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Abstract
The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration
(FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics
(> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in
116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39
noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures
of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72
and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of
synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures
was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-
Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics
hold promise for identifying replicable molecular pathways in adults living with FTLD. ‘Hub’ proteins
driving co-expression of affected modules warrant further attention as candidate biomarkers and
therapeutic targets.

Introduction
Frontotemporal lobar degeneration (FTLD) is among the most common causes of early age of onset
dementia (< 65 years), resulting in progressive clinical syndromes that can feature behavioral, language,
and/or motor deficits1,2. The majority of FTLD is comprised of two major molecular subtypes, defined by
pathological accumulation and cellular inclusions of hyper-phosphorylated tau (FTLD-tau) or transactive
response DNA-binding protein 43 kDa (FTLD-TDP)3. Current in-vivo molecular biomarkers to aid in
diagnosis of sporadic forms of FTLD are limited to nonspecific indicators of neurodegeneration and
axonal loss (e.g., neurofilament light chain [NfL]), as well as markers of Alzheimer’s disease (AD)
pathology (e.g., Aβ42/40, P-tau181) to rule out AD. Although NfL predicts future clinical decline across

FTLD clinical syndromes4–6, a single biomarker does not capture the biological complexity of FTLD and it
remains unclear which biological pathways most strongly correlate with disease progression7. Molecular
signatures that are detectable in-vivo, inform underlying pathophysiology, and contribute to clinical
progression are urgently needed to advance understanding of FTLD pathogenesis and guide biomarker
development, which will in turn enhance FTLD clinical trials through improved selection of patients and
measurement of treatment effects8.

Underlying FTLD pathology can be confidently predicted in inherited cases caused by autosomal
dominant mutations, which represent approximately 20–30% of all cases9. Observational study of FTLD
mutation carriers has provided a unique opportunity to chart clinical and biomarker changes across
presymptomatic and symptomatic stages of FTLD5,8,10. Autosomal dominant forms of FTLD-TDP are
most often caused by mutations in chromosome 9 open reading frame 72 (C9orf72 [C9]) or progranulin
(GRN). The majority of autosomal dominant FTLD-tau is due to mutations in microtubule-associated
protein tau (MAPT)5,9. Current understanding of the molecular mechanisms underlying autosomal
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dominant FTLD has been primarily ascertained from postmortem and non-human studies3,11.
Hexanucleotide repeat expansions in the C9orf72 gene may produce both loss-of-function
(haploinsufficiency) and toxic gain-of-function (e.g., repeat RNA foci, dipeptide repeat protein aggregates)
mechanisms that impair RNA metabolism, nucleocytoplasmic transport, and proteostasis pathways that
contribute to nuclear depletion and cytoplasmic aggregation of TDP-4312,13. GRN mutations cause
haploinsufficiency of progranulin, a lysosomal protein that regulates immune and autophagy pathways
implicated in TDP-43 dyshomeostasis14,15. MAPT mutations alter tau binding to microtubules and
promote tau aggregation, which directly compromises axonal transport, synaptic signaling, cellular
metabolism, and the extracellular scaffolds that support neuronal structures16–18.

Recent large-scale proteomics studies in AD are contributing to discovery of key biological networks and
individual proteins reflective of AD pathophysiology, which extend far beyond the classic hallmarks of
misfolded amyloid and tau19,20. These studies have employed powerful systems biology approaches in
brain tissue and biofluids (e.g., cerebrospinal fluid [CSF], blood) to identify communities of co-expressed
proteins that are reliably altered in clinical cohorts that span the AD disease severity continuum20–22.
Despite the potential to identify novel molecular signatures underlying disease progression, unbiased
large-scale analysis of the biofluid proteome in living FTLD patients has lagged.

The present study employed a large-scale aptamer-based proteomic approach (SomaScan) to generate a
CSF protein network in 116 participants with autosomal dominant FTLD mutations (C9orf72, GRN,
MAPT). Network analysis identified dysregulated communities of CSF proteins (modules) involved in
RNA splicing, protein degradation, extracellular matrix, and synaptic pathways. These modules were
strongly correlated with cross-sectional and longitudinal markers of FTLD clinical progression. We
validated the generalizability of our genetic FTLD protein network by demonstrating preservation of
network module alterations in CSF of progressive supranuclear palsy (PSP), a sporadic 4-repeat FTLD
tauopathy. We further evaluated the disease-specificity and biologic reproducibility of protein network
associations by reconstructing modules in a third clinical cohort of sporadic and genetic FTLD and AD
using an orthogonal proximity-extension assay based proteomic approach (Olink). Collectively, our
approach and results provide new insights regarding in-vivo molecular signatures of central nervous
system dysfunction that occur across the disease severity spectrum of FTLD.

Results
Participant Characteristics. Supplementary Table 1 reports demographic and clinical characteristics for
the 116 autosomal dominant FTLD mutation carriers and 39 familial controls, representing cognitively
normal non-mutation carriers from families with a known C9orf72, GRN, or MAPT mutation. Consistent
with the broader ALLFTD cohort10, C9orf72 was the most common mutation (N = 47), followed by MAPT
(N = 37) and GRN (N = 32). At baseline, almost half of all mutation carriers were presymptomatic (global
CDR®+NACC-FTLD = 0; 54 [47%]; 24 [51%] C9orf72, 12 [39%] GRN, 18 [49%] MAPT). GRN carriers were on
average older (mean age = 57.9 years) than C9orf72 (mean age = 49.9 years), MAPT (mean age = 44.5
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years), and controls (mean age = 45.8 years). Mutation carriers and controls were comparable in terms of
sex (mutation carriers: 49–55% female vs. controls: 59% female) and education (mutation carriers: mean 
= 15.0 to 15.7 years vs. controls: mean = 15.6 years). The median [IQR] of annual study visits was 3 [1.75,
4] for mutation carriers and 3 [2, 5] for controls.

