subjects, selected window segment W (=
20s) and, chosen parameter K(= 19 for V, 68 for S̃R), the

feature matrix comprises of L×Ns

W
×K dimensions.

The efficacy of the proposed framework is rigorously

validated by implementing a user-dependent, 10-fold cross-

validation strategy. For each fold, 80% of the subjects’

data served for training the machine learning models, while

the remaining 20% were used for testing. The accuracies,

sensitivities, and specificities obtained from each fold were

then averaged to provide a robust estimate the generalizabil-

ity of the models. This rigorous validation was performed



Fig. 6: The figure illustrates the T1 and T2 values for both F1 and F2, which are employed to calculate their respective

DSI . The accompanying heatmap below showcases the accuracy values corresponding to various threshold combinations.

Notably, the red blocks highlight the optimal T1 and T2 combinations in both F1 and F2 for computing the DSI .

to evaluate the effectiveness of the chosen features and

the potential merit of the DSI thresholding approach for

stratifying dementia severity levels. The training parameters

employed for the machine learning models were the default

parameters of the sklearn library. The statistical significance

of the features and derived DSI values across different cases

was assessed using the paired t-test method.

Fig. 7: The figure compares the classification performance

of F1 (left) and F2 (right) features by presenting confusion

matrices for each. Columns represent predicted groups, while

rows represent actual groups. Diagonal cells indicate cor-

rectly classified subjects, while off-diagonal cells represent

misclassifications.

B. Results

It may be noted from Figure 3 that there is a clear

distinction in the spatial distribution of individuals with AD,

FTD, and HC when using the proposed features F1 and F2

with input S̃. A comparison between sensor (V ) and source

domains (S̃R is presented in Table II. Figure 5 illustrates

the probability distributions of mean F1 for all cases (AD,

FTD, and HC) and subjects. The wider section of the plot

represents the likelihood of each case exhibiting this mean

F1 which influences the threshold T1 and T2. Specifically,

the minimum of all means or likelihood for the F and H

cases is utilized as T1 and T2 respectively. The threshold

values are further utilized to compute the DSI . The DSI
values {0, 1, 2} corresponds to {AD, FTD, HC } respectively.

Figure 6 explores different threshold combinations to indicate

the efficacy. It is noted that the best accuracy for {T1, T2}
is achieved at {0.9, 2} for F1 and at {0.3, 0.75} for F2.

The efficacy of DSI in classifying different dementia

cases and healthy controls is further explored using machine

learning algorithms (kNN and RF). The mean classifica-

tion accuracy, sensitivity, and specificity for 10-fold cross-

validation are presented in Table IV. The corresponding

confusion matrix using {F1, F2} is presented in Figure

7 and using {DSIF1
, DSIF2

} in Figure 8. Additionally,

the effectiveness of the threshold-based approach, DSI , is

examined on another dataset, as detailed in Table V.

Motivated by the high accuracy (87.88% for F1, as pre-



TABLE IV: Table compares the performance of F1 and F2 features, along with their corresponding DSI values, in classifying

subjects with AD, HC, and FTD using various machine learning algorithms (kNN, RF) and 10-fold cross-validation. The

kNN model achieved higher accuracy with F1 features (87.88%) compared to F2 features (81.96%). This suggests F1 may

be a more informative feature for distinguishing dementia groups. DSI values derived from F1 features also yielded better

classification accuracy (81.62%) compared to DSI from F2 features (73.12%) using the kNN model. This indicates that

DSI based on F1 values potentially retains valuable information for dementia severity stratification.

Machine Learning Model
Accuracy Specificity Sensitivity

Mean±Standard Deviation Mean ± Standard Deviation Mean±Standard Deviation

DSIF1

kNN 81.62± 1.36 89.34± 1.19 80.47±1.61
RF 81.37±2.13 89.83±1.95 81.31±3.28

F1

kNN 87.88± 2.99 93.17±1.85 87.21±2.86
RF 86.25±2.09 92.58±1.30 85.97±2.34

DSIF2

kNN 73.12±1.82 84.07±1.21 72.89±4.00
RF 72.46±3.67 83.80±2.46 71.78±3.83

F2

kNN 81.96±2.50 89.84±1.56 81.17±2.60
RF 78.01±3.89 87.51±2,42 76.84±4.21

sented in Table IV), potential clinical relevance is further

explored by computing correlation with Mini-Mental State

Examination (MMSE) score. In particular, the correlation

between the predicted MMSE score obtained using F1 and

F2 and the actual MMSE of all subjects is computed. The

correlation values provide insights into cognitive impairment,

as depicted in Figure 9. It is to note that F1 provides a higher

correlation with MMSE.

