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Abstract
Polymicrobial infection of the airways is a hallmark of obstructive lung diseases such as cystic �brosis
(CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Pulmonary exacerbations (PEx)
in these conditions are associated with accelerated lung function decline and higher mortality rates. An
understanding of the microbial underpinnings of PEx is challenged by high inter-patient variability in
airway microbial community pro�les. We analyzed bacterial communities in 880 CF sputum samples and
developed microbiome descriptors to model community reorganization prior to and during 18 PEx. We
identi�ed two microbial dysbiosis regimes with opposing ecology and dynamics. Pathogen-governed PEx
showed hierarchical community reorganization and reduced diversity, whereas anaerobic bloom PEx
displayed stochasticity and increased diversity. A simulation of antimicrobial treatment predicted better
e�cacy for hierarchically organized communities. This link between PEx type, microbiome organization,
and treatment success advances the development of personalized clinical management in CF and,
potentially, other obstructive lung diseases.

Introduction
Obstructive lung diseases, such as cystic �brosis (CF), non-CF bronchiectasis, and chronic obstructive
pulmonary disease (COPD), are characterized by chronic polymicrobial bacterial infection of the airways.
Intermittent increases in signs and symptoms of respiratory dysfunction, so-called pulmonary
exacerbations (PEx), are associated with lung disease progression and mortality in these conditions1–3.
Despite their importance, the pathophysiologic events underlying PEx are unclear but generally believed
to involve transient perturbation of host-microbial dynamics in the airways. Management of these events
typically involves frequent, often aggressive, antibiotic treatment, which is intended to decrease bacterial
burden and blunt host in�ammatory response that contributes to lung pathology. This care carries
considerable cost and treatment burden and is limited by drug toxicity and ever-increasing antimicrobial
drug resistance4. In CF, therapies that modulate the activity of the dysfunctional cystic �brosis
transmembrane conductance regulator (CFTR), the primary cellular defect in CF, have reduced the
frequency of PEx for many, but not all, people with CF5,6. Thus, a better understanding of PEx remains a
high priority in efforts to improve care and enhance quality of life for persons with obstructive lung
conditions7.

Dysbiosis de�nes disease-associated alterations of the microbiome that affects the taxonomic
composition as well as the functional activity of the microbial community8. This serves as an umbrella
term for a variety of non-exclusive community characteristics including diversity loss, symbiont loss, or
pathobiont blooms. As such, the label dysbiosis may be of limited applicability in describing microbial
dynamics in chronic obstructive lung diseases insofar as the pulmonary microbiome in these conditions
displays a markedly different ecology from that in healthy lungs, and can be considered, by de�nition, to
represent a dysbiotic state9,10. Nevertheless, given that a pathologic microbiome persists even during
periods of relative clinical stability, a better characterization of its reorganization patterns to classify
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(relative) pulmonary dysbiosis into distinct types could provide opportunities for improved management
of PEx in chronic pulmonary conditions8,10,11.

The search, in cross-sectional studies, for common motifs in microbial community processes that drive
PEx, particularly in CF, has been hampered by subject-speci�c microbiome con�gurations. Employing
longitudinal sampling strategies revealed highly individual taxonomic pro�les with context-dependent
metabolic activities and signaling have been observed in numerous studies12–15. Unpredictable and ill-
de�ned onset of PEx, as well as personalized antimicrobial treatment schemes to manage PEx, further
complicate analyses16. A strategy that is capable of consolidating process communalities against the
background of natural case variability is therefore required17.

Recent studies on microbial community networks have found that the precise con�guration of
dependencies among members de�ne their community role, as well as the dynamical behavior of the
microbiome18–20. Moreover, the formation of network clusters (i.e. the coexistence of microbial sub-
communities) modulates robustness to external perturbation including antimicrobial therapy21,22.
Recently, time evolution of gut, vaginal and oral microbiomes were modeled using alternative community
descriptors anchored in information theory23. Switching patterns of microbiota that emerged as tradeoff
between perturbation, accessible niches and internal forces were identi�ed. The impact of complex
community organization on medically relevant microbial behaviors such as pathogen virulence or
resilience to antimicrobial therapy is understudied and remains largely unexplored for clinical
applications.

In this study, we developed non-standard descriptors that aggregate ecological and compositional
properties of the CF lung microbiome and used these to identify PEx types with communal patterns. We
then analyzed the organization of the CF microbiome in these backgrounds and revealed two,
fundamental dysbiosis states: a hierarchical community reorganization controlled by the dominant
pathogen and a stochastic reorganization with blooming anaerobic taxa and high taxonomic turnover. Of
note, the behavior of a focal pathogen was markedly different with different community hierarchy. Lastly,
we modeled targeted antimicrobial treatment on data-inferred co-occurrence networks and observed that
distinct community organizations signi�cantly determined treatment outcomes.