Genetic FTLD Protein Co-expression Network. The study design is presented in Fig. 1. Using weighted
gene correlational network analysis (WGCNA), we built a protein co-expression network from 4,138
proteins across 155 CSF samples to identify protein communities that are dysregulated in FTLD (Fig. 2A).
Network analysis revealed 31 protein co-expression modules across controls and mutation carriers.
Module size ranged from 360 proteins (M1) to 48 proteins (M31). Protein module membership
assignments are provided in Supplementary Table 2. Based on gene ontology and cell type enrichment
analyses (Supplementary Table 3; Supplementary Fig. 1), 28 out of the 31 modules had a clear primary
ontology that was used for annotation, while 3 modules did not evidence clear ontology (labeled
“ambiguous”).

CSF proteomic signatures of FTLD disease severity. Analyses first combined FTLD mutation carriers
across all 3 genes (N = 116) to maximize sample size. Module eigenproteins, calculated as the first
principal component of module abundance, were compared across symptomatic mutation carriers,
presymptomatic mutation carriers, and controls using one-way ANOVA with Tukey’s post-hoc correction,
adjusting for age and sex. Module eigenproteins were also correlated with continuous indicators of
functional severity (CDR®+NACC-FTLD sum of boxes), adjusting for p-values by false discovery rate
(FDR) correction according to the Benjamini-Hochberg method. Seven of the 31 modules showed
significant differences between symptomatic carriers and controls (Supplementary Table 4). Four of
these modules exhibited particularly strong relationships with functional severity: M26 spliceosome, M2
presynapse, M28 synapse assembly/axon, and M22 autophagy. M26 spliceosome, highly enriched for
proteins involved in mRNA splicing and nuclear transport, was markedly increased in symptomatic
carriers vs. controls and positively correlated with functional severity (ρ = 0.41, FDR-p = 2.7e-6). M2
presynapse and M28 synapse assembly/axon, enriched for synaptic/neuronal (M2, M28) and
oligodendrocyte (M28) cell-type markers, were decreased in symptomatic carriers vs. controls and
negatively correlated with functional severity (M2: ρ=-0.33, FDR-p = 2.6e-4; M28: ρ=-0.35, FDR-p = 1.7e-4).
M22 autophagy was also decreased in symptomatic carriers vs. controls and negatively correlated with
functional severity (ρ=-0.33, FDR-p = 2.6e-4). CSF proteomic alterations were more subtle and less likely to
survive post-hoc correction when comparing presymptomatic mutation carriers vs. controls. However, M9
ion transport, enriched for neuronal cell-type markers involved in ion channel activity and transport, was
significantly decreased in presymptomatic carriers vs. controls.

We next examined how network modules associated with CSF NfL, an indicator of neuroaxonal
degeneration, given that NfL is currently the most validated fluid biomarker for disease monitoring in
genetic and sporadic FTLD4,23,24. Six modules associated with CSF NfL concentrations, measured by
Simoa, at an unadjusted p < 0.05, with only M26 spliceosome surviving FDR-correction (ρ = 0.32, FDR-p = 
9.3e-3). Upon closer examination, we observed that the SomaScan target for NfL (NEFL) was assigned to
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the M26 spliceosome module. However, NEFL was not a strong driver of M26 eigenprotein co-expression
(intramodular kME = 0.32 [87th out of 88 module members]) and the relationship between M26
spliceosome and CSF NfL (Simoa) persisted when recalculating the M26 spliceosome eigenprotein
without NEFL (ρ = 0.31, p = 9.1e-3).

Gene-stratified FTLD proteomic signatures. We performed gene-stratified analyses to determine whether
proteomic signals observed in the full sample were driven by specific gene groups. For each gene group,
we again compared module eigenprotein levels across symptomatic mutation carriers, presymptomatic
mutation carriers, and controls using Tukey’s post-hoc correction. We also examined correlations with
CDR®+NACC-FTLD sum of boxes and CSF NfL (Supplementary Table 4; Fig. 2B). FDR corrections were
not applied to gene-stratified correlational analyses given the reduced sample sizes. Within each gene
group, M26 spliceosome levels were increased and M22 autophagy module levels were decreased in
symptomatic carriers vs. controls. However, symptomatic C9orf72 and GRN carriers exhibited more
pronounced alterations in M26 and M22 (0.85 to 1 difference in z-score vs. controls) than symptomatic
MAPT (0.5 to 0.6 difference in z-score vs. controls). Presymptomatic GRN carriers also showed elevations
in M26 spliceosome that were not present in presymptomatic C9orf72 or MAPT mutation carriers. M2
presynapse and M28 synapse assembly/axon were decreased in symptomatic GRN and MAPT, with both
modules exhibiting particularly strong relationships with CDR®+NACC-FTLD and CSF NfL in MAPT (M2:
CDR®+NACC-FTLD ρ=-0.59, p = 1.0e-4; NfL ρ=-0.54, p = 8.0e-4; M28: CDR®+NACC-FTLD ρ=-0.43, p = 7.4e-
3; NfL ρ=-0.46, p = 5.0e-3). M9 ion transport, which showed the strongest presymptomatic signal in full
sample analyses, was decreased among both presymptomatic C9orf72 and MAPT carriers vs. controls.

Several additional module expression patterns emerged in gene-stratified analyses that were not present
when examining modules in all mutation carriers. A cluster of modules adjacent to M26 spliceosome
(M24 ubiquitination/translation, M25 protein folding/metabolism, M27 metabolism) were increased
and/or positively correlated with disease severity in both symptomatic C9orf72 and GRN. M29
extracellular matrix (ECM), enriched for ECM proteins and microglial cell-type markers, was uniquely
elevated in symptomatic MAPT carriers vs. controls. M4 complement/coagulation was closely related to
M29 and also selectively elevated in symptomatic MAPT vs. controls. M3 postsynapse/glycosylation did
not significantly differ between mutation carrier groups and controls, but was one of the strongest
correlates of disease severity measures in MAPT (CDR®+NACC-FTLD ρ=-0.53, p = 7.0e-4; NfL ρ=-0.46, p = 
5.9e-3).