Fig. 8: The figure compares the classification performance

of DSI derived from F1 (left) and F2 (right) features by

presenting confusion matrices for each. Columns represent

predicted groups, while rows represent actual groups. Diag-

onal cells indicate correctly classified subjects, while off-

diagonal cells represent misclassifications. Analyzing the

distribution of these values can reveal potential strengths

and weaknesses of each feature-based DSI for dementia

classification.

TABLE V: This table illustrates the classification perfor-

mance of F1 features and their corresponding DSI values

across distinct datasets. The analysis incorporates diverse

machine learning algorithms (kNN, RF) and employs 10-

fold cross-validation to differentiate between subjects with

AD and HC

Dataset2

Model Accuracy Specificity Sensitivity

DSIF1 F1 DSIF1 F1 DSIF1 F1

kNN 90.9 95.45 89.28 92.85 87.71 92.27

RF 90.9 100 100 100 100 100

C. Discussion

1) F1 and F2 Analysis: : This section evaluates the

efficacy of the proposed classification of dementia cases and

identifies the most effective features. The F1 (p < 0.05) and

F2 (p < 0.05) features of the processed scalp potential V and

the source-domain scout time series (S̃R), were utilized as

inputs for the machine learning models that include RF and

kNN. It may be noted from Table II that higher classification

accuracy is achieved when utilizing the source-domain scout

time series. Hence, the source domain approach is further

analyzed. A comparison between F1 and F2 is presented

in Table IV and Figure 7. It may be noted that the highest

classification accuracy of 87.88% is achieved when the F1

feature is utilized. In particular, positive AD, FTD, and HC

cases are correctly identified with approximately 6% and

9% higher accuracy in kNN and RF classification models

respectively, when the F1 feature is considered. For actual

negative cases also, the F1 feature outperforms F2 with a

difference of approximately 3% in kNN and 5% in RF. The

previous studies have associated a slowing of the EEG with

both F and A [54], [55], [56]. Both the proposed features

F1 and F2, capture the slowing parameter. However, the

distinctive F1 feature demonstrates superior effectiveness in

capturing the differentiation, resulting in the highest accu-

racy. The findings are further validated by Figure 3, which

illustrates clear distinctions among AD, FTD, and HC cases

when the F1 feature is utilized. Notably, the highest value of

F1 is predominantly observed in HC, a comparatively lower

value in FTD, and the lowest in AD cases. This reinforces

the discriminatory power of F1 in capturing the underlying

patterns.

2) Dementia Severity Index: : In this Section, F1 and F2

features from scout time series information, are analyzed for

each subject to derive DSI values through the threshold ap-

proach outlined in Equation 7. The resulting threshold values

T1 and T2 are determined based on the likelihood of each

case (AD, FTD, HC) as illustrated in Figure 5 and Figure

6. To assess the effectiveness of the proposed threshold-

based approach in classifying dementia cases (AD, FTD)

alongside HC, the corresponding DSIs of F1 (p < 0.05) and



TABLE VI: Comparative Analysis of Various Methods for AD, FTD, and HC classification.

Authors Sample (A/F/CN) Methodology Classification Problem
Results

Accuracy Sensitivity Specificity

Fiscon D. et al [23] 86-0-23 Discrete Fourier transform, wavelet analysis, decision trees A/CN 83 - -

Caso et al. [24] 39-39-39 Relative power of EEG rhythms, sLORETTA, ANOVA analysis
A + F/CN - 44.87 85
A/F - 48.72 85

Dottori et al. [52] 13-13-25 Connectivity features, SVM
A and F/CN 54 - -
A/F 73 - -
A/CN 73 - -

Nishida et al. [25] 19-19-22 EEG rhythms energy, sLORETTA, kNN
F/CN 85.80 55.00 84.00
A/CN 92.80 74.00 73.00
F/A 89.80 74.00 63.00

Miltiadous, Andreas, et al. [53] 10-10-8 Energy, mean, variance, IQR, random forests, decision trees
A/CN 78.5 82.4 74
F/CN 86.3 87 83

Proposed Method 36-23-29
DSIF1 AD/FTD/HC 81.627±1.36 80.476±1.61 89.348±1.19

F1 AD/FTD/HC 87.889±2.99 87.212±2.86 93.178±1.85

Fig. 9: The figure illustrates the correlation between the predicted MMSE using features F1 (on the left) and F2 (on the

right). These features were extracted from the time series signals of source vertices and then dimensionality reduced to 2

using NCA. Notably, F1 exhibited a stronger relationship with MMSE, as indicated by the higher Spearman Correlation

coefficient (r = 0.79), suggesting its potential for enabling non-invasive assessment of cognitive decline.