Results and Discussion

Compositional characterization of PEx time series
We aggregated a collection of 880 sputum samples from 11 adults with CF, comprising 18 PEx time
series. The characteristics of the study subjects and sputum samples are provided in Table 1; sample
inclusion criteria are provided in Tables S1 and S2. Subjects and sputum samples were chosen from a
larger dataset that had been generated during the course of a long-term observational study15,24–27.
Subjects were selected from this larger dataset based on the availability of near-daily sputum samples
(i.e., a sample available from at least 60% of days) that spanned periods of clinical stability culminating
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with a PEx that prompted antibiotic treatment by the subject’s care team. More speci�cally, samples in
each PEx time series were collected from 60 days prior to one day prior to the initiation of treatment for
PEx (Figure S1). The time frame of 60 days prior to the start of PEx antibiotic treatment was selected to
accommodate potential changes in the lung microbiome preceding symptom onset together with
changes occurring during the acute PEx phase. As we have done in previous studies 15,24,28–33, samples
were further characterized based on the subject’s clinical state at the time of collection: baseline samples
were those collected between 60 and 15 days prior to the start of antibiotic treatment; exacerbation
samples were collected between 14 and one day prior to the start of antibiotic treatment. Neither samples
obtained during acute antibiotic treatment for PEx (treatment) nor within three weeks after PEx treatment
stopped (recovery) were included in this analysis. Chronic (maintenance) antibiotic therapies such as
inhaled tobramycin and aztreonam, and oral azithromycin used on each day were recorded. A mean of 49
(SD, 7.3) sputum samples were analyzed per PEx time series.

Identifying common microbiologic features of PEx in CF is challenged by the pronounced subject
speci�city of the lung microbiome, which typically overshadows potential communalities. Accordingly, we
identi�ed 1,949 amplicon sequence variants (ASVs) among the 880 samples, with only eight ASVs
present in every subject. For further analyses, the data set was denoised to 194 core ASVs by removing
taxa present with an average relative abundance below 0.0075%. To quantify the degree of subject
speci�city in the data set, a PERMANOVA test was performed to calculate the effect sizes of clinical and
demographic covariates on data variance. Covariates included subject, subject age, subject sex, clinical
state (baseline health or exacerbation of symptoms34), and zygosity of the cftr F508del allele. As
expected, we found that individual subject was a strong predictor for ASV covariance ( ,

), followed, to lesser effects, by age ( , ) and clinical state (
, ).

Identifying distinct PEx types using non-standard
descriptors
To reduce subject-speci�c microbiome bias, we abandoned ASV composition as the sole sample
descriptor, assembling the 194 core ASVs into �ve higher-order groups. The �rst group comprised
conventional CF pathogens (Pseudomonas, Staphylococcus, Burkholderia, Haemophilus, Achromobacter,
and Stenotrophomonas) based on the prominent role these species are believed to play in CF lung
disease35,36. Three groups were categorized re�ecting species oxygen requirement for growth37,
considering that the CF lung microbiome is strongly conditioned by local oxygen gradients: strictly
aerobic, strictly anaerobic, and facultatively anaerobic. The �fth group comprised uncultivated taxa with
unknown oxygen requirements.

Building on these �ve ASV categories, we assembled the following non-standard descriptors for every
sputum sample: i) the ratio of CF pathogens to strict anaerobes, ii) the relative abundance of the most
abundant CF pathogen, iii) the Shannon diversity index of the core ASVs, iv) the Chao1 richness of the
core ASVs, and v) a community classi�cation using Dirichlet multinomial mixtures (DMM). The DMM

ω2 = 0.51

p < 0.001 ω2 = 0.023 p < 0.001 ω2 = 0.003

p < 0.003
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model was implemented using the �ve ASV groups as input and identi�ed six community classes. Two
DMM community classes were dominated by CF pathogens, three by anaerobes, and one by facultatively
anaerobic organisms. Community classes, selection of Dirichlet components, class distribution over the
cohort and class-wise sample compositions are presented in Figure S2.

Using this suite of descriptors, we implemented a second PERMANOVA model and found that the
variance explained by this model was reduced compared to that based solely on ASVs (R2 = 0.62 and R2 
= 0.78, respectively). Most importantly, the effect size of subject bias decreased by 51% (Fig. 1A). Data
independent of clinical state, were ordinated using principal component analysis (Fig. 1B), and the �rst
three principal components were used to group similar samples. K-mer clustering identi�ed three distinct
PEx clusters or types using  statistics (Figs. 1C and 1D).

Having identi�ed three robust clusters, hereafter referred to as PEx types, we next analyzed the
distribution of DMM communities among these. PEx Type 1 (hereafter called PAT) comprised
communities dominated by conventional CF pathogens, including Pseudomonas, Burkholderia,
Achromobacter, Haemophilus, Staphylococcus, and Stenotrophomonas. PEx Type 2 (AN1) and Type 3
(AN2), on the other hand, were driven by three distinct anaerobic community con�gurations. These results
suggested that species sorting occurred in subjects’ lungs according to oxygen requirements38.
Importantly, PEx proceeded in both aerobic and anaerobic communities.

