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Abstract
Assimilation of sulfur to cysteine occurs in the presence of serine acetyltransferase (SAT). In this study, SAT genes in rice (Oryza sativa) were identified and
analyzed using bioinformatics approaches. Also, these genes were tested under salt stress. OsSATs have two common motifs, bacterial transferase
hexapeptide and acetyltransferase and underwent purifying selection. They   have more similar protein sequences compared to Arabidopsis. However,
there is structural and functional divergence among OsSATs which may be driven by the segmental and tandem duplications. Purifying selection and gene
duplications may also have effect leading to variation of specificity and selectivity of OsSATs. In this regard, Asp (D), His (H), Gly (G), Thr (T), Arg (R), Ala
(A), and Leu (L) are identified as well-conserved residues in their active sites which have an indicator role on their functions. The OsSATs expressions in
different tissues, organs and under hormones showed that jasmonic acid was main hormone inducing the expressions of OsSAT1;1, OsSAT2;1, and
OsSAT2;2 whereas auxin and abscisic acid only triggered OsSAT1;1 expression. On the other hand, wet-lab expressions of OsSATs in this study indicated
that OsSAT1;1, OsSAT1;2 and OsSAT1;3 genes were upregulated under different exposure times of salt stress. OsSAT1;1 is the only OsSAT induced by
various situmuli. The findings can be used by plant breeders and genetic engineers to develop new rice varieties having optimal growth and stress
tolerance.

Introduction
Sulfur (S) is a vital macronutrient for plants and involved in many biochemical reactions. S is the fourth most important plant nutrient after N, P, and K. It is
found in amino acids (cysteine and methionine), vitamins and cofactors, glutathione and phytochelatins [1]. Plants can use the reduced sulfate (SO4

2−)

and convert it to sulfide (S2−). Sulfide is used to integrate S into cysteine (Cys) in the cytosol. Cys biosynthesis is a basic process either as a precursor or
donor of key S compounds in plants. While Cys synthesis is observed in the cytosol, plastids, and mitochondria, the sulfate reduction pathway is localized
in plastids of plants [2, 3]. The Cys synthesis takes place in the presence of two enzymes: serine acetyltransferase (SAT or SERAT) and O-
acetylserine(thiol)lyase (OASTL). The former leads to synthesizing intermediary product O-acetylserine (OAS) from acetyl-CoA and serine. The latter uses
the sulfide and OAS for production of Cys as a cofactor in the presence of pyridoxal-5’-phosphate. These two enzymes are called hetero-oligomeric
cysteine synthase complex (CSC) [4–6].

The ancestral SAT gene was a host origin gene and not evolved from the cyanobacterial endosymbiont [7]. A total of five serine acetyltransferases (SAT or
SERAT; EC 2.3.1.30) were identified in Arabidopsis thaliana [8]. AtSAT1, AtSAT3, and AtSAT5 are found to localized in plastid, mitochondria, and
cytoplasm, respectively [2]. Additionally, mitochondrion is identified as the most important compartment for O-acetylserine (OAS) synthesis in Arabidopsis,
which is the precursor of Cys [3]. Similarly, cell-distribution of SAT activities in pea (Pisum sativum) leaves is found at the highest level in mitochondria
followed by chloroplast and cytoplasm [2]. The other two AtSATs, AtSAT2 and AtSAT4, are localized in cytoplasm but their protein sequences show
variations from other SATs and are expressed at low level [9]. The overexpressed of AtSAT1 in maize does not cause any negative effect on Arabidopsis’ s
growth and it enhances 10-kDa γ-zein storage protein during endosperm development [10].

In this study, rice (Oryza sativa) SAT (OsSATs) genes/proteins were identified at genome-wide scale, then bioinformatics analyses were performed
(sequence, motif, phylogenetic, expression, and protein modeling) to find out structural and functional divergences of SATs in rice. Also, the responses of
OsSAT genes were tested to offer more insights about their regulations under salt stress.

Materials And Methods

Identification of SAT genes and sequence feature analysis
Firstly, Q42588 AtSAT1 (At1g55920), Q8S895 AtSAT2 (At2G17640), Q39218 AtSAT3 (At3g13110), Q8W2B8 AtSAT4 (At4g35640), and Q42538 AtSAT5
(At5g56760) sequences in Arabidopsis were retrieved from UniProt database (https://www.uniprot.org/). AtSATs were only used for comparative analyses
in this study. These protein sequences were searched against rice genome (Oryza sativa v7_JGI) on Phytozome database v12
(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Osativa) with an E-value < 1E-20 [11]. Later, the presence of PF06426 (SATase_N) domain
structure was validated using Pfam database v32 (https://pfam.xfam.org/) [12]. Genomic and coding sequences corresponding to SATs were collected
from Phytozome database for further bioinformatics analyses. Physicochemical properties of SAT proteins such as length, molecular weight, and
isoelectric point (pI) values were obtained from ProtParam tool (web.expasy.org/protparam) [13]. The sequence identity matrix for Arabidopsis and rice
SATs were generated using Bioedit v7.2.5 [14]. Annotations of SAT proteins were analyzed using PANNZER (Protein ANNotation with Z-scoRE) server
(http://ekhidna2.biocenter.helsinki.fi/sanspanz/) [15]. The conserved motif analysis was performed using MEME suit (motif-based sequence analysis
tools) (http://meme-suite.org/). Max motif number and  min–max motif width parameters on the platform were set to, in turn, 10 and 6–50 [16].