F2 (p < 0.05) are employed as inputs to the kNN and RF

models. The results in Table IV and Figure 8 reveal that the

highest classification accuracy of 81.62% is achieved when

DSIF1 is considered. The model demonstrates superior

performance in accurately identifying positive cases of AD,

FTD, and HC using DSIF1, with approximately 7% and

9% higher accuracy in kNN and RF, respectively. Similarly,

when considering actual negative cases, DSIF1 outperforms

DSIF2 with a difference of approximately 5% in kNN and

6% in RF. This suggests that DSI based on the F1 feature,

retains valuable information for stratifying dementia severity.

To evaluate the reliability of the proposed threshold-based

approach, DSIF1 was computed on an additional dataset

[57] involving only two groups of AD and HC cases. The

results in Table V affirm the potential of the threshold-based

approach in dementia classification. A comparative analysis

of various methods and classification problems is presented

in Table VI. It may be noted that in the category of three class

classification problem case, the propose approach provides

the highest accuracy. The threshold values T1 = 0.9 and T2 =

2 were utilized. These values provide insight into identifying

the range and assign quantitative values to different dementia

conditions during rest. This approach also contributes to

reducing computation time by eliminating the need to train a

machine learning model for classifying dementia and healthy

individuals.

3) Cognitive Performance Analysis:: This investigation

delves into the relationship between the proposed features

{F1, F2} and the Mini-Mental State Examination (MMSE)

score with the aim of exploring their potential as a non-

invasive means to assess cognitive decline. The MMSE

serves as a comprehensive short screening tool for measuring

cognitive impairment in various settings, including clinical,

research, and community contexts [58]. To predict MMSE,

the study adopted a LOOCV approach, employing linear re-

gression and the NCA model for the source domain (S̃R) F1

and F2 features. Figure 9 illustrates the Spearman correlation

coefficients (r) between the predicted MMSE using F1 and

F2 and the actual MMSE. The F1 feature demonstrated a

higher correlation value when compared to F2. A higher

correlation signifies a more robust alignment between the

model’s predictions and the actual cognitive function. Brain

regions with higher correlations are promising candidates as

a potential biomarker for cognitive impairment, as indicated



Fig. 10: This figure illustrates the Spearman correlation coefficients (r) between predicted Mini-Mental State Examination

(MMSE) scores and actual MMSE scores across 68 brain regions. The predictions were generated using a linear regression

model with F1 features. Higher correlation values in specific regions signify a stronger relationship between F1-based MMSE

predictions and actual cognitive function in those areas. Here,’R’ and ’L’ denote the right and left brain regions, respectively.

by the distinctive features captured by F1 in Figure 10.

IV. CONCLUSION

The study presents an efficient method to classify AD,

FTD, and HC from resting state EEG. In particular, two

features F1 and F2 are presented as potential biomarkers for

cognitive decline. The examination of F1 and F2 features

reveal that F1 as a distinct feature, significantly elevates

the accuracy of dementia classification. The evident dis-

tinctions among AD, FTD, and HC based on F1 values

highlight its discriminatory power. The introduction of the

Dementia Severity Index (DSI) a threshold-based approach

based on F1 and F2, further fortifies the methodology.

The achieved high classification accuracy (81.62%) and

the superior performance of DSIF1 in identifying positive

cases highlight the potential of this approach in stratifying

dementia severity. Additionally, the assignment of quanti-

tative values to different dementia conditions during rest

enhances the interpretability of the findings. Validation on

two diverse EEG datasets adds robustness to DSI , re-

inforcing the practical utility of the proposed threshold-

based method. The exploration into cognitive performance,

specifically the relationship between F1 features and the

commonly used Mini-Mental State Examination (MMSE),

presents a promising objective avenue for non-invasive cog-

nitive decline assessment. The correlation analysis identifies

brain regions with higher correlations as potential biomarkers

for cognitive impairment. Moreover, the proposed threshold-

based approach not only improves classification accuracy but

also offers a practical advantage by reducing extensive sub-

jective assessment. In essence, the study makes a meaningful

contribution to the field of dementia research, providing

valuable tools and insights for both classifying and assessing

dementia cases. The effective features identified along with

the proposed methodology, hold promise for advancing our

understanding and diagnosis of dementia-related conditions.
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