To assign subjects and their PEx time series to a single PEx type, we performed Spearman’s rank
association (Figures S3A and S3B). Two time series were excluded from further analyses due to
inconclusive association to a single type (time series 9, 12). The reduced number of 789 samples
distributed as 286, 254, and 249; the number of subjects as 4, 3, and 4; and the number of PEx as 6, 5,
and 5 to PEx types PAT, AN1, and AN2, respectively (Figures S3C and S3D). We found that sample
association with PEx type PAT was remarkably stable both at the level of individual PEx time series (60
days), as well as with subjects over time. On the contrary, more transition events were observed between
PEx types AN1 and AN2 (Figures S4A and S4B). Overall, subjects showed a tendency to persist either in
PAT or in AN1 or AN2 despite recurrent antibiotic treatment between time series (treatment samples
excluded, Figure S4C).

In summary, aggregated measures of sample diversity, ecology and function were used to reduce the
organism-driven subject bias and group PEx trajectories with similar properties. We identi�ed three
communal PEx types among subjects, termed PAT, AN1 and AN2, that displayed distinguishable
microbiomes.

Temporal behavior of microbiomes in distinct exacerbation
regimes
We studied the con�guration of the lung microbiota in and between the identi�ed PEx types and modelled
common re-organization patterns over time as the community proceeded towards the start of PEx
treatment. To elucidate underlying ecological processes, we �rst asked whether PEx types could be

χ2
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simply explained by the DMM community classes, i.e. different community compositions28,39 and
whether oxygen availability could motivate shifts in microbiome con�gurations40. We assessed the
distribution and temporal change of DMM community classes previously modeled from coarse-grained
ASV groups (Figs. 2A, S2). Unexpectedly, no signi�cant temporal evolution of DMM communities was
observed within PEx types, indicating that the overall proportions of pathogens, anaerobes, facultative
anaerobes, and aerobes persisted over most of the PEx cycle with few exceptions. These sporadic shifts
occurred only between comparable community classes, i.e., due to continuous transitions (increase or
decrease) of taxonomic groups.

Several studies have investigated microbiome structure and rearrangement prior to PEx with inconsistent
results29,30,41,42. Neither pathogen load nor other recurrent organisms were consistent predictors for
imminent PEx across larger patient cohorts. Here, we strati�ed the microbiota by the identi�ed PEx types
and analyzed diversity and richness over time in trajectories with similar properties. Mixed effect models
were implemented to test time dependencies of Shannon and Chao1 for the three PEx types and
corrected for confounders (subject and PEx cycle) (Figs. 2B and 2C). All PEx types displayed signi�cant
diversity evolution across samples culminating in antibiotic treatment (pPAT = 0.00126, pAN1 = 0.04462,
pAN2 = 0.03672). The analogue analysis for Chao1 identi�ed PAT and AN1 to exhibit signi�cant
dependency with time (pPAT = 4.333e-05, pAN1 = 0.025).

Interestingly, richness and diversity decreased towards treatment for the pathogen-dominated
communities (PAT) and increased for anaerobic PEx types (AN1 and AN2). Furthermore, it is important to
note that the time dependency of richness and diversity were consistently small and ranged between 

 for all PEx types. In short, we revealed that diversity evolves opposingly, as the
microbial communities approached PEx treatment. Of note, despite the modest effect size, these results
have the potential to explain the inconclusive reports of previous studies that were conducted without
consideration of PEx regimes7.

Species turnover displays antagonistic patterns in pathogen
or anaerobe communities
Evidence suggests that changes in airway microbial community structures may precede the onset of
clinical symptoms of PEx by days or even weeks15,41,43. To determine the most likely time interval for
such changes, samples were systematically grouped by collection time (days before the initiation of
antibiotic treatment for PEx) and tested for signi�cant differences of Shannon diversity and Chao1
richness (Figure S5). A split into 1–23 and 24–60 days before PEx treatment showed statistically
signi�cant relative changes in all three PEx types, in accordance with the previous result indicating
diversity and time dependency.

Community turnover  describes the rate of species compositional change over time as de�ned by
Ontiveros and colleagues44. We employed Aitchison distance to quantify community dissimilarity over
time and assessed turnover as the slope of a �tted, linear model. We analyzed turnover  during onset of

η2 = {0.02, 0.06}

T

T
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(1–23 days prior to treatment) and prior to (24–60 days) PEx by evaluating Aitchison distance between
any two samples collected in an interval of one to 20 days in a subject-wise manner (Fig. 2D). Overall,
dissimilarity was smaller in the pathogen-dominated PEx type PAT (ANCOVA p < 0.001) and turnover 
was reduced during the 23 days compared to 24–60 days prior to PEx treatment (

 for both tests). Interestingly, the anaerobic PEx types AN1
and AN2 again exhibited antagonistic patterns, with increased species turnover shortly before PEx
treatment (ANCOVA p < 0.001 for both tests). Together, the previous results suggested two PEx regimes
(PAT vs AN) with antagonistic temporal behavior.

