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ABSTRACT

Objectives: Parkinson’s disease is a multifactorial neurodegenerative disorder whose progression remains complex despite

extensive research. Our study presents an innovative approach to understanding PD progression through detailed analysis of

electroencephalography signals. By segmenting patients based on disease duration, we uncover unique neural connectivity

patterns corresponding to different duration of PD development. Methods: Employing advanced machine learning techniques,

our methodology achieves exceptional accuracy rates in binary classification tasks compared to prior literature. Integration

of Shapley Additive Explanations values enhances model interpretability, revealing critical brain regions and connectivity

patterns implicated in PD pathophysiology. Results: Coherence emerges as a crucial metric for capturing synchronized

signal behaviors, aiding in discriminating PD patients from controls. Further, our analysis suggests a continuum of neural

connectivity patterns across disease duration, with early-stage PD resembling healthy brain function and advanced duration

exhibiting distinct features indicative of disease progression. Conclusions: These findings deepen our understanding of PD

pathogenesis, laying the groundwork for personalized diagnostic and therapeutic approaches tailored to different disease

duration. Our study contributes significant insights into the complex interplay between neural dynamics, disease progression,

and age-related changes in PD, offering potential for future research and clinical applications.

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuron loss in the substantia

nigra pars compacta, leading to motor symptoms like bradykinesia, tremors, rigidity, and postural instability1–3. Non-motor

symptoms, such as cognitive impairment, depression, and autonomic dysfunction, also significantly affect patients’ quality

of life4, 5. While PD’s exact etiology remains elusive, evidence suggests a complex interaction of genetic susceptibility,

environmental factors, and aging6, 7.

Various studies employ machine learning (ML) and deep learning algorithms to differentiate between individuals with

PD and healthy control (HC), as evidenced in Table 1. The predominant dataset utilized across these studies is the San

Diego dataset, which we used in our analysis. PD presents significant challenges across its various duration and stage of the

condition, highlighting a critical gap in current diagnostic methodologies8–10. While considerable efforts have been directed

toward discerning patterns and markers indicative of PD, the complexities inherent in the disease’s progression still need to be

addressed11.

Our methodology extends beyond conventional approaches by delving into the nuances of PD progression through a

refined segmentation of the patient cohort. Unlike previous studies that commonly compare PD patients with medication,

without medication, and controls, we adopt a novel stratification strategy based on disease duration. Specifically, we categorize

individuals into two distinct groups: those with a disease duration of 1-3 years and those with a 6-12 years duration. This

tailored segmentation offers a more nuanced perspective on PD progression, aiming to capture potential variations in EEG

signals corresponding to different duration and the stage of the disease trajectory. Building upon techniques demonstrated to

be effective in preprocessing EEG time series data12, we employ various pairwise statistical metrics to construct connectivity

matrices. Notably, we explore the efficacy of these metrics in binary classification tasks to discern PD patients from controls,

alongside their utility in multiclass classification to differentiate between subgroups within the PD cohort based on disease



Authors Correlation metrics ML method AUC Accuracy Recall Precision
19 Phase locking value Deep learning (Multiscale CNN) 88.7 88.7 86.7 -
20 - Least Square SVM - 97.65 96.67 98.76
21 - Deep learning (2D-CNN) - 99.46 99.46 99.48
22 - KNN - 99.89 99.87 -
23 - Deep learning (CNN) 98.96 97.90 97.87 98.0

Table 1. Overview of PD binary classification research that uses the identical publicly accessible PD dataset as this work.

duration. Furthermore, akin to our prior works12–16, we enhance the interpretability of our machine learning models using

Shapley Additive Explanations (SHAP) values17. SHAP values provide valuable insights into the most influential features

within our models, elucidating critical brain areas and connectivity patterns. This methodology, proven effective in prior

research endeavors13, 14, 18, facilitates a deeper understanding of the underlying neural dynamics in PD, complementing our

multiclass classification framework. By integrating these advanced techniques, our study contributes to refining diagnostic

approaches. It lays the groundwork for personalized therapeutic interventions tailored to the distinct needs of PD patients at

different duration of disease progression.

Results

0.1 Binary classification

Considering the AUC metric, the performance of each connectivity metric is illustrated in Figure 1. The Sync measure has the

best performance for the test set, equal to 0.980 for the mean AUC, 0.981 for precision, 0.979 for recall, and 0.980 for accuracy.