Differential Abundance Analysis. To complement network analyses, we examined differential abundance
of all 4,138 proteins to identify individual CSF proteins driving module-level differences in gene-stratified
comparisons of symptomatic carriers, presymptomatic carriers, and controls (Supplementary Table 5,
Extended Data Fig. 1). M26 spliceosome had the highest proportion of individual differentially abundant
proteins in symptomatic C9orf72 and GRN carriers (Supplementary Table 6), including nuclear proteins
TRA2B, TMPO, and HNRNPAB. Proteins assigned to modules with neuronal enrichment were also
differentially abundant across multiple gene groups vs. controls, including established synaptic markers
NPTX2 (M2 presynapse), CNTNAP2 (M28 synapse assembly/axon), DLG4 (M3
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postsynapse/glycoslyation), and 14-3-3 proteins (e.g., YWHAZ; M19 neuron migration). Symptomatic
MAPT exhibited the highest proportion of differentially abundant proteins from these neuronal modules,
particularly M28 synapse assembly/axon. M26 spliceosome had the highest proportion of differentially
abundant protein members in presymptomatic GRN (e.g., XRCC6) and M9 ion transport had the highest
proportion of differentially abundant protein members in presymptomatic C9orf72 and MAPT (e.g.,
KCNE2, GPR6).

GRN mutations are characterized by progranulin protein haploinsufficiency. As expected, CSF progranulin
protein (unassigned to a module) exhibited the largest decreased abundance in both pre- and
symptomatic GRN carriers vs. controls. C1QTNF1 (unassigned to a module), another lysosomal protein
with CSF levels shown to be strongly colinear with GRN levels25, exhibited a similar pattern of decreased
abundance in GRN carriers.

Spliceosome, extracellular matrix, and synapse associated proteins predict cognitive trajectories. Module
correlations with global cognitive trajectories in the full sample are provided in Supplementary Table 7
and Fig. 2A. Modules that were most strongly associated with cognitive decline in the full sample
included M29 ECM (ρ=-0.39, FDR-p = 2.1e-5) and M26 spliceosome (ρ=-0.22, FDR-p = 3.9e-2). Modules
that were most strongly associated with cognitive preservation included M28 synapse assembly/axon (ρ 
= 0.42, FDR-p = 7.8e-6), M2 presynapse (ρ = 0.41, FDR-p = 7.8e-6) and M3 postsynapse/glycoslyation (ρ = 
0.33, FDR-p = 5.6e-4; Fig. 3).

To determine whether cognitive findings were driven by specific gene groups, post-hoc analyses
examined gene-stratified correlations between modules and cognitive trajectories (Supplementary
Table 7). M26 spliceosome exhibited one of the strongest associations with cognitive trajectories in GRN,
whereas M29 ECM and synaptic/neuronal modules (M2 presyapse, M3 postsynapse/glycosylation, M28
synapse assembly/axon) were among the strongest contributors to cognitive trajectories in C9orf72
(M29, M2, M28) and MAPT (M29, M2, M3). To determine the relationship between CSF modules and early
stage cognitive change, analyses were also conducted within presymptomatic carriers, collapsed across
gene group. In these analyses, M29 ECM (ρ=-0.44, p = 1.8e-3) and M2 presynapse (ρ = 0.44, p = 1.7e-3)
were most strongly associated with early cognitive change.

In differential correlational analyses, 646 proteins were significantly correlated with global cognitive
trajectories in the full sample (FDR-p < .05; Supplementary Table 6). Over half of those differentially
expressed proteins were assigned to modules that also strongly associated with cognitive trajectories
(M26, M29, M2, M3, M28). To determine whether individual proteins linked to cognitive trajectories were
also of high influence (‘hub proteins’) in these target modules, we plotted individual protein correlations
with cognitive slope against their intramodular connectivity (intramodular kME). Proteins that were
module hubs, defined as top 20th percentile of intramodular kME20, and had FDR-corrected significance
with cognitive slope are highlighted in the Fig. 3 inset protein lists. Notable ‘hub’ proteins included the
neuronal pentraxins, NPTX2 (M2 presynapse; largest effect on cognitive slope across all proteins) and
NPTX1 (M28 synapse assembly/axon), as well as neuroligins NLGN1 and NLGN2 (M3
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postsynapse/glycoslyation). Other notable ‘hub’ proteins linked to cognitive trajectories included
transmembrane proteins TMEM106B (M3 postsynapse/glycoslyation) and TMEM132B (M2 presynapse),
ECM-linked proteins FSTL1 and TIMP1 (M29 ECM), and nuclear proteins HNRNPA1 and RECQL (M26
spliceosome).