Characteristic community reorganizations stratify pulmonary
dysbiosis types
The detailed organization of interactions and dependencies throughout an ecological community
prede�nes its emergent, dynamical capabilities45. In particular, resilience to perturbations such as
antimicrobial treatment, community robustness, and the stabilizing effect of keystone organisms were
previously attributed to properties of dependency networks18,19,22. Therefore, it is not only important to
identify the most relevant CF pathogen in the airway microbiome, but to understand how the background
community organization impacts the focal driver organism, modulates its virulence, and contributes to
stability.

To study community organization, we inferred co-occurrence networks from sample subsets of individual
PEx time series. In detail, for every network, 20 consecutively collected samples were used for robust
inference18 and a sliding window was employed to work across the individual PEx time series (with a step
size of one sample). This approach yielded 589 co-occurrence networks, where topology changes
between successive networks were caused by the substitution of a single sample. The resulting graphs
were subsequently analyzed by PEx type (nPAT = 222, nAN1 = 192, nAN2 = 175; detailed description in Table
S2).

We studied the topology of the largest network components, de�ned as the ensemble of nodes belonging
to the biggest connected subgraph of the network and therefore expected to be the most impactful for
microbiome dynamics46. For PEx type PAT, a reduced number of organisms and associations were
observed in the largest component, as well as increased betweenness centrality (Wilcoxon p < 0.001 for
each pairwise test; Figs. 3A, 3B and 3C) in contrast to PEx types AN1 and AN2. Graph betweenness
centrality measures the extent of centralized organization reinforcing effective communication
patterns47.

In analogy to interaction networks, we furthermore examined network hierarchy of the microbial co-
occurrence networks across the PEx types. In the seminal work of Barabasi and Oltvai on biological
interactions networks, a “quanti�able signature of network hierarchy” was de�ned as “the dependency of
the clustering coe�cient  on the degree  of a node, which follows ”48. As a result, highly

T

T<24 = 0.17;T24−60 = 0.26; p < 0.001

C k C (k) ∼ k
−1
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connected hub nodes should display low clustering, if located on top of the network hierarchy. To test this
in co-occurrence networks, degree distributions p(k) together with clustering distributions Ci(k) were
inferred and compared by the slope of a power law �t across all co-occurrence networks within the same
PEx type (Figs. 3D and 3E). While the �t to degree distributions showed similar slopes ( , 

, , , , , ),
the slope of the node clustering distribution differed signi�cantly between PEx types ( , 

, ). The pathogen-driven PEx type PAT displayed the strongest descent
of clustering with degree k, was indeed approximating − 1, and hence indicated a clear microbial
hierarchy. These compelling results supported the hypothesis of a pronounced, hierarchical dysbiosis
type. Moreover, the anaerobic PEx types AN1 and AN2 also exhibited weaker correlation between �ts and
data ( , , , ) suggesting �at organization and
unpronounced community structure.

To con�rm that these results were driven by PEx types rather than sample diversity, we implemented
independent linear mixed effect models for every graph readout, corrected for subject and calculated
effect sizes of PEx types and covariates Shannon diversity and Chao1 richness. We found that
betweenness centrality, clustering, number of vertices, and number of edges signi�cantly depended on
PEx types with effect sizes being 2.9 times, 5.5 times, 8.9 times and 3.4 larger than the most effective
diversity measures, respectively (

). Clustering and
betweenness centrality were statistically independent of tested diversity measures, while both diversities
in�uenced edge numbers and richness graph size to a minor extent (Figure S6).

Next, we investigated which organisms preferentially occupied the most hierarchical positions in the
communities and therefore likely controlled the overall microbiome dynamics. For each network, we
identi�ed the most hierarchical nodes, which were de�ned as nodes with a degree k > 90% and a
clustering coe�cient Ci < 10% of all nodes in the graph. ASV frequencies were then assessed on these
positions (Figs. 3F). In PAT communities, Pseudomonas, Staphylococcus and Streptococcus were not
only masters in hierarchy, but also belonged to the most abundant ASV group in the samples. In AN2, a
stronger variation of taxa was observed in the most hierarchical nodes. Of note, one third of the ranking
was occupied by various ASVs belonging to the genus Prevotella in these communities. In Figure S7 we
visualized three representative PEx type communities with exemplary hierarchies using the Sugiyama
algorithm for hierarchical graphs49, which corroborated these �ndings. We concluded that in anaerobic
communities, individual species were less relevant for overall microbiome dynamics, and microbiome
organization was increasingly stochastic and less well picked up by co-occurrence analysis. To the
contrary, in the pathogen-driven PEx type, the network hierarchies were conserved, occupied by a few key
organisms and well supported by a simple, centralized community organization.