Nucleotide and phylogenetic analyses
Maximum likelihood estimate of transition/transversion bias (R) was estimated under the Kimura [17] using two-parameter model. The estimate of
transition/transversion bias and G+C content were calculated using DnaSP v6.12.01 [18]. Molecular phylogenetic analysis was performed according to the
maximum likelihood (ML) method using JTT matrix-based model [19]. Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances, which are estimated using a JTT model, and then topology with superior log
likelihood value was selected. The analysis involved 11 amino acid sequences with 266 positions after all positions containing gaps and missing data
were eliminated. Evolutionary analyses were conducted in MEGA7 [20]. 
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Selection, gene duplication and synteny analyses
Nucleotide sequences of rice SAT genes were analyzed using DnaSP v6.12.01 [18], in terms of polymorphic sites, DNA polymorphism, genetic variation
level (π and θ), and Tajima’s D [21]. Ka and Ks values were calculated for duplicated gene pairs using DnaSP v6.12.01 [18]. Gene duplications analyses
were conducted according to two following criteria: If the alignment of the coding nucleotide sequences covers 70% of the longest genes and the amino
acid identity between the sequences are ≥70%, gene of interest is assumed to be duplicated [22].

Synteny analyses were conducted on Circoletto platform [23]. With this aim, processed genes of Arabidopsis, Brachypodium distachyon, Solanum
lycopersicum, and Zea mays were downloaded from Plant Genome Duplication Database [24]. Then the local blast database was constructed in Bioedit
[14] and the blast results were fed to Circoletto.

Digital expression and co-expression analyses
Digital expression profiles of OsSAT genes were obtained from Rice Expression Profile Database (RiceXPro) v3 (http://ricexpro.dna.affrc.go.jp/) (Sato et al.
2013a). Co-expression network was constructed using RiceFREND co-expression database. RiceFRIEND contains expression profiles obtained from
microarray analyses of tissues/organs of rice plant under natural field conditions and various treatments (http://ricefrend.dna.affrc.go.jp/) (Sato et al.
2013b)

Analyses of secondary and tertiary structures, predicted binding sites, and protein
interactions
Secondary structure analyses of OsSAT proteins were conducted using SOPMA server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?
page=/NPSA/npsa_sopma.html) [27]. Tertiary models were predicted by using Phyre2 server (Protein Homology/analogY Recognition Engine V 2.0
(https://www.sbg.bio.ic.ac.uk/phyre2/) [28]. The predicted 3D models were visualized using Swiss-PdbViewer [29]. The independent comparisons of
biomolecular 3D structures were performed using CLICK server (http://www.mspc.bii.a-star.edu.sg/click) [30]. The binding sites of OsSAT protein
sequences were identified using InterProScan tool (http://www.ebi.ac.uk/interpro/search/sequence-search) [31]. Protein-protein interaction network was
constructed using STRING database v11 (https://string-db.org/) [32]. 

Plant material and growth conditions
Salt tolerant local Karacadag variety was used as plant material. Rice seeds were sown in 10-cm-square pots containing 40% perlite and 60% peat. The
plants were grown in the growth cabinet with following cycle: an average of 50% humidity at 25 oC at 8-hour dark stage and 30 oC at 16-hour bright stage.
4-5 plants were grown for each experimental group. Third true leaves of rice plants were exposed to 200 mM NaCI and leaf samples were collected at the
3rd-, 12th- and 24th- hour. Leaf samples were immediately stored in RNA/eater stabilization solution (Invitrogen, Cat No: AM7021).

RNA isolation and gene expression analysis
RNA isolation was conducted by TRIzol reagent method (Ambion, Ref: 15596026). The quality and quantity of the isolated RNA were measured using 2%
agarose gel and nano-drop spectrophotometer (Maestrogen, MN-913). A total of 12 samples (i.e. 3 biological replicates from each sample) were used in
Real-Time qPCR studies. Genomic DNA elimination were carried out with these 12 samples by taking into account the protocol of the DNaseI kit (Cat:
EN0521). RNAs were then converted to cDNA according to the kit's protocol. qPCR studies were performed with the QIAGEN Rotor-Gene Q 5-Plex instrument
(Bustin et al., 2009). The OsSATs were expressed using the AMPIGENE qPCR Green Mix (Cat No: ENZ-NUC104-10000) commercial kit. OsActinII gene,
identified for salt stress in rice, is used as reference gene [33].