Genetic FTLD modules are preserved in sporadic PSP-RS. We applied the same WGCNA methods to CSF
SomaScan data from an independent cohort of individuals with sporadic PSP-RS26 to determine whether
protein co-expression patterns identified in genetic FTLD could be reproduced in sporadic FTLD,
specifically a sporadic FTLD tauopathy (Supplementary Table 8B). All 31 modules from the genetic FTLD
cohort were highly preserved in the sporadic PSP-RS network (all Zsummary scores > 10 [> q = 1 x 10− 23]),
indicating strong consistency of the CSF proteomic correlational architecture across genetic and sporadic
disease (Fig. 4A). Next, we reconstructed the genetic FTLD network modules in PSP-RS using synthetic
eigenproteins to determine whether modules derived from the genetic network could also differentiate
PSP-RS from controls. Of the 31 synthetic eigenproteins derived from the genetic FTLD protein module
assignments, five were significantly altered in sporadic PSP-RS vs. controls after FDR-correction
(Supplementary Table 8A; Fig. 4B; decreased in PSP-RS: M28 synapse assembly/axon, M2 presynapse,
M3 postsynapse/glycoslyation, M19 neuron migration; increased in PSP-RS: M29 ECM). Notably, four of
these five modules were those most strongly related to MAPT disease severity (M2, M3, M28, M29), with
consistency in directionality of effects (Fig. 4C). These results suggest that, despite differences in initial
pathogenesis, genetic and sporadic forms of FTLD-tau exhibit shared proteomic signatures in CSF,
characterized by decreases in neuronal cell-type specific proteins and increases in ECM proteins.

Genetic FTLD modules differentiate FTLD from AD and controls. To assess whether proteomic signatures
from the FTLD network were specific to FTLD or more broadly reflective of neurodegeneration,
irrespective of molecular etiology, we constructed synthetic eigenproteins in a second replication cohort
(BioFINDER 2; Supplementary Table 9b) comprised of 29 patients with frontotemporal dementia clinical
syndromes, 87 AD patients matched on demographics and disease severity, and 248 AD biomarker-
negative controls. BioFINDER 2 CSF samples were analyzed using a proximity extension assay platform
(Olink). Synthetic eigenproteins were computed based on protein measurements that overlapped between
Olink and SomaScan, offering the opportunity to validate proteomic signatures across platforms. CSF
proteomic alterations were more pronounced in FTLD than AD. Thirteen synthetic eigenproteins differed
between FTLD and controls, 6 differed between FTLD and AD, and only 2 differed between AD and
controls (all FDR-p < .05; Supplementary Table 9a; Fig. 4B). Most synthetic eigenproteins that
differentiated FTLD from AD and/or controls represented modules that also differed between FTLD
mutation carriers and familial controls from ALLFTD (Fig. 4D). These included increased M26
spliceosome (FTLD > AD > control) and decreased M2 presynapse (FTLD < AD, control), M28 synapse
assembly/axon (FTLD, AD < control), and M22 autophagy (FTLD < AD, control). These results support the
cross-platform and cross-cohort reproducibility of genetic FTLD network-derived modules, which are
affected to a greater extent in FTLD than AD.
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Module Overlap with CSF AD Networks. The protein co-expression patterns and pathway enrichment
present in the CSF genetic FTLD network partially resembled CSF networks previously identified in
AD21,27. We employed module overrepresentation analyses to empirically compare the genetic FTLD
network to previously constructed CSF networks in sporadic AD and thus identify CSF modules that
overlap across neurodegenerative conditions. These AD networks were built using multi-platform
(SomaScan + Olink + TMT-MS; Dammer et al.21) and TMT-MS (Modeste et. al27) proteomic approaches,
which also allowed us to probe the influence of platform on FTLD and AD network overlap (Fig. 5). Of the
31 genetic FTLD network modules, 14 had significant overrepresentation of protein members in at least
one corresponding module from the multi-platform AD network and 11 had significant overrepresentation
in at least one module from the TMT-MS AD network (10 of 14 modules). M4 complement/coagulation
was the most strongly overlapping FTLD network module in both AD networks, which also exhibited the
strongest preservation across brain tissue, CSF and plasma in the multi-platform study21. M29 ECM and
neuron/oligodendrocyte-enriched FTLD network modules (M2, M3, M28, M31) also exhibited strong
overlap with modules from both CSF AD networks. M26 spliceosome overlapped with a module from the
multi-platform network, M30 ribonucleoprotein complex, which did not differ between AD and controls.
M26 spliceosome did not overlap with any module from the TMT-MS network, which broadly lacked
modules with primary enrichment for RNA binding/splicing pathways. Overall, we observed strong
conservation of modules linked to neuronal, oligodendrocyte, ECM, and immune processes in both FTLD
and AD CSF samples.

Discussion
We analyzed over 4,000 CSF proteins from patients across the disease severity spectrum of genetic
FTLD. We observed that protein co-expression communities most strongly linked to FTLD include proteins
involved in RNA processing, synaptic/axonal function, ECM, and protein degradation. These modules,
and the hub proteins that drive their co-expression, correlated with cross-sectional markers of clinical
severity and axonal degeneration as well as longitudinal cognitive change. We also observed CSF protein
alterations in presymptomatic mutation carriers, including decreased M9 ion transport in C9orf72 and
MAPT, and increased M26 spliceosome in GRN. CSF protein signatures identified in genetic FTLD were
also present in PSP-RS patients with autopsy-confirmed PSP (sporadic FTLD-tau), whose protein network
alterations closely resembled the neuronal and ECM-linked proteomic signatures of MAPT carriers
(genetic FTLD-tau). Genetic FTLD-associated modules also distinguished a cohort comprised of both
sporadic and genetic frontotemporal dementia patients from controls and AD, despite cross-cohort
differences in proteomic measurement platforms. Our findings support the utility of large-scale CSF
proteomics in identifying biological pathways and candidate biomarkers across the spectrum of FTLD
disease severity, with relevance to both genetic and sporadic forms of disease.