To contextualize these observations, we examined the identi�ed con�gurations in contrast to microbiota
in lung homeostasis. The de�nition of dysbiosis employed in this work de�nes a reorganization of the
microbiota in the disease microenvironment. In healthy lungs, the pulmonary microbiome shows neutral

αPAT = −0.71

αAN1 = −0.6 αAN2 = 0. − 69 RPAT = −0.64 RAN1 = −0.67 RAN2 = −0.73 p < 0.001

αPAT = −0.97

αAN1 = −0.27 αAN2 = −0.28

RPAT = −0.61 RAN1 = −0.3 RAN2 = −0.29 p < 0.001

pbetween < 0.004, pcluster < 0.048, p#vertex < 2.7e − 7, p#edge < 7.1e − 11
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community dynamics50–52. After Hubbell, diversity and abundance distributions of neutral communities
can be explained by stochastic immigration and extinction events alone53. To the contrary, in chronic lung
disease, microbial interactions, local replication, and environmental adaptation become key for diversity
and community dynamics, and the impact of dispersal diminishes13,50. Consequently, if neutrality is a
property of microbial eubiosis in the lung, then microbial interactions can be considered a hallmark of
dysbiosis of the pulmonary microbiota. Together with metabolic adaptations, such interactions promote
outgrowth of certain taxa to high relative abundances. Accordingly, we propose that both observed
community states resemble different fundamental kinds of dysbiosis: the �rst, a structured, interacting
community under the governance of an abundant, conventional CF pathogen, and the second, a globally
successful functional guild that gains abundance by adapting to selective environmental pressures. Of
note, similar community archetypes characterized by species-sorting or mass effects were described in
metacommunity theory, a framework for ecological community assembly and dynamics54. The transition
between the two metacommunity archetypes was explained by changes in dispersal due to altered
spatial arrangements38. Here, we speculate that subject-speci�c mucus accumulation and decreasing
oxygen availability in the lung microenvironment determine CF dysbiosis states in equivalent ways.

Importantly, both community states are robust maladaptations to the disease conditions of the lung,
which raises the question whether negative loops exist in the system that enable their dynamical
stability13,55. We hypothesize that in the �rst state, functional adaptations of the dominant pathogens
together with antimicrobial defense against microbial competitors provide important negative feedback,
whereas limitations of available niche space stabilize the second regime.

CF pathogens drive PEx dynamics in hierarchical, but not in �at community organization.

The virulence of pathogenic bacteria depends on microbial interactions and the biochemistry of the
microenvironment among other factors. For example, Pseudomonas aeruginosa tightly regulates bio�lm
formation, as well as the production of siderophores and exotoxins based on iron availability and oxygen
levels56,57. Moreover, the fermentation products 2,3-butanediol and lactic acid produced by anaerobic
members of the CF microbiome were reported to trigger quorum-sensing and further virulence58,59.
Conversely, synergistic interactions such as metabolic cross-feeding affects pathogen growth and lowers
the tolerance of P. aeruginosa to antimicrobial treatment independent of intrinsic antibiotic resistance
pro�les60,61.

The insight that bacterial organization appeared markedly distinct in the identi�ed PEx types raised the
important question whether microbiome organization could modulate pathogen importance or interfere
with treatment outcomes in a foreseeable manner. As a �rst step, page rank was used as a statistical
descriptor for network importance to compare the importance of conventional pathogens, strictly
anaerobic, facultatively anaerobic, and strictly aerobic taxa in the community. We found that CF
pathogens were differentially important for the CF community, displaying signi�cantly higher page rank
in hierarchic than in �at community organization (Fig. 4A). Next, pathogen dynamics in different
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community organizations were assessed using time series information. Previously, we demonstrated that
stochastic ecological processes can be distinguished from interaction-driven processes by Fourier
spectra inferred from the abundance changes of microbiota62. Here, the spectrum of every ASV per PEx
time series was determined and their noise color was inferred. We observed that pathogens exhibited
interaction-driven dynamics (pink noise) in steep hierarchies only (Fig. 4B). In �at anaerobe-dominated
organization, pathogens instead showed stochastic behavior (white noise, AN2) or anaerobic taxa
dominated community dynamics (AN1). These results supported the hypothesis that CF pathogen
activity depends on the community background and its positioning within (Figure S7). Indeed, in graph
theory it was demonstrated repeatedly that the topology of interaction networks was intimately linked
with its dynamics63–65. Moreover, the particular con�guration of microbial interactions has also been
identi�ed as a key element for robust composition forecasting66. In complex networks, interaction
topology not only determined the importance of hubs for systems dynamics20, but also controllability of
dynamics supporting our previous conclusions67.