The Sync. measure between signals i and j, denoted as Sync[i, j], is computed using the average coherence across all frequency

points, as defined by Equation 1:

Sync[i, j] =
1

N

N

∑
k=1

|Pxy( fk)|
2

Pxx( fk) ·Pyy( fk)
(1)

where:

• Sync[i, j] is the synchronization between signals i and j,

• N is the number of frequency points,

• Pxy( fk) is the cross-spectral density between signals i and j at frequency fk,

• Pxx( fk) is the auto-spectral density of signal i at frequency fk,

• Pyy( fk) is the auto-spectral density of signal j at frequency fk,

• fk represents the sampling frequency, assumed to be 50 Hz.

Then, we tested all ML algorithms that resulted in Figure 2; the best classifiers were CNN and MLP. CNN performance

for the test set was equal to 0.999 for the mean AUC, 0.990 for precision, 0.990 for recall, and 0.990 for accuracy. MLP

performance for the test set was equal to 0.990 for the AUC, 0.989 for the precision, 0.991 for the recall, and 0.990 for the

accuracy. Considering the performance and the computational cost, we selected the MLP classifier for use in the next section.

To determine the ideal number of features crucial for achieving optimal performance, we utilized a Recursive Feature

Elimination (RFE) analysis, illustrated in Figure 3. This method, widely employed in predictive modeling in the medical data

field24–27, systematically removes less impactful features step by step to evaluate their effect on the model’s performance. This

iterative approach allows for the identification of the most relevant features. As depicted in Figure 3, superior accuracy is

achieved with 136 features. Hence, it becomes evident that employing the entire comprehensive feature set is unnecessary for

optimal efficacy.
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Figure 1. Selection of optimal correlation metrics with SVM. In blue is the AUC of the train set; in green is the AUC of the

test set. The best performance was the Sync.

0.2 Multiclass classification
Regarding the temporal changes due to PD, the general performance for the MLP in a multiclass classifier for the test set was

equal to 0.983 for the mean AUC, 0.989 for precision, 0.977 for recall, and 0.983 for accuracy. Figure 4 displays the ROC

curve (Figure 4-(a)), the learning curve (Figure 4-(b)), and the confusion matrix (4-(c)), respectively. From Figures 4-(a) and

(b), the confusion matrix and ROC curve, respectively, showed that the group most difficult to distinguish was the PD 6-12 (in

the confusion matrix, the PD 6-12 group has some mistaken classification with the group HC).

The visual representation of the learning curve illustrates the impact of varying the number of training instances on the

model’s predictive accuracy28. Figure 4-(c) shows that all the data was required to converge the model.

The methodology employed for SHAP value analysis yielded results depicted in Figure 5, illustrating the primary connec-

tions found across the groups PD 1-3 and PD 6-12. Due to its high computational cost, we utilized 300 features for the SHAP

value methodology. This number was chosen based on the results of recursive feature elimination, which identified 136 features

as relevant. Therefore, selecting 300 features ensures adequate coverage for the analysis. The best connection found for the PD

1-3 group according to SHAP value methodology in this order of importance were lower synchronization values to FP2 and

FC5 and lower synchronization for O2 and T7. For the PD 6-12 group, the best connections found in this order of importance

were higher synchronization of F8 and AF3 and higher synchronization of FC6 and Fp1.

Further, SHAP values matrices for each class are concatenated into a single array, with rows representing samples and

columns representing features. A cluster map, depicted in Figure 6, is generated through hierarchical Clustering along both

rows (samples) and columns (features). Hierarchical Clustering, a method of cluster analysis, builds a cluster hierarchy by

merging the closest pairs of clusters iteratively until all points belong to one cluster, typically using metrics like Euclidean or

correlation distance. The resulting hierarchy can be visualized using a dendrogram. In Figure 6, clusters in the cluster map

group together rows and columns with similar SHAP value patterns, with heatmap colors representing SHAP value magnitudes

(cooler color for negative, warmer color for positive, and white for values near zero).

Our analysis revealed interesting clustering behavior wherein the SHAP values for PD duratuin 1-3 exhibited proximity to

those of the HC class, forming a distinct cluster. Furthermore, this cluster was observed to be connected with the SHAP values

corresponding to PD duratuin 6-12, indicating a potential continuum or progression in the underlying features contributing to

the model predictions across different disease duration.