Relative Quantification 2- ΔΔC
T (Livak and Schmittgen 2001) method was used to compare gene expression. Gene expression data were analyzed with

Rotor-Gene Q 2.3.5 software. Primers used in the study (Table 1) were designed using Primer3. v. 0.4.0 program (Untergasser et al. 2012)
(http://bioinfo.ut.ee/primer3-0.4.0/) and synthesized by Macrogen Crop. (Amsterdam, The Netherlands).

Table 1

Primers used for RT-qPCR analysis of SATs genes.
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Primer ID Sequences (5'->3') Gene Name

OsSAT1;1 F:GACGAGTCGTGGGTCTGG LOC_Os01g52260.1 CDS

R:GGTGGCGTAGAGGAACGAC

OsSAT1;2 F:ACTCCAGCACGAGCATGAC LOC_Os02g10830.1 CDS

R:CCTTGATCTGGGACCACAC

OsSAT3 F:TGAAACTGCCATTGTTGGAA LOC_Os03g04140.1 CDS

R:TGACCAATCTTGGGGTGTCT

OsSAT2;1 F:ATCGTGCTACGGGACGTG LOC_Os03g08660.1 CDS

R:GTTACCCCGGGAAGCTCT

OsSAT2;2 F:ACTACGTGTGGGACGTGCT LOC_Os03g10050.1 CDS

R:ACAGGACGAGGTCGTGGTAG

OsSAT1;3 F:ACAACGTCTCCATCCTCCAC LOC_Os05g45710.1 CDS

R:CAGAACACCATCCCCAATCT

Results

Genome-wide identification and sequence analyses of SATs
A total of six non-redundant SAT genes were identified in rice genome using five AtSAT protein sequences as references: LOC_Os01g52260 (OsSAT1;1),
LOC_Os02g10830 (OSSAT1;2), LOC_Os03g04140 (OsSAT3), LOC_Os03g08660 (OsSAT2;1), LOC_Os03g10050 (OsSAT2;2), and LOC_Os05g45710
(OsSAT1;3) (Table 2). The protein lengths of SATs are ranged from 298 to 391 amino acid residues; molecular weights were found between 30.44 and
42.72 kDa. All SATs are predicted to be acidic character (pI≤7) except for AtSAT3. Exon numbers range from one to 10. AtSAT2 and 4 (SAT3 family) and
OsSAT3 have 10 exons. All SAT proteins in the study contain the serine acetyltransferase N-terminal domain structure (SATase_N, PF06426). In addition,
bacterial transferase hexapeptide (PF00132) domain was identified as one or two repeats. 

Table 2

Properties of SAT members in Arabidopsis and rice.

Phytozome ID Species Exon

no

 
Protein

length

 (aa)

 
Domain

family

 Repeat number  
Mol. wt.

(kDa)

 pI

At1g55920 (SAT1, SERAT2;1) A. thaliana 1 314 PF06426 2 34.25 6.45

At2g17640 (SAT2, SERAT3;1) A. thaliana 10 323 PF06426 2 34.53 5.81

At3g13110 (SAT3, SERAT2;2) A. thaliana 1 391 PF06426 1 42.72 7.73

At4g35640 (SAT4, SERAT3;2) A. thaliana 10 355 PF06426 1 38.42 5.56

At5g56760 (SAT5, SERAT1;1) A. thaliana 2 312 PF06426 2 32.77 6.70

LOC_Os01g52260 (OsSAT;1) O. sativa 1 303 PF06426 2 31.85 6.66

LOC_Os02g10830 (OSSAT1;2) O. sativa 1 298 PF06426 2 30.44 5.33

LOC_Os03g04140 (OsSAT3) O. sativa 10 354 PF06426 1 37.52 6.37

LOC_Os03g08660 (OsSAT2;1) O. sativa 1 301 PF06426 1 31.50 5.91

LOC_Os03g10050 (OsSAT2;2) O. sativa 1 315 PF06426 1 32.92 6.20

LOC_Os05g45710 (OsSAT1;3) O. sativa 1 314 PF06426 1 33.09 6.38

PF06426 (SATase_N): Serine acetyltransferase, N-terminal, Repeat (PF00132): Bacterial transferase hexapeptide (six repeats)

To provide more insight about protein sequence diversity of SATs, sequence identity matrix was constructed (Table 3). The lowest identity value was found
0.325 between AtSAT2 and AtSAT3 whilst the highest value was found between OsSAT2;1 and OsSAT2;2 as 0.914. The mean identity value of SAT
proteins was 0.476. 

