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ABSTRACT 15 

In the primate visual system, visual object recognition involves a series of cortical areas arranged 16 

hierarchically along the ventral visual pathway. As information flows through this hierarchy, neurons 17 

become progressively tuned to more complex image features. The circuit mechanisms and computations 18 

underlying the increasing complexity of these receptive fields (RFs) remain unidentified. To understand 19 

how this complexity emerges in the secondary visual area (V2), we investigated the functional 20 

organization of  inputs from the primary visual cortex (V1) to V2 by combining retrograde anatomical 21 

tracing of these inputs with functional imaging of feature maps in macaque monkey V1 and V2. We found 22 

that V1 neurons sending inputs to single V2 orientation columns have a broad range of preferred 23 

orientations, but are strongly biased towards the orientation represented at the injected V2 site. For each 24 

V2 site, we then constructed a feedforward model based on the linear combination of its anatomically- 25 

identified large-scale V1 inputs, and studied the response proprieties of the generated V2 RFs. We found 26 

that V2 RFs derived from the linear feedforward model were either elongated versions of V1 filters or had 27 

spatially complex structures. These modeled RFs predicted V2 neuron responses to oriented grating 28 

stimuli with high accuracy. Remarkably, this simple model also explained the greater selectivity to 29 

naturalistic textures of V2 cells compared to their V1 input cells. Our results demonstrate that simple 30 

linear combinations of feedforward inputs can account for the orientation selectivity and texture 31 

sensitivity of V2 RFs. 32 

 33 

INTRODUCTION 34 

In the primate visual cortex, object recognition occurs via a series of transformations through 35 

hierarchically organized areas in the ventral visual pathway which originates in the primary visual cortex 36 

(V1) and terminates in the inferotemporal (IT) cortex, via intermediate areas V2 and V41. As information 37 

flows through this pathway, neuronal receptive fields (RFs) become progressively larger and tuned to 38 

more complex image features. At the first cortical stage of this pathway, cells are tuned to simple image 39 
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features such as the orientation of line segments2, 3, but as information is processed and passed along to 40 

higher stages, cells become selectively tuned to specific complex objects such as faces or hands4-6. The 41 

circuits, mechanisms, and computations that lead to the increased complexity of RFs along the cortical 42 

hierarchy have not been adequately characterized, even at the earliest transformation from V1 to V2. 43 

Computational models have attempted to understand how the more complex RF structure at one 44 

processing stage is derived from the preceding processing stage, but they have been based on 45 

measurements of isolated RFs instead of empirically identified anatomical and functional connections 46 

between cortical areas. 47 

V2 is the largest of the primate extrastriate visual areas, it receives the vast majority of its cortico-48 

cortical feedforward (FF) inputs from V17-9, and its responses are abolished when V1 is silenced10. Like  49 

cells in V1, V2 neurons are selective for stimulus orientation and spatial frequency, but they can also be 50 

selective for more complex contours, such as elongated edges, angles and curves11, 12. In addition, V2 51 

neurons demonstrate sensitivity to surface properties and selectively respond to naturalistic textures13, 52 
14, texture and object borders, and stereoscopic depth cues 15, 16. V2 neurons have larger RFs compared to 53 

V1 neurons at comparable eccentricity, and exhibit greater contrast sensitivity17, 18. FF models of the visual 54 

system posit that the more complex RF properties of V2 neurons, such as their response to elongated or 55 

more complex contours, arise from pooling of inputs from V1 neurons with RF positions spread across 56 

visual space. Despite significant advances in our understanding of the anatomy and physiology of these 57 

areas, and despite hierarchical FF models of the visual system being central to many theories of visual 58 

object recognition19-21, how cells in V2 integrate inputs from V1 and how this integration accounts for the 59 

more complex properties of V2 RFs has not yet been demonstrated experimentally .   60 

Our understanding of how V2 neurons encode information during natural vision is primarily based 61 

on theoretical studies, which have trained models to replicate some of the known response properties of 62 

V2 neurons22-25, or have generated data-driven models that rely on statistical analyses of responses of V2 63 

neurons to natural stimuli13, 26. A major limitation of these theoretical studies is that their assumptions 64 

have not been tested physiologically and anatomically. For example, some of these models assume that 65 