Spliceosomal and related nuclear proteins were markedly increased in symptomatic carriers across all
three FTLD gene groups. Prior studies report increased RNA splicing protein levels across
neurodegenerative disease brain tissues, including FTLD-TDP28 and tauopathies29, implicating RNA
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splicing dysfunction as a shared mechanism of neurodegeneration30. Cross-cohort replication analyses
demonstrated a stair-step pattern of increased M26 spliceosome abundance across controls, AD, and
FTLD. Although M26 overlapped with RNA pathway modules from the multi-platform AD network21, the
CSF spliceosome was more strongly dysregulated in FTLD in our study than in prior studies of AD21,27,31.
M26 was elevated prior to symptom onset and predicted cognitive decline in GRN carriers, highlighting
the early stage prognostic utility of spliceosomal proteins in genetic FTLD-TDP. It is possible that
increased CSF levels of RNA splicing proteins in FTLD-TDP may reflect compensatory or pathogenic
protein network alterations in response to nuclear depletion of TDP-43 and related deficits in RNA
metabolism and nucleocytoplasmic transport32,33. Nuclear depletion of TDP-43 increases production of
HNRNP proteins34,35, which were also hub proteins in M26 spliceosome (e.g., HNRNPA1, HNRNPA2B1,
HNRNPAB). As efforts continue to develop diagnostic biofluid markers that measure the highly-specific
consequences of TDP-43 loss-of-function36, orthogonal development of targeted assays for proteins
involved in nuclear processing may be valuable for prognosis, disease monitoring, and measuring
therapeutic response.

CSF modules enriched for synaptic and other neuronal proteins, including M2 presynapse, M28 synapse
assembly/axon, and M3 postysnapse/glycosylation, were strong predictors of cognitive decline. This
neuronal signature of FTLD-related cognitive decline aligns with prior studies demonstrating that
synaptic integrity is critical for cognitive function37–39. A decrease in synaptic protein abundance in
FTLD, which was observed across all three study cohorts, may reflect alterations in synaptic protein
turnover due to decreased protein production40. CSF NPTX2, previously shown to decrease in
symptomatic FTLD and other neurodegenerative diseases41–43, exhibited the strongest association with
cognitive decline out of any individual protein. Combining NPTX2 with NfL and additional synaptic
markers of neurodegeneration may enhance the molecular phenotyping of neurodegeneration in FTLD
and help identify patients at highest risk of cognitive progression.

Decreased abundance of M9 ion transport was a striking feature of both preysmptomatic C9orf72 and
MAPT. M9 was enriched for proteins that govern neuronal ion flux, including potassium voltage-gated
channel proteins (e.g., KCNIP4, KCNE2) that regulate neuronal excitability and contain genetic risk loci for
psychiatric disorders44,45. Presymptomatic alterations to M9 may reflect neuronal ion imbalances, which
could contribute to neural signaling changes46,47 that often precede widespread neurodegeneration in
FTLD48. Decreased M9 ion transport in presymptomatic FTLD may also reflect a longstanding
neurodevelopmental molecular signature of genetic dementia, considering that M9 levels did not correlate
with clinical severity. M9 hub proteins such as NNAT and FOXG1 are key regulators of early stage neuron
differentiation49,50. Longitudinal proteomic profiling will help elucidate the timing and trajectory of
changes in these neurodevelopmental proteins, which will inform their suitability as early stage FTLD
biomarkers.

Similar to synaptic modules, the microglial-enriched M29 ECM predicted cognitive trajectories, even
among presymptomatic mutation carriers. M29 hub proteins included ECM-secreted growth factors (e.g.,
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FSTL1, PDGFD) as well as lysosomal and angiogenic proteins that mediate protein degradation and
remodeling of the ECM (e.g., CTSD, TIMP1). In addition to providing structural support for neurons, the
ECM also modulates intercellular communication and synaptic plasticity51,52. In AD brains, ECM proteins
are positively correlated with tau pathology20 and ECM glycoproteins are elevated in CSF of autosomal
dominant AD several decades before symptom onset53, suggesting that ECM dysregulation is an early
event in AD pathogenesis. M29 was more strongly correlated with symptomatic MAPT and PSP-RS than
C9orf72 or GRN, which could reflect interactions between the ECM and extracellular levels of tau that are
released during trans-cellular spread54,55.

Although our study sample is large for a CSF proteomics study in FTLD, it is smaller than CSF proteomics
studies from more prevalent neurodegenerative conditions. Our analytic approach emphasized data
reduction (module construction) and cross-cohort replication to identify robust biological signals within
each gene group while preserving statistical power; however, an increased sample size would support
more detailed subgroup comparisons focused on individual proteins, such as candidate biomarkers that
discriminate genetic FTLD-TDP vs. FTLD-tau. Another limitation is that our discovery cohort proteomic
search was restricted to targets captured by SomaScan, which may introduce bias in pathways identified.
SomaScan has been applied in other neurodegenerative diseases21,25,56,57 and has high coverage for
FTLD-relevant markers such as RNA splicing proteins21, however platforms such as Olink and TMT-MS
may exhibit greater coverage for other molecular pathways (e.g., immune). Importantly, our cross-
cohort/cross-platform analyses recapitulated SomaScan FTLD signatures with Olink data and
demonstrated module overlap between our SomaScan only network and prior networks that included
Olink and TMT-MS.

Our analysis of over 4,000 CSF proteins in FTLD, to our knowledge, reflects the largest number of proteins
measured in FTLD CSF to date. Our findings highlight a diverse ensemble of CSF protein network
alterations in FTLD that align with preclinical knowledge of FTLD pathophysiology. We demonstrate that
FTLD CSF proteomic signatures, including those likely reflecting alterations in RNA processing and
synaptic biology, are robust and reproducible across genetic and sporadic FTLD cohorts. Our integrative
systems-biology approach also highlights the potential for FTLD proteomics to inform
pathophysiological mechanisms that are shared and distinct across proteinopathies, including mixed
tauopathies such as AD. Importantly, this FTLD CSF proteomic network provides a data anchor that can
be leveraged for multi-layered analyses across matrices and ‘omics pathways, thereby offering a rich
resource for FTLD and neurodegenerative biomarker research.