Table 3
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Sequence identity matrix of SATs in Arabidopsis and rice

  AtSAT1 AtSAT2 AtSAT3 AtSAT4 AtSAT5 Os1 Os2 Os3 Os4 Os5 Os6

AtSAT1 ID                    

AtSAT2 0.390 ID                  

AtSAT3 0.611 0.325 ID                

AtSAT4 0.393 0.700 0.341 ID              

AtSAT5 0.495 0.425 0.409 0.407 ID            

Os1 0.503 0.417 0.426 0.422 0.685 ID          

Os2 0.477 0.398 0.393 0.393 0.609 0.741 ID        

Os3    
0.386

0.547 0.358 0.563 0.408 0.405 0.400 ID        

Os4 0.473 0.367 0.383 0.356 0.444 0.506 0.498 0.356 ID    

Os5 0.496 0.374 0.406 0.369 0.476 0.523 0.507 0.372 0.914 ID  

Os6 0.498 0.398 0.407 0.407 0.703 0.818 0.700 0.400 0.481 0.501 ID

 Os1: LOC_Os01g52260 (OsSAT1;1), Os2: LOC_Os02g10830 (OsSAT1;2), Os3: LOC_Os03g04140 (OsSAT3), Os4: LOC_Os03g08660 (OsSAT2;1), Os5:
LOC_Os03g10050 (OsSAT2;2), Os6: LOC_Os05g45710 (OsSAT1;3).                

Conserved motif analysis
Regarding conserved motifs, 10 conserved motifs were detected (Table 4 and Fig. 1). The motif 3 was found to be related with PF00132 (Bacterial
transferase hexapeptide). Motif 4 and 5 were related with PF06426 (serine acetyltransferase) domain structure. The motif 1, 2, 3, 4, and 5 were present in
all SATs whereas other motifs were found in different numbers. 

Table 4

The details of conserved motif sequences in SAT proteins

No. Motif sequence S W Domain

1 IGKGILLDHATGVVIGETAVVGBNVSILHGVTLGGTGKESGDRHPKIGDG 11 50 NF

2 YSHCLLNYKGFLALQAHRVAHKLWAQGRKALALALQSRVSEVFAVDIHPA 11 50 NF

3 VLIGAGATILGNVKIGAGAKIGAGSVVLKDVPPRTTAVGNPARLIGGKDE 11 50 PF00132

4 WDQIKAEAKRDAEKEPILSSFLYASVLSHPSLERALAFHLANKLCNPTLL 11 50 PF06426

5 FAGVLAAHPEJRAAVRADLLAAKDRDPAC 11 29 PF06426

6 IPGESMDHTSFISEWSDYTI 6 20 NF

7 QDPSLTMKHDATREFFQHVAVAYKDDKPN 3 29 NF

8 MAACIDKWPTGKPQ 4 14 NF

9 RLPEKFYCVLPDCTATDRPV 2 20 NF

10 TQLYDL 11 6 NF

W: width, S: sites, NF: not found, PF00132: Bacterial transferase hexapeptide (six repeats), PF06426: Serine acetyltransferase, N-terminal

Nucleotide and phylogenetic analyses
R value, the ratio of transition to transversion, were estimated to provide insight into DNA sequence evolution and phylogeny reconstruction. Also, G+C
contents of OsSATs were calculated to predict probable functional variations of the genes which are important for organisms in gaining adaptation to its
environment. The estimated transition/transversion bias (R) was found as 0.71, indicating genetic variations. G+C contents were found 71.82%, 75.25%,
51.92%, 72.63%, 72.47%, and 68.68% for OsSAT1;1, OSSAT1;2, OsSAT3, OsSAT2;1, OsSAT2;2, and OsSAT1;3, respectively. 

Phylogenetic analysis indicated that AtSATs and OsSATs split into two major clades (Group A and B). Group A also divided into two subclades (Fig. 2).
OsSAT2;1 (LOC_Os03g08660) and OsSAT2;2 (LOC_Os03g10050) clustered with AtSAT1 (SAT2;1) and AtSAT3 (SAT2;1) in subclade A1, whereas OsSAT1;3
(LOC_Os05g45710), OsSAT1;1 (LOC_Os01g52260), and OsSAT1;2 (LOC_Os02g10830) grouped with AtSAT5 (SAT1;1) in subgroup A2. OsSAT3
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(LOC_Os03g04140) gene clustered with AtSAT2 (SAT3;1) and AtSAT4 (SAT3;2) and separated from rest of SATs in group B (100%), indicating genetic
divergence. This separation is related to OsSAT3 having the highest identity scores, in turn, with AtSAT4 and AtSAT2.

