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Abstract

Background
Evidence from observational studies and clinical trials suggests that lipidomes are associated with an
increased risk of rheumatoid arthritis (RA). However, considering inherent confounding factors and the
challenge of reverse causality in observational studies, the direct causal relationship between lipidomes
and RA remains unknown. Therefore, we conducted mendelian randomization (MR) as well as mediation
analysis to elucidate the causal relationship among lipidomes, RA, and metabolites as a mediator.

Methods
The bidirectional MR analysis was performed to evaluate the relationship of lipidomes and RA, with a
focus on the role of metabolites. Instrumental variables (IVs) were used as the central methodological
technique, supplemented by MR-Egger, weighted median, simple mode, as well as weighted mode
methods.

Results
Findings from this study revealed that six lipidomes had a positive correlation with RA, while one showed
a negative association. Furthermore, mediation MR analysis results revealed that undecenoylcarnitine
(C11:1) served as a mediator for the effect of sterol ester (27:1/20:4) on RA and the mediation effect was
calculated to be 7.98%.

Conclusions
Our study demonstrated the genetic causal effect of lipidomes on RA, emphasizing the potential
mediating role of undecenoylcarnitine (C11:1) and providing insights for the clinical intervention of RA.

Background
As a chronic, systemic, inflammatory autoimmune disease, rheumatoid arthritis (RA) affects both joints
and extra-articular organs. It is a widely distributed disease worldwide, with a prevalence ranging from
approximately 0.5–2%, depending on sex, age, and the patient collective studied [1–5]. While the cause of
RA is unknown, genetic, environmental, immune, and metabolic factors have all been shown to contribute
to its development [6]. Metabolism and immune responses are believed to be involved in the
pathogenesis of RA [7–8]. Lipidome metabolism is a critical component of cellular metabolism and
effective immune responses. It has been reported that patients with RA may experience disorders of
lipidome metabolism [9–10]. A particularly significant fact is that these disorders have been observed
before the onset of symptoms [11]. Therefore, aspects of lipidome metabolism could potentially
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contribute to the development of RA and associated comorbidities, making them potential therapeutic
targets. Certainly, the presence of lipidome disorders as a concomitant symptom of RA cannot be ruled
out. However, due to limitations in sample size and the interference of confounding factors, the
conclusions drawn from observational and correlational studies still exhibit deviations. Thus, further
research is required to establish a causal relationship between lipidomes and RA.

Mendelian randomization (MR) is a data analysis approach used in epidemiological studies to evaluate
the inference of etiological factors. It used genetic variants were used as instrumental variables (IVs) to
assess their causal relationship between the exposure factors and the outcomes. The strength of MR lies
in the fact that alleles adhere to the principle of random allocation, which allows it to avoid the influences
of confounding factors alongside reverse causality that occur in previous epidemiological studies [12–
16]. Therefore, we adopted MR to identify the causal relationship between RA and lipidomes.

Methods

Study design
Two-sample MR, a method estimating causal effects of risk factors on diseases using only genome-wide
association studies (GWAS) summary statistics, was used to evaluate the causal relationship between
lipidomes and RA [13]. To ensure the effectiveness of the analysis, three core assumptions must be met:
(1) IV1- There should be a strong correlation between single nucleotide polymorphisms (SNPs) and
exposure; (2) IV2- SNPs and confounding factors should be independent; (3) IV3- SNPs should only affect
outcomes through exposure factors. Following this, we delve into the role of metabolites as mediating
factors in the relationship between RA and lipidomes. The illustration of the study design was displayed
on Fig. 1.

Data sources
GWAS summary statistics for RA were obtained from the IEU open GWAS project (ebi-a-GCST90038685),
which involved 484,598 participants and 9,587,836 SNPs [8]. The univariate GWAS summary statistics
for lipidomes uses in this study were acquired from the GWAS catalog (accession codes:
GCST90277238-GCST90277416). For the mediator, we also relied on the NHGRI-EBI GWAS Catalog
(accession codes: GCST90199621-GCST902010209).