Methods
ALLFTD Cohort. Participants included 116 carriers of pathogenic mutations in the C9orf72 (n = 47), GRN
(n = 32) or MAPT (n = 37) genes and 39 noncarrier controls from families with a known mutation in one of
these genes58. Participants were enrolled between 2015 and 2020 in the ARTFL/LEFFTDS Longitudinal
Frontotemporal Lobar Degeneration (ALLFTD) consortium (NCT04363684)10,59, which includes 23
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collaborating centers across the US and Canada. The ALLFTD study was approved through the Trial
Innovation Network at Johns Hopkins University. Local ethics committees at each of the sites approved
the study, and all participants provided written informed consent or assent with proxy consent. Inclusion
in the present study required completion of baseline lumbar puncture for CSF collection. Four participants
were excluded from final analysis due to outlier CSF samples (see below). Clinical stage was determined
with the Clinical Dementia Rating Scale (CDR®) plus Behavioral and Language Domains from the
National Alzheimer’s Coordinating Center (NACC) FTLD module (CDR®+NACC-FTLD)60–62. Mutation
carriers were classified as presymptomatic or symptomatic based on a CDR®+NACC-FTLD Global score
of 0 (presymptomatic) or ≥0.5 (symptomatic). Clinical and demographic characteristics across the three
gene groups and controls are provided in Supplementary Table 1.

4RTNI Cohort. A cohort of 35 patients with a clinical diagnosis of PSP-RS were recruited through the
UCSF Memory and Aging Center (MAC) and the 4-Repeat Tauopathy Neuroimaging Initiative (4RTNI;
NCT01804452). Of these 35 patients, 20 went to autopsy at the UCSF MAC Neurodegenerative Disease
Brain Bank and had a confirmatory primary pathological diagnosis of PSP. A comparison group of 39
community-dwelling, cognitively unimpaired controls were recruited through the UCSF Brain Aging
Network for Cognitive Health (BrANCH). CSF was collected on all participants and research procedures
were approved by the UCSF Institutional Review Board.

CSF collection and processing. CSF was collected at baseline in polypropylene tubes via lumbar puncture
in lateral recumbent or sitting positions. CSF samples were centrifuged at 2000 g for 10 minutes at room
temperature. Supernatant was aliquoted in 500 microliter polypropylene tubes and stored at -80°C until
further analyses. All CSF samples underwent only one freeze/thaw cycle before analysis. CSF ALLFTD
samples were analyzed for neurofilament light chain (NfL) using Quanterix Simoa, as previously
described4.

SOMAmer proteomics. CSF samples were analyzed using a proprietary version of the SomaScan
proteomics platform (SomaLogic, Boulder, CO) that captured 4,138 unique proteins. The SomaScan
assay leverages slow off-rate modified aptamers (SOMAmers), which are short, single stranded
deoxynucleotides that bind to protein targets with high specificity63. A volume of 65 microliters of CSF
was used to create SOMAmer – protein reactions in 96-well plates. Tagged SOMAmer-protein complexes
were captured in a bead-based assay, and levels of SOMAmer bound to sample were quantified through a
fluorescent signal in DNA hybridization microarrays64. The reaction signal was detected digitally and
expressed as aggregated Agilent relative fluorescent units (RFU), which were normalized to scale and
subsequently log2-transformed for downstream analysis.

Outlier removal and covariate adjustment. Each sample had full protein data availability with no missing
values. Outlier samples were identified (n = 6 [2 C9orf72, 1 GRN, and 1 control from the genetic cohort, 2
controls from the sporadic cohort]) and removed using a three-fold SD cutoff of Z-transformed sample
connectivity, as previously described20. Nonparametric bootstrap regression was performed in controls
(familial and non-familial) to obtain a median estimated coefficient from 1,000 iterations of fitting for the
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effects of typical aging and sex on each protein. Median estimated coefficients were subsequently
multiplied by age and sex and subtracted from participant-specific protein values to derive adjusted
protein values across the entire log2(abundance) matrix of cases and controls in ALLFTD and 4RTNI
cohorts.

CSF protein co-expression network analysis. In the genetic cohort, the WGCNA algorithm20,65 was used to
generate a CSF protein network from the n = 4,138 log2 protein abundance × n = 155 case–sample matrix
that had undergone covariate correction and network connectivity outlier removal as described above.
The WGCNA blockwiseModules function was run with the following parameters: power = 12, deepSplit = 
4, minModuleSize = 30, mergeCutHeight = 0.07, TOMdenom=“mean”, bicor correlation, signed network
type, PAM staging and PAM respects dendro as TRUE, with clustering completed within a single block.
Module memberships were then iteratively reassigned to enforce kME table consistency, as previously
described20. This module membership reassignment procedure increased the smallest module size in the
network from 34 to 48 (M31) and reduced the gray (unassigned) protein count for the network from 832
(20.1%) to 199 (4.8%).

Gene ontology and cell type enrichment. To characterize protein module biology, we retrieved gene
ontology annotations from the Bader Lab’s monthly updated .GMT formatted ontology lists downloaded
October 2, 202366. A Fisher’s exact test for enrichment was performed for each module’s protein
membership with the background proteome consisting of all proteins measured in the current study.
Pruned output with overrepresentation z-scores was visualized using an R script
(https://github.com/edammer/GOparallel). Modules were also tested for cell type-specific enrichment
with Fisher’s exact one-tailed tests that compared module protein members with an in-house human cell
type marker list20.

Differential abundance analysis. Differentially abundant proteins were identified by one-way ANOVA,
followed by Tukey’s post hoc correction for pairwise comparisons between symptomatic carriers,
presymptomatic carriers, and controls (stratified analysis for each gene). Volcano plots were made using
an R script that color-coded individual data points by CSF network module membership
(https://github.com/edammer/parANOVA).