Selection, gene duplication and synteny analyses
Nucleotide variations of six OsSAT genes were analyzed using two selection analyses: Tajima’s D and Ka/Ks tests. In Tajima’s D test, the number of
polymorphic (segregating) sites in OsSAT genes were identified as 516, of which 47.1% (243/516) were singleton variable sites and 30.4% (273/516) were
parsimony informative sites. 306 sites were invariable (monomorphic) and nucleotide diversity was found 0.33 and 0.27 for π and θ parameters,
respectively. Tajima’s D was found 1.22, indicating purifying (negative) selection.

In the second selection test, the nonsynonymous (Ka) and synonymous (Ks) substitution rates between the duplicated gene pairs were calculated. Ka/Ks
values for all OsSAT genes were found less than one, validating previous finding that OsSAT genes were subjected to purifying selection. Moreover, gene
duplications analyses indicated that three segmental duplications and one tandem duplication occurred, suggesting that these duplications are the major
force for SAT gene expansion (Table 5).

Table 5

Segmental and tandem duplications of SAT paralogous pairs in rice genome

SAT group Chr. location Duplication type Ka Ks Ka/Ks

OsSAT1;1 OsSAT1;2 Chr1

Chr2

Segmental 0.114 0.184 0.619

OsSAT1;1 OsSAT1;3 Chr1

Chr5

Segmental 0.073 0.296 0.247

OsSAT1;2 OsSAT1;3 Chr2

Chr5

Segmental 0.146 0.363 0.402

OsSAT2;1 OsSAT2;2 Chr3

Chr3

Tandem 0.018 0.023 0.783

Non-synonymous (Ka) and synonymous (Ks) indicate the substitution rates. Ka/Ks is non-synonymous/synonymous mutation ratio

To understand gene duplication dynamics of OsSAT genes four comparative syntenic maps of rice, associated with four representative species, were
generated. (Figure 3). Six OsSAT genes had a syntenic relationship with five genes in Arabidopsis, followed by four genes in B. distachyon, four genes in
tomato, and three genes in maize. 

Distinct expression profiles of OsSAT genes
To better understand the functions of OsSAT genes in the cell metabolism, gene expression levels in different tissues and organs were displayed as a
heatmap in Fig 4. For digital expression analysis, five OsSAT genes were obtained from Rice Expression Profile Database (RiceXPro) except for OsSAT1;2
(LOC_Os02g10830) gene. In general, OsSAT genes in stem, inflorescence, anther, pistil, lemma, palea, and embryo tissues/organ were expressed at low
level. Particularly, OsSAT2;1 and OsSAT2;2 genes were down-regulated as about -3-fold change. Also, these two genes were downregulated in inflorescence
and anther tissues. In leaf blade and sheath, OsSAT genes commonly were upregulated. OsSAT2;1 and OsSAT2;2 genes were upregulated about three-fold
changes in leaf blade.

In the second step, gene expression profiles of OsSAT genes were evaluated at five different time points depending on six types of plant hormone
applications (abscisic acid, gibberellin, auxin, brassinosteroid, cytokinin, and jasmonic acid) (Fig. 5). Jasmonic acid treatment especially causes
upregulation of OsSAT genes in terms of gene expression levels. Particularly OsSAT1;1 gene was upregulated nearly four-fold by jasmonic acid. Also, it
was found that the optimal time point for the expression to increase was one hour for OsSAT1;1 gene under jasmonic acid treatment. Also, OsSAT1;1
responded to the auxin and abscisic acid treatments at the third hour of exposure despite its responses were not as high as to that of jasmonic acid. The
up-regulation of OsSAT1; 1 gene also was observed under abscisic acid and auxin treatments. OsSAT2;1 and OsSAT2;2 genes were upregulated at the first
hour of exposure to jasmonic acid. Overall, levels of gene expressions under hormone treatments supported that OsSAT1;1, OsSAT2;1, and OsSAT2;2 genes
were positively regulated by hormone treatments.

Co-expression analysis of OsSAT genes
The co-expression network of OsSAT genes was constructed using RiceFREND database. Co-expression network of OsSAT genes displayed that
Os04g0577500, Os11g0524300, Os06g0167400, Os06g0690700, Os12g0641300, Os04g0488700, and Os07g0589000 were seven first neighbor genes
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that co-expressed with OsSATs (Fig. 6). Os04g0488700 (similar to PHY3, AGC kinase) was co-expressed with OsSAT1;1 gene. The AGC kinase family is
one of seven kinase families and they are conserved in all eukaryotic genomes. AGC kinases in plants play roles in modulation of kinase activity by
external stimuli [34]. Os12g0641300 (similar to Zn-dependent hydrolases of the beta-lactamase fold) was identified as a co-expressed gene with OsSAT1;3.
Os07g0589000 (lateral organ boundaries, LOB domain containing protein) was co-expressed with OsSAT2;1 and OsSAT2;2. Lateral organ boundaries
domain (LBD) proteins contain lateral organ boundaries (LOB) domain that are key regulators for plant organ development such as photomorphogenesis,
plant regeneration, and pollen development [35]. OsSAT3 was co-expressed with Os04g0577500 (TatD-related deoxyribonuclease family protein),
Os11g0524300 (protein of unknown function DUF1001 family protein), Os06g0167400 (di-trans-poly-cis-decaprenylcistransferase family protein), and
Os06g0690700 (similar to potential cadmium/zinc-transporting ATPase HMA1). TatD is conserved protein found in all living organisms and participates in
DNA fragmentation during apoptosis in eukaryotic cells [36]. Heavy metal pumps (P1B-ATPases) are vital for cellular heavy metal homeostasis.
Arabidopsis thaliana contains eight P1B-ATPase genes (heavy metal ATPases 1–8 (HMA1–HMA8) members [37].