Selection for genetic variation
To screen suitable genetic IVs that satisfied three core assumptions, we applied a series of restrictive
conditions on the IVs. Firstly, we included SNPs that reached a threshold of genome-wide significance (p 
< 1e-05). Secondly, we set a threshold for removing linkage disequilibrium within a 10000kb range, which
was r2 < 0.01. Palindrome SNPs with allele frequencies close to 0.5 were removed using the Two-sample
MR R package, as these palindrome SNPs could lead to ambiguity in coordinating alleles between the
exposed and resulting datasets. Finally, to evaluate whether the included SNPs were influenced by weak
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IVs, we calculated the variance explanatory ratio of individual SNPs and then calculated the F statistic
value (F > 10). If the SNP's F statistic was less than 10, it indicated the possibility of weak instrumental
bias, which could be eliminated to avoid affecting the results [12, 18].

Statistical, pleiotropy, and heterogeneity analyses
MR analysis was conducted using R 4.3.1 software (http://www.Rproject.org)[19]. To investigate the
causal relationship between liposome metabolism and RA, inverse variance weighting (IVW) [20], MR
Egger [21], weighted median [12], simple mode [12, 13], as well as weighted mode methods [12] were
performed using the “Mendelian Randomization” package. We adopted Cochran’s Q statistical test to
detect and quantify the heterogeneity within the IVs, and implemented a "leave one out" approach to
explore the potential impact of individual SNPs on this causal association [13]. The MR Egger intercept
was mainly adopted to assess possible horizontal pleiotropic effects between genetic variation and other
confounding factors [14]. Additionally, the MR-PRESSO method was used to identify and exclude outliers
that could significantly impact the estimation results [12–13, 22].

Results

Lipidomes and metabolites associated with RA
Lipidomes and metabolites linked to RA must meet three conditions: (1) The p value of the results
generated by the IVW method need to be less than0.05. (2) The p value of the results of pleiotropy should
be more than 0.05. (3) The results of IVW, MR Egger, weighted median, simple mode, as well as weighted
mode should be consistent. To identify the lipidome with a causal effect on RA, we conducted a two-
sample MR analysis, using the IVW method as the primary analysis. Based on a p value of less than 0.05,
we observed that RA-Phosphatidylcholine (16:0_16:1) levels had a protective effect (OR = 0.998651, 95%
CI: 0.997359–0.999944, p = 0.040944). Conversely, six lipidomes were correlated with an increased risk of
RA: Sterol ester (27:1/20:5) levels (OR = 1.001193, 95% CI: 1.000392–1.001995, p = 0.003523),
Phosphatidylinositol (16:0_20:4) levels (OR = 1.001385, 95% CI: 1.000403–1.002368, p = 0.005706),
Phosphatidylcholine (18:0_20:5) levels (OR = 1.000982, 95% CI: 1.00019–1.001775, p = 0.01506), Sterol
ester (27:1/20:4) levels (OR = 1.000618, 95% CI: 1.000074–1.001162, p = 0.025884),
Phosphatidylethanolamine (O-18:2_18:2) levels (OR = 1.001637, 95% CI: 1.000161–1.003116, p = 
0.029699), and Phosphatidylcholine (18:0_20:4) levels (OR = 1.00054, 95% CI: 1.000014–1.001095, p = 
0.044519). It suggests that these lipidomes may contribute to the development of RA (Fig. 2). On the
other hand, our analysis indicated that RA had no causal effect on seven lipidomes, including sterol ester
(27:1/20:4) levels (p = 0.929274), Sterol ester (27:1/20:5) levels (p = 0.522395), Phosphatidylcholine
(16:0_16:1) levels (p = 0.270819), Phosphatidylcholine (18:0_20:4) levels (p = 0.583645),
Phosphatidylcholine (18:0_20:5) levels (p = 0.387426), Phosphatidylethanolamine (O-18:2_18:2) levels (p 
= 0.915225), and Phosphatidylinositol (16:0_20:4) levels (p = 0.625424). Based on the results of MR
analysis, we identified metabolites associated with RA. After filtering, we found nine metabolites related
to RA: 4-cholesten-3-one levels (OR = 0.998633, 95% CI: 0.99763–0.99963622, p = 0.00758648), O-sulfo-l-
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tyrosine levels (OR = 0.998529701, 95% CI: 0.99743–0.99963, p = 0.008841), 3-hydroxyhexanoylcarnitine
(1) levels (OR = 1.001878, 95% CI: 1.000653–1.003105, p = 0.002654), Undecenoylcarnitine (C11:1) levels
(OR = 1.001144, 95% CI: 1.000305–1.001984, p = 0.007555), Succinate levels (OR = 0.998097, 95% CI:
0.996742–0.999453, p = 0.005963), Cystathionine levels (OR = 1.00182, 95% CI: 1.000722–1.00292, p = 
0.001158), X-22771 levels (OR = 1.00249251, 95% CI: 1.000822924–1.004164882, p = 0.003419523), X-
24306 levels (OR = 0.998356, 95% CI: 0.997156881–0.999557125, p = 0.007312674), and X-25343 levels
(OR = 1.001909, 95% CI: 1.00060358–1.003215337, p = 0.004138974) (Fig. 3).