Further, as a complement to the temporal changes results due to PD, the differentiates changes evaluated UPDRS score,

the general performance for the MLP in a multiclass classifier for the test set was equal to 0.969 for the mean AUC, 0.963

for precision, 0.955 for recall, and 0.967 for accuracy. Figure 7 displays the ROC curve (Figure 7-(a)), the learning curve

(Figure 7-(b)), and the confusion matrix (7-(c)), respectively. From Figures 7-(a) and (b), the confusion matrix and ROC curve,

respectively, showed that the group most difficult to distinguish was the UPDRS1 (in the confusion matrix, the UPDRS1 group

has some mistaken classification with the group HC). This difficulty likely stems from the lower UPDRS scores associated with

the UPDRS1 group, implying an earlier stage of PD progression.

To assess the impact of correlation metrics on the results of the SHAP values methodology, we employed the MLP in
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Figure 2. Results for method selection: best performance by MLP. In (a) the results refer to the train set with the error bar

due to the 10-fold stratified cross-validation and (b) the results of the test set.
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Figure 3. RFE. The optimal performance is attained with 136 features, so utilizing the entire comprehensive feature set is

unnecessary.

conjunction with SHAP values to identify the five most significant connections for each correlation metric corresponding to the

PD1-3 and PD6-12 classes, as illustrated in Figures 2 and 3, respectively.

Discussion

0.3 Binary classification

The Sync was the best metric in a binary classification approach. As defined by29, coherence emphasizes the synchronization or

coupling between signals, which proved particularly relevant in our analysis of PD disease. This emphasis on the interrelation-

ship and synchronization of data streams aligns well with the underlying dynamics of PD, where disruptions in neural signaling

and coordination are vital features30–33. Therefore, we posit that coherence, with its focus on capturing the synchronized

behavior of signals, offers unique insights and discriminatory power for distinguishing between PD from HC our machine

learning framework.

Further, the best machine learning algorithms were the MLP classifier and CNN, which tested the AUC metric of 0.990 and

0.999, respectively. These performances are higher compared to the literature, according to Table 1, which studies using the

same dataset of this study also in a binary approach comparing PD patients from HC.

0.4 Multiclass classification
Regarding the temporal changes due to PD, using the MLP, the obtained accuracies of 0.933 for PD 6-12 and 1.000 for both

PD 1-3 (depicted in Figure 4-(c)) and HC suggest a promising discrimination capability of the machine learning model in

distinguishing between different groups based on connectivity matrices. The perfect classification for PD 1-3 and HC groups

could indicate distinct patterns of brain connectivity in these cohorts, reflecting the early duration of PD progression and healthy

brain function, respectively. The slightly lower accuracy for PD 6-12 implies greater heterogeneity or subtler differences in

connectivity patterns that become more complex or less distinct as the disease progresses among patients with longer disease

duration despite medication intake. Nonetheless, the model can still distinguish between the two groups with high metric

performance.

After employing the SHAP value methodology, we identified the most influential connections for the PD 1-3 group. Notably,

lower synchronization values in regions such as FP2 and FC5 were found. The frontopolar cortex (FP2) is implicated in various

higher-order cognitive processes, including decision-making, executive function, and social cognition34, 35. On the other hand,

the left frontal cortex (FC5) plays a crucial role in motor planning and execution, as well as language processing36, 37. Thus,
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Figure 4. The test sample ML results from connectivity matrices. (a) ROC curve for each ML algorithm. The dashed pink

line represents the random choice classifier, the purple line the micro-average ROC curve, the gray line the macro-average ROC

curve, the turquoise line the ROC curve referring to the HC class, the orange line the ROC curve referring to the PD 1-3 class,

and the green line the ROC curve referring to the PD 6-12 class. (b) The learning curve for the training accuracy (purple) and

test accuracy (blue). (c) Confusion Matrices depicting the performance of various ML algorithms on a test sample, the diagonal

elements represent true positives (TP) values, showcasing each algorithm’s accuracy in correctly identifying positive instances.
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Figure 5. Feature importance ranking using the SHAP values methodology for the MLP classifier with brain EEG channels in

descending order. (a) Feature importance ranking regarding PD 1-3 class. (b) Feature importance ranking regarding PD 6-12

class.
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Connections Sync. SC PC CCA LW

Fp2-FC5

O2-T7

Cp1-Fp1

Fc6-Fp1

Fp2-Fc1

T7-Af3

Cp1-F7

F3-Fp1

F8-Fp1

Fc1-Fp1

Fc5-Fp1

T7- F7

Fp2-Fp1

Pz-Af3

Fp2-F7

Fc2-Fp1

Table 2. Table depicting the most significant connections identified through the SHAP value methodology and MLP

classifier for each correlation metric and the class PD 1-3. Connection importance is denoted by the intensity of red shading.