Annotations of SAT proteins
The gene ontology (GO) analyses of OsSAT proteins were performed using PANNZER server, in terms of biological process, molecular function, and cellular
component (Fig. 7). Sulfur amino acid biosynthetic process (GO:0000097), L-serine metabolic process (GO:0006563), biosynthetic process from serine
(GO:0006535), cellular amino acid biosynthetic process (GO:0008652), sulfate assimilation (GO:0000103), and response to sulfate starvation
(GO:0009970) were identified as biological processes in which OsSATs are involved (Fig. 7A). Serine O-acetyltransferase activity (GO:0009001), terpene
synthase activity (GO:0010333), magnesium ion binding (GO:0000287), zinc ion binding (GO:0008270), and protein binding (GO:0005515) were predicted
molecular functions which are OsSATs are carried out (Fig. 7B). In addition, cytoplasm (GO:0005737), intrinsic component of membrane (GO:0031224),
intracellular part (GO:0044424), and membrane-bounded organelle (GO:0043227) were identified as cellular components in which OsSATs function (Fig.
7C). When the results of GO analyses were evaluated, it was clearly observed that amino acid synthesis is the most prominent biological process for
OsSATs.

Secondary and tertiary structure analyses of OsSATs
According to the secondary structure analyses, there are structural variations among OsSAT proteins. The alpha helix, extended strand, beta turn, and
random coil percentages (%) were found between 36.94 -42.62, 17.46 - 21.19, 7.38 - 10.45, and 28.25 -34.65, respectively (Supp. Table 1). The predicted 3D
structures of OsSAT proteins (Fig. 8) were found reliable due to and their   Ramachandran values ranging from 96% to 99%   in core and allowed regions.
Homologous proteins from different organisms can be recognized using sequence comparison because amino acid substitutions in particular positions
are prevented by strong selective constraints [38] . These structural variations at secondary and tertiary levels may be associated with SAT proteins’
functional flexibilities.

The 3D structural similarities (%) were identified using six rice, five Arabidopsis, and one soybean SAT proteins on CLICK structure comparison server
(Table 6). In general, the 3D structural similarity values were identified between 68.36% and 88.45%. The highest (88.45%) and lowest (68.36%) similarity
values were found in turn between OsSAT1;1 & AtSAT4 and OsSAT3 & GmSAT. When Arabidopsis and rice similarity values were compared, the similarity
was observed over 80%, indicating well-conserved SAT protein structure. The protein having the lowest similarity values with other SATs was OsSAT3
protein, proving structural divergence among SATs [9].

Table 6

The 3D structure overlap (%) of rice, Arabidopsis, and soybean SATs using CLICK structure comparison server

  Os1 Os2 Os3 Os4 Os5 Os6

AtSAT1 82.84 87.58 79.30 85.71 82.80 79.94

AtSAT2 83.50 87.25 84.21 85.38 84.76 81.85

AtSAT3 87.79 88.26 73.45 86.05 86.03 87.90

AtSAT4 88.45 88.26 72.88 86.71 84.44 84.71

AtSAT5 79.87 82.21 84.62 80.73 79.17 81.73

GmSAT 79.87 81.21 68.36 81.73 77.14 77.71

Os1: LOC_Os01g52260 (OsSAT1;1), Os2: LOC_Os02g10830 (OsSAT1;2), Os3: LOC_Os03g04140 (OsSAT3), Os4: LOC_Os03g08660 (OsSAT2;1), Os5:
LOC_Os03g10050 (OsSAT2;2), Os6: LOC_Os05g45710 (OsSAT1;3), Gm: Glycine max (PDB code: 4N69)

Predicted active sites of OsSATs
The identification of catalytic residues of enzymes is an indispensable step for understanding the functions of enzymes [39] . In this study, active site
predictions of OsSATs were performed using InterPro 74.0 server (Table 7). Particularly, Asp (D), His (H), Gly (G), Thr (T), Arg (R), Ala (A), and Leu (L)
residues were conserved at different positions in all OsSATs; in contrast, some residues such as 248M (Met), 249Q (Gln), and 292A (Ala) residues were only
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identified in LOC_Os03g04140 (OsSAT3) protein, suggesting functional divergence of SAT3 protein in rice. In general perspective, it was found that similar
amino acid residues were present in the predicted active binding sites.