Undecenoylcarnitine (C11:1) as a mediator in the relationship
between lipidomes and RA
The results of MR further revealed a causal effect of genetically predicted sterol ester (27:1/20:4) levels
(OR = 1.044049, 95% CI: 1.001409–1.088504, p = 0.042745) on undecenoylcarnitine (C11:1) levels
(GCST90200236), as illustrated by the IVW method (Fig. 4A). Considering our previous findings that
established connections between "lipidome → RA" and "lipidome → undecenoylcarnitine (C11:1)," we
hypothesized that undecenoylcarnitine (C11:1) might potentially mediate the relationship between
lipidomes and RA. The sensitivity analysis was implemented to strengthen this conclusion.

Undecenoylcarnitine (C11:1) on as a potential risk factor for
on RA
In our investigation of the effects of metabolites on RA, we found that undecenoylcarnitine (C11:1) had a
causal relationship with RA according to the IVW method (OR = 1.001144, 95% CI: 1.000304538–
1.001984428, p = 0.007554917), suggesting that undecenoylcarnitine (C11:1) might act as a risk factor in
the pathogenesis of RA (Fig. 4A). To validate these findings, a series of sensitivity analyses involving the
MR-Egger, weighted mode, simple mode, as well as weighted median methods were conducted.

Undecenoylcarnitine (C11:1) as a mediator in the causal relationship between the sterol ester (27:1/20:4)
and RA

Using the mediation MR analysis method, we found that undecenoylcarnitine (C11:1) could act as a
mediator in the causal relationship between sterol ester (27:1/20:4) and RA (b = 4.93e-05, 95% CI:
-0.00175, 0.00185). The mediation effect was calculated to be 7.98% (Fig. 4B).

Discussion
Existing studies have revealed that the lipidomic profile in the synovial fluid of patients with RA is
severely disrupted. The degree of disorder is closely related to the extent of synovitis observed on
ultrasonography [23]. However, comprehensive analyses have not been undertaken to corroborate the
causal relationship between lipidomes and RA. In this mediation MR study, a causal relationship was
identified between seven lipidomes and RA. The results of the mediation MR analysis indicate that
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undecenoylcarnitine (C11:1) could act as a mediator in the causal relationship between sterol ester and
RA, and The mediation effect was calculated to be 7.98%. This mediation MR study underscored the
association of lipidomes with RA, underscoring the role of undecenoylcarnitine (C11:1) as a mediator.

Many studies have reported altered lipidomic profiles in patients with RA. The main changes include the
followings: (1) Reduced levels of serum total cholesterol and triglycerides in untreated RA patients [24–
25]; (2) Increased levels of the aforementioned lipidomes in treated RA patients [26–27]; (3) HDL lacking
antioxidant capacity in patients with RA [28–29]. Recent insights suggest that lipidomes play a crucial
role as components of immune cell membranes, facilitating appropriate cell signaling in response to
antigens or other cellular ligands [30–32]. While research has established a strong relationship between
lipidomes and RA, the exact causality remains elusive. Meanwhile, patients with RA, like those with other
chronic inflammatory diseases, also experience alterations in metabolism, which may contribute to higher
morbidity and mortality rates [33]. Therefore, mediation MR analysis was used to comprehensively
analyze the causal relationship between lipidomes and RA, with a particular emphasis on the role of
metabolites in this relationship.