In bold are the main connections that appear in both classes, PD1-3 and PD6-12.
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Figure 7. The test sample ML results from connectivity matrices. (a) ROC curve for each ML algorithm. The dashed pink

line represents the random choice classifier, the purple line the micro-average ROC curve, the gray line the macro-average ROC

curve, the turquoise line the ROC curve referring to the HC class, the orange line the ROC curve referring to the UPDS1 class,

and the green line the ROC curve referring to the UPDS2 class. (b) The learning curve for the training accuracy (purple) and

test accuracy (blue). (c) Confusion Matrices depicting the performance of various ML algorithms on a test sample, the diagonal

elements represent true positives (TP) values, showcasing each algorithm’s accuracy in correctly identifying positive instances.
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Connections Sync. SC PC CCA LW

F8-Af3

Fc6-Fp1

P7-T7

Af3-F7

Fc1-Af3

Cp5-Af3

Cp5-Fp1

Fp2-F7

Cp2-Fp1

Fp1-Af3

Po3-Fp1

P7-Af3

Cp6-Fp1

Table 3. Table depicting the most significant connections identified through the SHAP value methodology and MLP

classifier for each correlation metric and the class PD 6-12. Connection importance is denoted by the intensity of red

shading. In bold are the main connections that appear in both classes, PD1-3 and PD6-12.

alterations in synchronization patterns within these regions may signify underlying deficits in both cognitive processing and

motor coordination38, 39. Additionally, decreased synchronization in regions like O2 and T7 suggests possible impairment in

sensory processing and attention, which are commonly affected in the early duration of PD40. Conversely, for the PD 6-12

group, heightened synchronization in regions like F8 and AF3 emerged as significant contributors, possibly reflecting potential

compensatory mechanisms or adaptations occurring in response to disease progression and age-related changes in neural

circuitry41.

Furthermore, our investigation unveiled a significant association between the FC6 and FP1 electrodes in both PD 1-3 and

PD 6-12 cohorts, showcasing diminished synchrony in the former and amplified synchrony in the latter. This observed increase

in synchronization within frontal brain areas regarding PD is consistent with findings from other studies42, 43.

These findings underscore the complex interplay between neural connectivity patterns, disease progression, and age-related

changes in PD. These primary connections are summarized in Figure 8.

Our analysis revealed intriguing clustering behavior that sheds light on the underlying patterns of feature importance across

different disease duration. Specifically, the SHAP values associated with PD 1-3 demonstrated a notable proximity to those of

the HC class, forming a distinct cluster. This clustering suggests that the features contributing to the ML model’s predictions

for early-duration PD share similarities with those of healthy brain function. Moreover, we observed a connection between this

cluster and the SHAP values corresponding to PD duration 6-12. This linkage implies a potential continuum or progression

in the underlying neural connectivity patterns captured by the model, spanning from the early to later duration of PD. The

hierarchical clustering highlights the distinctiveness of brain connectivity patterns in early-duration PD and healthy brains. It

suggests a gradual shift towards features more characteristic of advanced PD as the disease progresses.

Regarding the results of PD stages, using the MLP in a multiclass classifier for the test set was equal to 0.969 for the

mean AUC, 0.963 for precision, 0.955 for recall, and 0.967 for accuracy. Therefore, it was possible to distinguish PD patients

from the temporal and stage degree of the disease. Further, Figure 7-(c) demonstrates that the model achieved convergence

without necessitating the entirety of the dataset. This suggests that distinguishing between PD patients and HC subjects based

on disease stage was relatively straightforward compared to predicting disease duration. Consequently, to accurately model

disease duration, it was imperative to utilize the entire dataset for convergence

Our analysis regarding correlation metrics’ influence on the SHAP values results, as illustrated in Figures 2 and 3,

uncovered consistent patterns across various correlation metrics, notably in characteristic regions such as Fp1. However,

distinct correlations emerged as significant within specific groups of metrics. Notably, linear correlation metrics like SC and

PC clustered together, while CCA and LW formed another cohesive group. Additionally, Sync. stood out as an independent

correlation metric. Importantly, these findings represent novel results that have not been evaluated in the existing literature to

the best of our knowledge.