To clarify the relevance of community organization for PEx treatment strategies, we asked whether
community (network) organization could in�uence pathogen importance and modulate treatment
outcomes. Recently, it was shown that dynamical �uctuation in response to external damage depended
on the local network architecture of single layered and multiplex networks63–65. In an analogue, simpli�ed
approach, we modeled the response of our empirical co-occurrence networks to focal depletion of the
dominant pathogen by antibiotic treatment. We hypothesized that community organization affected the
degree of network disruption and consequently community dynamics and likely treatment outcomes. In
the model, the most abundant pathogen was removed from the major component of 313 networks (PAT 
= 152, AN1 = 53, AN2 = 108) and resulting network disruption was assessed by monitoring modularity
change, breakup into subcomponents, and size reduction after single node removal (Figs. 4C, 4D and 4E).
While total pathogen removal may not always be achieved in practice, microbial interactions were
expected to abate together with strain abundance. Here we modeled the extreme case for the purpose of
hypothesis testing. We found that pathogen elimination from steeper background hierarchies resulted in
signi�cantly stronger topology disruption supported by all three topological parameters (Kolmogorov-
Smirnov statistic in Table S3). We observed stronger change in modularity, increased disruption into
unconnected subcomponents, as well as more pronounced size loss of the biggest connected
component. Indeed, the depletion of the same organism resulted in divergent effects for the overall
community architectures. The markedly different outcomes might serve as indicators for the degree of
niche rearrangement after antibiotic treatment. We hypothesized that maintained niche accessibility
should bene�t repopulation after depletion, while niche reorganization could instigate the establishment
of different community con�gurations. Although these data-derived hypotheses call for rigorous
experimental testing, they are in line with previous clinical and experimental observations reporting
altered responses of focal organism to antibiotic treatment in different background communities68,69. In
fact, response to antimicrobials may be recognized as an emergent property of the entire microbiome70.



Page 11/25

We concluded that the relevance of CF pathogens for microbial community dynamics and, by extension,
likely also clinical course, was crucially shaped by community organization of the CF microbiome.
Moreover, targeted treatment of pathogens resulted in distinct responses as a function of microbiome
hierarchy, i.e., steep or �at community background.

Conclusions
Our study on the human lung microbiome showcases the importance of community organization for
understanding microbiome dynamics in homeostasis and dysbiosis. Using CF as a model disease, we
employed a functional/ecological coarse graining to analyze both temporal and organizational aspects
of pulmonary infection and its relevance for therapy outcomes.

We identi�ed two archetypes of dysbiosis in the CF lung (driven by pathogens or anaerobes),
characterized their community structures, and discussed stabilizing factors in the context of current
graph and ecological theory. It is important to realize that the identi�ed ecological features can cancel out
if analyzed cross-sectionally due to their antagonistic nature. This might explain the di�culties with
establishing robust predictors for PEx thus far7.

We modeled the focal depletion of the most abundant pathogen in empirical co-occurrence networks and
recognized that distinct background communities shaped the outcome of this treatment simulation. We
concluded that the relevance of pathogenic taxa for microbiome dynamics, disease progression, and
treatment effect is systematically linked to the organization of the background microbiome.

Our insights are limited to the ecological dynamics in airway microbiota observed in 11 subjects. Despite
the large dataset investigated (880 samples which comprise a tidy and comparable subset of a collection
incorporating > 21 patient years of near-daily sampling), this study cannot possibly reveal the full
complexity of airway microbial ecology in CF. Furthermore, none of the subjects in our study were
receiving CFTR modulator therapy at the time of sample collection. How this therapy will impact CF
airway microbiology is the subject of on-going studies. Nevertheless, we believe our model and the
observations made in this study contribute to generating novel hypotheses regarding CF lung pathology,
building theory for targeted dysbiosis management, enhancing antibiotic stewardship, and advancing
personalized medicine.

Materials and Methods

Study cohort, sample collection, and sample inclusion
criteria
Expectorated sputum was collected from a cohort of people with CF as part of a long-term prospective
study of CF airway microbiota. This study was approved by the Institutional Review Board of the
University of Michigan Medical School (HUM00037056), and informed written consent was obtained
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from all participants. Subjects collected daily sputum samples at home, which were stored at either 4oC
or -20oC before shipment to the University of Michigan for immediate storage at -80oC. Electronic medical
records were reviewed for subject demographic and clinical data. Among the 880 sputum samples and
DNA sequences included in this study, 283 were reported previously (NCBI BioProjects PRJNA520924 and
PRJNA611611)24,25. Sample inclusion criteria applied for downstream analyses are detailed in Tables S1,
S2.