Table 7

Predicted active sites of OsSAT proteins

Protein name Active sites

OsSAT1;1

(LOC_Os01g52260)

189D, 190H, 209L, 210H, 216G, 217T, 224R, 225H, 236A, 251K, 253G, 254A, 257L, 259L, 267T, 272P

OsSAT1;2 (LOC_Os02g10830) 182D, 183H, 202L, 203H, 209G, 210T, 217R, 218H, 229A, 244K, 246G, 247A, 250L, 252L, 260T, 265P

LOC_Os03g04140 (OsSAT3) 228D, 229H, 248M, 249Q, 255G, 256T, 263R, 264H, 275A, 290M, 292A, 293A, 296L, 298L, 306M, 311P

OsSAT2;1 (LOC_Os03g08660) 197D, 198H, 217L, 218H, 224G, 225T, 232R, 233H, 244A, 259E, 261G, 262A, 265I, 267L, 275T

OsSAT2;2 (LOC_Os03g10050) 203D, 204H, 223L, 224H, 230G, 231T, 238R, 239H, 250A, 265K, 267G, 268A, 271V, 273L, 281T, 286P

OsSAT1;3 LOC_Os05g45710 195D, 196H, 215L, 216H, 222G, 223T, 230R, 231H, 242A, 257K, 259G, 260A, 263V, 265L, 273T, 278P

The expression of OsSATs under salt stress
In this study, OsSATs responses under 3, 12, 24-h salt treatments were investigated (Fig. 9). OsSAT2;1, OsSAT2;2 and OsSAT3 were downregulated under all
exposure times. The magnitude of OsSAT2;1 expression to all salt treatments was the lowest compared to other OsSATs. On the other hand, OsSAT2;2 and
OsSAT3 responded to exposure times in a similar way. The expressions of OsSAT1;1 and OsSAT1;2 and OsSAT1;3 increased depending on the 3, 12, and
24-hour NaCl treatments. OsSAT1;2 was generally expressed at the highest level under all exposure times. Lastly, the responses of OsSAT1;2 and OsSAT1;3
to salt exposure times were the highest at 24-h NaCl treatment. Overall, OsSAT1;1 and OsSAT1;2 and OsSAT1;3 are responsive genes to different salt
exposure times; and OsSAT1;2 and OsSAT1;3 were particularly upregulated by 24-hour salt treatment.

Discussion
Sequence, nucleotide and phylogenic analyses of Arabidopsis and rice proteins showed that there are sequential and phylogenetic divergences among
SATs (Kawashima et al. 2005). AtSATs and OsSATs were not separated from each other completely in phylogenetic analysis due to having the same
number of exons and relatively higher identity scores. For example, AtSAT2/4 and OsSAT3 genes have 10 exons with identity values above 50 % unlike the
rest of SATs. In terms of identity values of plants of interest, OsSATs have more similar (0.541) protein sequences compared to AtSATs (0.450).
Nonetheless, the selection analyses of OsSAT genes showed that SATs are subjected to the purifying selection. Purifying selection, also known as
background selection, reduces genetic diversity and shapes it in natural population [40]. Consequently, it may be suggested that the genetic diversity of
OsSAT genes decreased as a result of purifying selection.

R value, the ratio of transition to transversion, were estimated for DNA sequence evolution and phylogeny reconstruction [41]. In any genome, transitions
(T↔C and A↔G) are observed at higher frequencies than transversions (T↔A, T↔G, C↔A, and C↔G). In this study, the estimated transition/transversion
bias (R) was found as 0.71, indicating genetic variations. Proving this result, GC contents of OsSATs also showed a considerable variation. Genomic DNA
base composition (GC content) affects genes’ functions and  adaptation of species to its environment and it may play roles in complex gene regulation
[42]. Consequently, it can be concluded that the action of purifying selection may increase the specificity and the selectivity of SATs in rice metabolism,
leading to variations of G+C contents. In addition to that, we found that segmental and tandem duplications are driving force of OsSATs evolution. It is
known that gene duplication is one of types of genomic change that can lead to evolutionary changes. The duplicated genes can contribute to the
evolution of novel functions including adaptation to stress, induction of disease resistance, production of floral structures [43] and expansion of gene
families [44]. As is found in this study,  it is reported that SAT2;1/SAT2;2 and SAT3;1/SAT3;2 isoforms in Arabidopsis were also duplicated gene pairs [45].

Although all SATs contain serine acetyltransferase N-terminal domain structure (SATase_N, PF06426) and bacterial transferase hexapeptide (PF00132) as
their common motifs, there is still variations in motif structures.  The presence of protein motifs may play important roles in protein function. The motifs in
active sites of proteins are well-conserved [46], suggesting that these variations in motif structures may be connected with functional diversities of SATs in
plants.