Further, the connections FC6-Fp1 and Fp2-F7 appear for both classes (highlighted in bold in Tables 2 and 3).
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Figure 8. The most important connections found. Two-dimensional schematic (ventral-axis), where the most critical

connection for PD 1-3 and PD 6-12 are highlighted in blue and pink, respectively. The brain plot was developed by the Braph

tool44, and each region was plotted according to45, 46.
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Methods

Figure 9 summarizes the methodology used in the present work. The python code with the methodology used in this work is

available at: https://github.com/Carol180619/Paper-temporal-Parkinson.git.

0.5 Data and EEG preprocessing

The study utilized the SanDiego dataset47, comprising resting-state EEG recordings from both medicated and non-medicated PD

patients alongside an HC group of individuals. Here, we considered only the non-medicated PD EEG time series. Demographic

details such as age, gender, handedness, cognitive assessments, the mini mental state examination (MMSE), the North American

adult reading test (NAART), and the Unified Parkinson’s disease rating scale (UPDRS) were included22, 48, 49. PD severity

varied based on Hoehn and Yahr scales, with an average disease duration of 4.5–3.5 years. Rigorous data preprocessing involved

band-pass filtering (0.5–50 Hz) using an FIR filter and ICA with the infomax algorithm to enhance signal quality and mitigate

interference. Artifacts, particularly from eye blinking, were identified and removed.

0.6 Binary and multiclass classification

After preprocessing EEG data using effective techniques demonstrated in our previous endeavors12, we segmented it into

10-second windows and built connectivity matrices with Pearson Correlation (PC)50, Spearman Correlation (SC)51, Sparse

Canonical Correlation Analysis (CCA)52, and Ledoit-Wolf shrinkage (LW)53. We emphasize coherence (Sync)29, 54 for its

unique ability to measure synchronization in EEG signals, enhances the dataset analysis, providing a nuanced exploration of

EEG signals that were previously unexplored in our prior work12–16.

In our study, we adopted a slicing window approach to enhance our dataset’s size and facilitate comprehensive analysis of

EEG signals. This technique involves partitioning EEG signals into smaller time windows55, typically lasting 10 seconds56–58,

which effectively increases the number of instances available for analysis. However, to address potential issues stemming from

this augmentation, we integrated a stratified K-fold cross-validation methodology coupled with shuffling techniques to fortify

our analyses’ robustness and mitigate data dependencies arising from the slicing window method59–61.

By employing a stratified K-fold approach alongside shuffling, we ensured that each fold of cross-validation retained the

original class distribution (PD and HC) while simultaneously shuffling data within each fold62. This meticulous shuffling

process minimizes the risk of data leakage, where inadvertent transfer of information from the training to testing sets could

compromise model evaluations63. This precautionary measure upholds the integrity of the evaluation process by rigorously

assessing the model’s performance on unseen data, thereby preserving the generalizability of our findings and instilling

confidence in our results64.

This enhances dataset analysis, particularly in PD cases, shedding light on neural dynamics. Our approach differentiates

patients and HC (with 16 individuals) using a multi-classifier, segmenting the PD EEG dataset based on the disease duration

into two groups: 1-3 years (PD 1-3), with nine individuals, and 6-12 years (PD 6-12), with six individuals, mirroring the age

distribution in Figure 10.

Furthermore, in order to assess not only the temporal changes attributable to Parkinson’s Disease (PD) but also its stage,

we stratified the PD EEG dataset based on the Unified Parkinson’s Disease Rating Scale (UPDRS). The UPDRS is a widely

used clinical rating scale that evaluates the severity of PD symptoms and functional impairment. Detailed information on

UPDRS and the present dataset can be found in49. We divided the dataset into two groups based on the UPDRS scores: 20-40

(UPDRS1), comprising eight individuals, and 43-75 (UPDRS2), comprising six individuals. This segmentation mirrors the

distribution of UPDRS scores illustrated in Figure 11. UPDRS1 typically represents milder stages of PD, while UPDRS2

indicates more advanced stages, reflecting the progression of the disease severity among the participants.

The current work builds upon our previous research endeavors, which have established a foundation for employing machine

learning techniques in the classification of PD and HC groups12–16, 65. Initially, we utilize the support vector machine (SVM) to

select connectivity metrics, leveraging its lower computational cost and effectiveness in binary classification12. Afterwards,

various machine learning algorithms, including Logistic Regression (LR), Random Forest (RF), Multilayer Perceptron (MLP),

Long Short-Term Memory neural networks (LSTM), and Convolutional Neural Networks (CNN), are tested with the selected

connectivity metric, as detailed in the subsection 0.1. Noteworthy, leveraging 10 seconds slicing windows data augmentations,

a set of 200 connectivity matrices from HC and 200 from individuals with PD, comprising 100 matrices from each subgroup of

PD, were employed as inputs for the machine learning algorithm.