DNA extraction
Sputum samples were thawed on ice and homogenized with 10% Sputolysin (MilliporeSigma, Burlington,
MA, USA). Samples were treated with bacterial lysis buffer (Roche Diagnostics Corp., Indianapolis, IN,
USA), lysozyme (MilliporeSigma), and lysostaphin (MilliporeSigma) as previously described31, followed
by mechanical disruption by glass bead beating and digestion in proteinase K (Qiagen Sciences,
Germantown, MD, USA). DNA was extracted and puri�ed using the MagNA Pure nucleic acid puri�cation
platform (Roche Diagnostics Corp., Indianapolis, IN, USA) according to the manufacturer’s protocol.

Sequencing controls, protocol and taxonomic annotation
DNA libraries were prepared by the University of Michigan Microbial Systems Molecular Biology
Laboratory as described previously71. Human Microbiome Project (HMP) or Zymo (Zymo Research, Irvine,
CA, USA) mock community standards were included on each sequencing plate. In brief, the V4 region of
the bacterial 16S rRNA gene was ampli�ed using touchdown PCR with barcoded dual-index primers.
Touchdown PCR was performed consisting of 2 min at 95°C, followed by 20 cycles of 95°C for 20 sec,
60°C (starting from 60°C, the annealing temperature decreased 0.3°C each cycle) for 15 sec, and 72°C for
5 min, followed by 20 cycles of 95°C for 20 sec, 55°C for 15 sec, and 72°C for 5 min and a �nal 72°C for
10 min. The resulting amplicon libraries were normalized and sequenced on an Illumina sequencing
platform using a MiSeq Reagent Kit V2 (Illumina Inc., San Diego, CA, USA). The �nal load concentration
was 4.0-5.5 pM with a 15% PhiX spike to add diversity.

Annotation was performed using the dada2 pipeline in R according to the “Atacama soil microbiome”
tutorial (https://docs.qiime2.org/2021.11/tutorials) using SILVA v138 for taxonomic assignments72.
Samples were processed separately by subject through sample inference to avoid batch effects, then
merged for the remaining processing steps. The data set was denoised removing all ASVs with < 0.0075%
average abundance across all samples as previously described73 and subsequently rari�ed using R
package vegan74. Sequencing data, taxonomic information and clinical meta data were organized in
phyloseq objects for further analysis75. Sequencing error rates were determined by comparing 43 mock
community pro�les to reference sequences in mothur (v1.48)76 using the seq.error command, which
measures error as the sum of mismatches to the reference divided by the sum of bases in the query. In 24
sequencing runs, the median mock community error rate was 0.037% (range 0.012% − 0.690%).

Community typing with Dirichlet multinomial mixture
models
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To stratify representative community classes across subjects, Dirchlet multinomial mixtures (DMM) were
inferred employing ASV groups as the taxonomic level39. Counts from ASVs were summarized into �ve
groups: CF pathogens, strict anaerobes, facultative anaerobes, strict aerobes and unknown according to
the oxygen requirements of the respective taxon37. Next, the total data set was subject-strati�ed to avoid
bias. Thirty-six random data subsets with 650 samples each were generated by sampling with
replacement from the total data collection. Subsequently, models with 1–25 DMMs were inferred
stepwise for each subset using the R package DirichletMultinomial77. Laplace approximation, BIC, and
AIC were queried independently to identify the optimal number of DMMs.

Variance testing and ordination
To quantify the impact of covariates on the lung microbiome, PERMANOVA was performed on rari�ed
ASV data and the identical data were remodeled by non-standard sample descriptors74. Bray-Curtis
distance was employed for ASVs and Euclidian distance for scaled and centered non-standard
descriptors. The model was designed to test the marginal effects of the individual covariates (function
adonis2, parameter setting by = margin). For comparison, effect sizes ( ) of the covariates were
calculated using the adonis_omegaSq function from the MicEco package78. Principal component
analysis was performed on scaled and centralized sample descriptors in R. Sample descriptors included
Shannon diversity, Chao1 richness, relative abundance of the most abundant CF pathogen, the ratio of CF
pathogen counts to counts from anaerobic taxa and the classi�cation to a particular DMM community
class.

PEx type clustering and sample classi�cation
Hierarchical k-mer clustering of samples was conducted on the �rst three principal components of the
ordinated sample data using the R package pheatmap79. Pearson correlation was employed as a
similarity measure. Next, an  contingency test was used to identify the best k cluster number for the
classi�ed sputum samples. Subsequently, entire PEx time series and networks were assigned to a single
k-mer cluster by majority vote of the included samples. Two PEx time series were excluded from further
analysis, because frequent type transitions prevented a conclusive association to a single PEx type.
Detailed inclusion criteria are explained in Tables S1, S2.