Cognitive trajectory analysis. ALLFTD participants completed an annual comprehensive
neuropsychological battery, covering episodic memory, executive functions, and language skills (average
[range] visits = 3.4 [1–7])10,67. Raw test scores were converted to z-scores based on the score distribution
in the larger cognitively unimpaired BrANCH cohort68, which were then averaged into domain-based
composite scores. Domain-based composite scores were averaged together to create a global cognitive
composite score. The rate of cognitive change over time for each participant was determined via a linear
mixed-effects model that examined global cognitive scores as a function of time (years since baseline),
entered as a fixed and random effect, adjusting for baseline age, sex and years of education. Person-
specific random slopes were extracted to represent the annual rate of cognitive change per participant,



Page 17/31

which was the primary outcome in downstream analyses that examined differential correlation of
modules and individual proteins with cognitive trajectory.

BioFINDER 2 Cohort. To test whether FTLD CSF proteomic signatures were robust to platform and
cohorts, we leveraged CSF proteomic data analyzed on the Olink platform in the Swedish BioFINDER 2
cohort (NCT03174938)69. This BioFINDER 2 replication cohort included 29 patients with frontotemporal
dementia clinical syndromes, 87 AD-biomarker positive patients with MCI or dementia, and 248 AD-
biomarker negative controls70. Of the 29 FTLD patients, 10 had genetically confirmed FTLD (8 C9orf72, 1
GRN, 1 MAPT) with a behavioral variant frontotemporal dementia (bvFTD) clinical syndrome. The
remaining 19 cases included 13 bvFTD and 6 semantic variant primary progressive aphasia. AD cases
were matched to FTLD spectrum cases 3-to-1 for age, sex, disease severity, and mean protein level69

using k-nearest neighbors. BioFINDER 2 participants were recruited at Skåne University Hospital and the
Hospital of Ängelholm, Sweden, diagnosed by multidisciplinary assessment after clinical and
neuropsychological examination, brain MRI, and lumbar puncture. The study was approved by the
Regional Ethics Committee in Lund, Sweden. All participants gave written informed consent to
participate.

Validation analysis: Module preservation. A sporadic PSP-RS (4RTNI) protein co-expression network
(4,138 log2 protein abundance × 74 case–sample matrix) was constructed using the same
blockwiseModules parameters and module reassignment procedures as described above. Preservation
between the genetic FTLD and sporadic PSP-RS CSF networks was performed using the WGCNA
modulePreservation function with 500 permutations. Zsummary composite preservation scores for 8
underlying network parameters were obtained using the mutation network as the template and PSP-RS
network as the target20,71. Statistical significance of module preservation (minus log10 [FDR-adjusted p
values]) was visualized as a function of module size.

Validation analysis: Synthetic modules. Network validation was also assessed in the 4RTNI and
BioFINDER 2 cohorts by calculating synthetic eigenproteins20,22, which captures the variance of all
protein module members present in the target cohorts. We leveraged every protein module membership
assignment from the genetic FTLD network to construct synthetic eigenproteins in sporadic PSP-RS,
given that CSF from both cohorts were analyzed on the same platform. Synthetic eigenprotein
calculations in the BioFINDER 2 Olink dataset were restricted to Olink proteins that overlapped with
SomaScan proteins from the genetic FTLD network and had missing frequency < 75% (856 total
proteins). Boxplots visualized synthetic eigenprotein differences across cases and controls in each target
cohort.

Validation analysis: Module overrepresentation. To determine the degree to which CSF modules in the
genetic FTLD network overlapped with CSF modules in AD, we performed over-representation analysis
(ORA) of module gene symbols between the CSF genetic FTLD network and two CSF AD protein co-
expression networks that differed in depth of proteomic coverage and sample size. Specifically, the CSF
genetic FTLD network was compared to a 1) deep, three-platform CSF network (Somalogic, Olink, tandem
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mass tag-based mass spectrometry [TMT-MS]; n = 7,158 proteins, 38 modules) constructed in a small
cohort of AD (n = 18) and controls (n = 18); and 2) a shallower TMT-MS CSF network (n = 1,840 proteins,
14 modules) constructed in a larger and more racially diverse (~ 50% African American) cohort of AD (n = 
98) and controls (n = 105). Module overlap was determined using one-tailed Fisher’s exact test, followed
by correction of p-values for multiple testing using the Benjamini-Hochberg method. Overlap of module
gene symbols between networks was visualized using a custom in-house script.

Other statistics. Statistical analyses were performed in R (v4.3.1). Boxplots represent the median, 25th,
and 75th percentile extremes; thus, hinges of a box represent the interquartile range of the two middle
quartiles of data within a group. Minimum and maximum data points define the extent of whiskers (error
bars). Correlations were performed using Spearman’s rho (ρ) coefficients. Comparisons between two
groups were performed by a two-sided t test. Comparisons among three or more groups were performed
with ANOVA with Tukey’s pairwise comparison of significance. P values were adjusted for multiple
comparisons by FDR correction according to the Benjamini-Hochberg method where indicated.
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Figures

Figure 1

Study Overview. Cerebrospinal fluid (CSF) was collected in 116 carriers of autosomal dominant
mutations for frontotemporal lobar degeneration (FTLD; 47 C9orf72 [C9], 32 GRN, 37 MAPT) and 39 non-
carrier controls with a family history of genetic FTLD. CSF was analyzed on a modified aptamer-based
assay (SomaScan). After data processing, a total of 4,138 proteins were quantified. High-dimensional
proteomic data were organized into modules of protein co-expression using weighted gene co-expression
network analysis (WGCNA). CSF protein co-expression modules from the genetic FTLD network were
functionally annotated using gene set and cell type enrichment approaches. CSF genetic FTLD modules
were examined in relation to cross-sectional (CDR®+NACC-FTLD, CSF neurofilament light [NfL]) and
longitudinal (global cognitive trajectories) indicators of disease severity. In cross-cohort and cross-
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platform validation analyses, genetic FTLD modules were reconstructed in independent cohorts of
sporadic PSP-Richardson syndrome (PSP-RS) and controls (4RTNI; SomaScan) and FTLD, AD, and
controls (BioFINDER 2; Olink).