Standardization and data-splitting techniques were then employed to prepare the data for model training and evaluation.

Features were standardized to ensure consistent scaling and resilience against outliers, while stratified cross-validation with

shuffling is utilized to ensure unbiased model evaluation66–76.

Hyperparameter optimization techniques, such as grid search and random search, are further employed to fine-tune the

machine learning algorithms for optimal performance, with evaluation metrics including accuracy, precision, recall, Receiver

Operating Characteristic (ROC) curves, and Area Under the ROC Curve (AUC)12–15, 77–79, 79–94. Additionally, the SHAP value
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Figure 9. Summary of the methodology. In (A), which corresponds to the EEG preprocessing described in subsection 0.5,

the EEG time series passed for a band-pass filter and to an independent component analysis (ICA). The Figure illustrates, as an

example, a decomposition of the EEG signal of a PD patient into five components. In the Figure, as an example, the last

component with higher frontal activity, indicating blink eye, was removed, and this process was made for all PD and control

individuals. After preprocessing, we did 10 seconds of slicing windows as a data augmentation technique. In (B), which

corresponds to the binary classification described in subsection 0.6, the cleaned and sliced EEG time series were used to

compute various connectivity matrices with different correlation metrics. Using a support vector machine (SVM), the best

correlation metric to distinguish PD from HC was found. Also, in (B), many ML algorithms were tested, and the best was

selected. The results for part (B) can be found in subsection 0.1. With the best correlation metric’s connectivity matrices and

the best ML algorithm from part (B) used in a multiclass way to the connectivity matrices, the PD group was decomposed into

two other groups according to their age, depicted in part (C) and described in subsection 0.6. Further, in (C), the SHAP values

methodology was used to find the best connections. The results of the part (C) are in the subsection 0.2.
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technique is employed for medical interpretation, providing insights into the predictive importance of specific traits in the

multiclass classification setting, as discussed in subsection 0.2.

1 Conclusions and future work

In conclusion, our study presents a novel approach to understanding PD progression through refined segmentation and advanced

analysis of EEG signals. By stratifying patients based on disease duration, we reveal distinct neural connectivity patterns

corresponding to different disease trajectory duration. Our findings underscore the importance of coherence as a critical metric

in capturing the synchronized behavior of signals, which proved crucial in distinguishing PD patients from controls. Moreover,

employing machine learning algorithms such as the MLP classifier and CNN, we achieved high accuracy rates compared to

those reported in the literature, particularly in binary classification tasks. This indicates the robustness of our methodology in

identifying subtle differences in connectivity patterns associated with PD progression and stage.

Furthermore, leveraging SHAP values enhances the interpretability of our models, revealing critical brain regions and

connectivity patterns implicated in PD pathophysiology. An intriguing finding was the reversal of synchronization and

physiological behavior between brain areas and the progression of the disease. While FP1 and FC5 showed low synchronization

for PD1-3, FP2 and FC6 exhibited high synchronization for PD6-12. These findings point to a specific physiological behavior

for these two PD duration. Our study revealed a notable correlation between FC6 and FP1 electrodes in both PD 1-3 and PD

6-12 groups, with decreased synchrony in the former and increased synchrony in the latter. This observed synchronization

escalation over time may indicate a relationship with medication effectiveness, implying a progressive influence of treatment on

neural connectivity.

Interestingly, our analysis unveils intriguing clustering behavior, suggesting a continuum of neural connectivity patterns

across different disease duration. Notably, early-duration PD exhibits similarities with healthy brain function, while advanced

duration manifest distinctive features indicative of disease progression. These findings deepen our understanding of PD

pathogenesis and lay the groundwork for personalized diagnostic and therapeutic interventions tailored to the specific needs of

patients at different duration of disease progression.

However, it is essential to acknowledge the limitations of our methodology, particularly its reliance on small data. Future

work should aim to evaluate a dataset with a broader range of disease duration, allowing for a more comprehensive understanding

of PD progression across its various duration. By incorporating larger datasets, we can further validate the robustness and

generalizability of our findings, ultimately advancing the field towards more effective diagnostic and therapeutic strategies.

Overall, our study contributes valuable insights into the complex interplay between neural dynamics, disease progression, and

age-related changes in PD, offering new avenues for further research and clinical application.
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