Statistical modeling of time behavior
Linear mixed effect models to determine time dependency of Shannon diversity and Chao1 richness were
built using time groups (< 24 days and 24–60 days before PEx antibiotic treatment; PEx types PAT and
AN1) or �ve day intervals (PEx type AN2) as �xed effects and subject, age group, as well as PEx cycle as
random effects (package lmerTest)80. Standardized effect sizes ( ) of predictors were calculated using
the package effectsize81.

ANCOVA models were implemented using time groups (< 24 days and 24–60 days before PEx treatment)
as categorical predictors, sampling distance as numerical covariate, and Aitchison distance as dependent
variable. Aitchison distances were calculated using R package robCompositions82.

ω2

χ2

ω2
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Graphical representations of boxplots and regression models were generated using ggplot283 and
ggpubr84.

Co-occurrence network inference and network statistics
Co-occurrence networks were inferred from 20 samples collected at consecutive days with SparCC in a
sliding window along each PEx time series85. Missing samples were imputed using R package seqtime62

and jump size for the sample window was set to 1.

For downstream analysis on the largest network components, only strong ( ) and statistically
signi�cant (p < 0.01 after FDR correction) co-occurrence edges were included, as well as networks with < 
10 imputed samples. Topological properties were assessed using R package igraph49.

Node degree and node clustering distributions were calculated across all networks classi�ed in the same
PEx type. To identify power laws and their respective slopes, linear regressions were performed on log-
transformed data using R package ggplot283.

For comparing the effect size of PEx clusters with covariates Shannon and Chao1 on graph topology, we
�rst calculated clustering coe�cient, betweenness centrality, node counts, and edge counts for each
largest component and averaged Shannon and Chao1 of all samples included for inference of the
respective network. Next, we implemented independent LMMs, corrected for subject and assessed the
effects sizes (partial ) as described previously.

To quantify the presence of certain ASVs in top hierarchical network positions, we �rst selected positions
with the relative highest degree (> 90% of all degree values) and relative lowest clustering (< 10% of all
clustering coe�cients). Subsequently, the frequency of ASVs on these positions was counted,
normalized, and ranked. All calculations were performed in R.

Noise analysis of ASV time behavior
For each PEx time series, noise colors of participating ASVs were inferred using seqtime as previously
described62. In short, missing samples were interpolated, and rounded to counts, negative interpolation
values were set to 0 counts. Subsequently, the wrapper function identifyNoisetypes() performed a
spectral density estimate and calculated a linear �t to the resulting periodogram (log frequency vs log
spectral density) of the ASV time series. According to the slope of the �t, ASV time series were classi�ed
into categorical noise color groups. Noise colors were plotted as ratios of pathogens vs anaerobic ASVs
with similar color (relative abundances) in the same sample.

Pathogen removal
To identify the dominant pathogen by network, the subset of samples used to infer the individual co-
occurrence network was queried and the pathogen with highest cumulative abundance was selected.
Only networks with the dominant pathogen locating to the major component were used for further
analysis. We calculated modularity, the number of unconnected components and node size of the largest

ρ > |0.2|

η2
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component independently for each co-occurrence network before and after pathogen removal. All
parameters were normalized to the corresponding value before node removal. Density distributions of the
normalized parameters were scaled and plotted with ggplot2 function geom_density()83. To test for
difference of the cumulative parameter distributions, two-sided Kolmogorov-Smirnov tests were
performed (ks.test(), stats package)86.
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Table
Table 1 is available in the Supplementary Files section.

Figures

Figure 1

Strati�cation of PEx types. a Covariate bias explaining variance of microbiome data (n = 880 samples).
Two PERMANOVA models contrasted the covariate effect sizes for ASV count data and non-standard
sample descriptors. Partial values served as estimators of effect sizes. Subject covariates included
subject, age group (< 31, 31-37, 38-52 years), clinical state (baseline, exacerbation), sex (female, male),
F508del CFTR mutation zygosity (homozygous, heterozygous, n.a.), CFTR mutation (F508del+/+; 3 groups
F508del-/+ and one other). b Principal component analysis using non-standard sample descriptors
(explained variance = 84.3%). Model variables included Shannon diversity (Shannon), Chao1 richness
(Chao1), relative abundance of the dominant pathogen (pat), ratio of counts of CF pathogens and
anaerobes (pat/an), and sample classi�cation by Dirichlet multinomial mixture model (DMM) (n = 789
samples). Samples are colored by subject according to legend. c Sample-wise, hierarchical k-mer
clustering and distance tree of ordinated data. Subject ID and age group, as well as Pearson correlation
coe�cients of the samples are depicted for additional information. Color code of cohort and age group
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according to legend. d Identi�cation of optimal k-mer number. The dependency between information gain
and increasing cluster number is shown. First slope saturation served as a cutoff for the minimal number
of clusters.

Figure 2

See image above for �gure legend.
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Figure 3

See image above for �gure legend.
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Figure 4

See image above for �gure legend.
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