Expression patters of OsSATs showed difference according to tissues and organs, and treatments. This result is validated by the co-expression maps of
OsSAT genes showing their involvement in various metabolic pathways and their association with gene families with different functions. When the
expression levels of OsSATs by organs are taken into consideration, it was observed that the expression levels of OsSAT2;1 and OsSAT2;2 genes showed
more dynamic profiles. Jasmonic acid is the only hormone activating expression of OsSAT1;1, OsSAT2;1, and OsSAT2;2. Besides, OsSAT1;1 was the only
OsSAT induced by auxin and abscisic acid hormones. The expressions of OsSATs under different salt treatments conducted within study showed that
OsSAT1;1, OsSAT1;2 and OsSAT1;3 were generally upregulated depending on different salt exposure times. However, OsSAT1;2 showed the highest
expression levels when exposed to 3,12, and 24-hour salt treatments. Conversely, OsSAT2;2, OsSAT3 and particularly OsSAT2;1 were downregulated
depending on salt exposure times. Watanabe et al. [45] stated that three cytosolic isoforms, SAT1;1, SAT3;1, and SAT3;2 genes in Arabidopsis contribute to
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seed development and SAT gene family plays essential roles for plant survive. Also, SAT3;1 and SAT3;2 isoforms of Arabidopsis play roles in plant
development. In Arabidopsis, AtSAT2 and AtSAT4 are 10–100 times less transcribed compared to the major expressed SAT isoenzymes such as AtSAT1, 3
and 5 [9, 47]. Everything considered, the varied expression patterns of OsSATs under various conditions show that they are dynamically regulated and
OsSAT1;1 is the only OsSAT induced by various situmuli.

The expressional similarities among OsSATs may be originated from preserved residues in their active sites taking effect on their functions. As stated
earlier, Asp (D), His (H), Gly (G), Thr (T), Arg (R), Ala (A), and Leu (L) are the conserved residues in active sites of OsSATs. His169, Asp154, His18, Arg203
and His204, Lys230, Arg253 in soybean were identified  as active residues involved in reactions such as  catalysis, oxyanion reaction intermediate, serine
binding, CoA binding according to crystal structures and analysis of site-directed mutation data [48]. In this study, similar residues were identified in
predicted active sites of OsSAT proteins.

Conclusion
A total of six OsSAT genes were identified in rice genome and variations at gene and protein structures were identified using bioinformatics approaches. It
is found that jasmonic acid induced the expressions of OsSAT1;1, OsSAT2;1, and OsSAT2;2 whereas auxin and abscisic acid induced only OsSAT1;1. On
the other hand, OsSAT1;1, OsSAT1;2 and OsSAT1;3 genes were upregulated under different exposure times of salt stress. OsSAT1;1 is the only OsSAT gene
induced by various situmuli.

SAT gene family play specific roles in plant metabolism, particularly sulfur assimilation pathway depending on purifying selection which decreased genetic
diversity of them. In addition to purifying selection, segmental and tandem duplications may lead to OsSATs to have more specific and selective roles in
metabolic pathways which may have an effect on the plant’s responses to abiotic and biotic stress conditions. Therefore, the findings can be used by plant
breeders and genetic engineers to develop new rice varieties having optimal growth and stress tolerance.
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Figures

Figure 1

Block diagram of conserved motifs in 11 SAT protein sequences from rice and Arabidopsis using MEME server. Each color represents the distinct motif
structure.
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Figure 2

Phylogenetic tree of SAT protein family based on SAT amino acid sequences of rice and Arabidopsis.
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Figure 3

Synteny analyses of OsSAT genes in tomato (a), maize (b), Arabidopsis (c), and B. distachyon (d). Blue lines in the background indicate the collinear
blocks within rice and other plant genomes whilst the red and yellow lines show the syntenic SAT gene pairs.
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Figure 4

Spatio-temporal OsSAT gene expression of various tissues/organs throughout entire growth in the field. The expression data is retrieved from Rice
Expression Profile Database (RiceXPro)
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Figure 5

Global OsSAT gene expression profile in response to plant hormones. The expression data is retrieved from Rice Expression Profile Database (RiceXPro)
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Figure 6

Co-expression networks of OsSAT genes (blue-circled). The each network was generated using the data on RiceFREND gene co-expression database.

Figure 7

GO annotation of OsSAT proteins using PANNZER server. The annotation was done on three categories: (a) biological process, (b) molecular function, and
(c) cellular component.
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Figure 8

The predicted 3D model of Arabidopsis and rice SAT proteins

Figure 9

The expression of OsSATs under salt stress. Each gene was shown in different color. The error bars on the graphs show the standard deviations of
expressions.