Figure 2

Genetic FTLD Protein Co-Expression Network. A) A cerebrospinal fluid (CSF) protein co-expression
network was built using weighted gene correlational network analysis (WGCNA). The genetic FLTD
network consisted of 31 protein co-expression modules. Module relatedness is shown in the dendrogram
to the right. GO analysis was used to identify the principal biology represented by each module. Within
genes, module eigenproteins in symptomatic (Sx) and presymptomatic (PreSx) variant carriers were
compared against controls. Increased eigenprotein abundance in FTLD is indicated in green, whereas
decreased eigenprotein abundance is indicated in blue. Module eigenproteins were correlated with
disease outcomes, including CDR®+NACC-FTLD, global cognitive slope, and CSF NfL (red, positive
correlation; blue, negative correlation). The cell type nature of each module was assessed by module
protein overlap with cell-type-specific marker lists of neurons, oligodendrocytes, astrocytes, microglia and
endothelia. Asterisks in the left heatmap indicate statistical significance after Tukey’s test. Asterisks in
the middle and right heatmaps indicate statistical significance after false discovery rate correction. B)
Module eigenprotein levels by case status for six of the most strongly FTLD-associated modules.
Mutation carriers are grouped by Sx and PreSx individuals. C9: 24 PreSx, 23 Sx; GRN: 12 PreSx, 19 Sx;
MAPT: 18 PreSx, 19 Sx. Differences in module eigenprotein by case status were assessed by one-way
ANOVA with Tukey test. Gene-specific p-values represent the omnibus significance for gene-stratified
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comparisons vs. controls. Box plots represent the median and 25th and 75th percentiles, and box hinges
represent the interquartile range of the two middle quartiles within a group. Min and max data points
define the extent of whiskers (error bars). CTL, control.

Figure 3
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Module and Hub Protein Relationships with Cognitive Trajectory. Plots display the top 5 CSF genetic
FTLD network modules most strongly associated with global cognitive trajectories in the full sample.
Eigenprotein z-scores are plotted against the annual rate of global cognitive change during the study
period (n = 137). Person-specific cognitive slopes were extracted from linear mixed-effects models that
included baseline demographics (age, sex, education) and time (years since baseline). Confidence bands
represent 95% confidence intervals for Spearman’s r values. Information on the association between all
network module eigenproteins and cognitive trajectory in the full sample, within each gene, and within
presymptomatic mutation carriers is provided in Supplementary Table 7. For proteins assigned to each
module, an individual protein’s strength of connectivity to the module (x-axis) is plotted against the
individual protein’s correlation with global cognitive change (y-axis). Proteins that exhibited stronger
intramodular connectivity also exhibited stronger relationships with cognitive slope. Color-filled triangles
represent individual proteins that survived false discovery rate (FDR) correction in proteome-wide
differential correlational analyses (n=646 total proteins, full list in Supplementary Table 7). Proteins in the
top 20th percentile of intramodular connectivity and are classified as ‘hub’ proteins. Hub proteins that
significantly correlated with cognitive trajectory are listed with each plot.

Figure 4

Cross-Cohort Validation. Validation cohorts included 4RTNI, composed of PSP and controls, and
BioFINDER 2, composed of patients with frontotemporal dementia clinical syndromes, biomarker-
confirmed Alzheimer’s disease (AD), and controls. 4RTNI CSF samples were assayed with SomaScan and
BioFINDER CSF samples were assayed with Olink. A) Weighted gene correlational network analysis was
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applied to 4RTNI SomaScan data to test for module preservation across the genetic FTLD and sporadic
PSP-Richardson syndrome (PSP-RS) networks. Modules that have a Zsummary score greater than or equal
to 1.96 (or q = 0.05, blue dotted line) are considered to be preserved, and modules that have
a Zsummary score greater than or equal to 10 (or q = 1 × 10−23, red dotted line) are considered to be highly
preserved. All modules in the genetic FTLD network were highly preserved in the sporadic PSP-RS
network. B) Synthetic eigenproteins were reconstructed in 4RTNI and BioFINDER 2 to test for concordance
in module relationships with disease groups. Heatmap displays average synthentic eigenprotein z-score
differences between PSP-RS and controls (CTL), FTLD vs. CTL, FTLD vs. AD, and AD vs. CTL. Asterisks
indicate statistical significance after false discovery rate correction C, D) Synthetic eigenprotein boxplots
for key modules from 4RTNI (C) and BioFINDER 2 (D) analyses. Pairwise differences in module synthetic
eigenproteins by case status were assessed by two-sided t-test with FDR-correction. Box plots represent
the median and 25th and 75th percentiles, and box hinges represent the interquartile range of the two
middle quartiles within a group. Min and max data points define the extent of whiskers (error bars).
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Figure 5

Genetic FTLD CSF Network Module Over-Representation Analysis with AD CSF Networks. Module
member overrepresentation analysis (ORA) of the genetic FTLD CSF network with two CSF protein co-
expression networks in Alzheimer’s disease (AD): 1) 3-platform network, obtained using SomaScan, Olink,
and tandem mass tag-based mass spectrometry (TMT-MS; Dammer et al.21); 2) single platform network
obtained using TMT-MS (Modeste et al.27). Box values represent –log10(FDR) value for pairwise module
overlap, determined using one-tailed Fisher’s exact test. Bolded AD network modules significantly differed
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between AD and controls. Modules from the AD networks (y-axis rows) without an overlap value of –
log10(FDR) > 1 are not included in the heatmaps.
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