We have identified a positive association between RA and the following lipid species: sterol ester
(27:1/20:5), phosphatidylinositol (16:0_20:4), phosphatidylcholine (18:0_20:5), sterol ester (27:1/20:4),
phosphatidylethanolamine (O-18:2_18:2), and phosphatidylcholine (18:0_20:4). In addition,
phosphatidylcholine (16:0_16:1) shows a negative causal relationship with RA. Phospholipids are
important components of cell membranes and organelle membranes, essential for maintaining normal
membrane fluidity and function. The phospholipid signaling system is a significant cellular pathway
involved in regulating processes such as cell growth, division, survival, and communication [34]. It is
plausible that dysregulation within this system may contribute to the development of RA.

It’s worth noting that undecenoylcarnitine (C11:1) may serve as a link between sterol ester (27:1/20:4)
and RA. Moreover, more and more metabolites have been identified to be related with the pathogenesis of
diseases [35–38]. For instance, lactic acid, as a byproduct of glycolysis, acts as a signaling molecule in
chronic inflammatory and cancerous tissues [36]. Metabolic disorders are associated with the
development of RA [37–38]. Glycolysis, the arachidonic acid, butyric acid, and tryptophan metabolic
pathways have garnered significant interest and have been extensively studied for their involvement in
RA. Disruptions in these metabolic pathways can directly or indirectly contribute to inflammation,
immune responses, and the development of atherosclerosis in RA patients [39–40]. However, it should be
noted that certain studies have reported inconsistent results, possibly due to the heterogeneity of RA
patients and the limited number of samples available. For example, Zhou and Srivastava found that
branched-chain amino acids are downregulated in the synovial fluid of RA patients but upregulated in the
joint tissues of CIA rats [41–42]. Nevertheless, despite these findings, there have been currently no studies
that thoroughly investigate the relationship between RA and lipidome metabolism. Our research findings
suggest that undecenoylcarnitine (C11:1) plays a regulatory role in the influence of sterol ester
(27:1/20:4) on RA, further providing theoretical supports for the treatment as well as the prevention of RA.
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Although our research had certain advantages, like a large sample size, the removal of confounding
factors, and the clarification of causal relationships, it still had inherent limitations. One significant
shortcoming was the lack of animal and clinical experiments to further investigate the molecular
mechanisms of liposomes and metabolites in the development of RA. Therefore, future endeavors should
focus on refining these experiments and striving to elucidate the involved mechanisms. It is important to
note that there were still inevitable deficiencies in our study. Specifically, our findings were based on
theoretical assumptions and have not been substantiated through rigorous clinical or animal
experimentation. As a result, the precise molecular mechanisms underlying our observations remain
uncertain. Further investigations involving cellular, animal, and clinical experiments are required to shed
light on these mechanisms.

Conclusions
Our mediation MR research indicated underlying causal relationships among lipidomes, metabolites, and
RA. Specifically, the undecenoylcarnitine(C11:1) pathway mediated a regulatory effect of the lipidomes
on RA, providing new insights into the potential clarification of the pathogenesis of RA.
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Figure 1

(A) Illustration of the study design and workflow. (B) Two-step Mendelian randomization assessment
detailing the impact of lipidomes on rheumatoid arthritis (RA) through metabolites.
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Figure 2

Forest plot representing the causal relationship between lipidomes and RA.
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Figure 3

Forest plot highlighting the causal link between the metabolites and RA.
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Figure 4

(A) Forest plot representing the causal relationship among sterol ester (27:1/20:4),
undecenoylcarnitine(C11:1) and RA. (B) Depiction of the role of undecenoylcarnitine(C11:1)in mediating
the causal effect of sterol ester (27:1/20:4) on RA.