V2 neurons use a sparse coding strategy and integrate inputs from a fixed number of V1 neurons, while 66 

other models are based on probabilistic representations of connectivity patterns between areas. Data-67 

driven models, on the other hand, fit the data to mathematical models that can be difficult to interpret 68 

biologically. More importantly, none of these models have been constrained by realistic anatomical data 69 

and functional connectivity between cortical areas.  70 

As the processing of visual contours and textures is believed to rely heavily on the computation 71 

of local orientations and their spatial relationships, in this study we focused on investigating the 72 

orientation and spatial organization of V1 inputs to V2. First, we combined functional imaging of 73 

orientation and retinotopic maps in V1 and V2 with anatomical labeling of V1-to-V2 inputs by injections 74 

of retrograde tracers into single V2 orientation columns. We then developed a computational model 75 

constrained by the functional connectivity of V1-to-V2 inputs identified in the first part of the study to 76 

investigate combinatorial rules and emerging functional representations in V2. We demonstrate that a 77 

simple FF model based on the linear combination of anatomically-identified V1 inputs to singe V2 78 

orientation columns is capable of accurately reproducing the orientation tuning properties of V2 RFs. 79 

Consistent with previous investigations of V2 RFs, the V2 RFs derived by this model could be roughly 80 

classified as elongated V1-like filters, and filters with relatively complex spatial structures. Moreover, 81 

when applied to naturalistic texture images, the derived V2 filters showed higher sensitivity to the 82 
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statistical dependencies in natural textures compared to V1 input cells, consistent with published 83 

experimental results13, 14. Our results demonstrate that simple FF mechanisms can account for the 84 

orientation selectivity and texture sensitivity of V2 RFs. 85 

 86 

RESULTS  87 

Feedforward inputs are orientation-biased and form complex spatial patterns 88 

To understand the orientation and retinotopic organization of V1 inputs to V2, we obtained functional 89 

maps of orientation preference and retinotopy in these two areas, and visualized the V2 stripe 90 

compartments, by performing in vivo intrinsic signal optical imaging of V1 and V2 in macaque monkeys 91 

(Fig. 1A-I). We used these functional maps as a guide to target injections of retrograde neuroanatomical 92 

tracers (CTB-alexas tagged with different fluorophores, n= 10 injections in 4 animals) to V2 single 93 

orientation domains within the thick and pale cytochrome oxidase (CO) stripes, which, unlike thin stripes, 94 

contain well defined orientation maps (Extended Data Fig. 1D-E)27, 28. Following a post-injection survival 95 

period, animals were perfused with fixative, and the brain sectioned (see Methods). Fluorescent label in 96 

tissue sections was imaged on a confocal microscope (Fig. 1F-G) and microscopy images were aligned to 97 

the in vivo functional maps using the surface vasculature (Extended Data  Fig. 1). For each labeled cell in 98 

V1 and pixel at the V2 injected sites we extracted a preferred orientation (PO) based on their location on 99 

the orientation maps (Fig. 1E,K). The relative positions of labeled V1 cells in visual space were determined 100 

based on their location on the retinotopic maps, using a cortex-to-visual field mapping procedure (Fig. 1 101 

H-K). First, an area that encompassed the entire labeled field was outlined (yellow contour in Fig. 1 H-J), 102 

and its size was expressed in degrees of visual angle based on the number of retinotopic stripes it 103 

encompassed (for details see Methods). This area was then subdivided into a finely-tuned, uniformly 104 

distributed grid through an Elliptic Grid Generation approach29 (detailed in the Methods and 105 

Supplementary Methods). Grids initially contained 40000-360000 nodes, but were then re-sampled to 106 

give 0.02o resolution (Fig. 1J). Finally, each V1 cell was assigned to a retinotopic position in visual space 107 

based on its closest proximity to a given grid point (Fig. 1K). The map shown in Fig. 1K shows for each 108 

labeled V1 cell its retinotopic location and PO determined as described above. 109 

Figure 2 presents results from 4 representative V2 injection cases; the remainder of cases (n=6) are 110 

shown in Extended Data Figure 2. Tracer injection sites in V2 (ranging in diameter between 200 µm and 111 

580 µm) involved mostly layers 2-4, and were mostly confined to one or two V2 orientation columns. 112 

Depending on their size, a single injection site labeled between 162 and 7402 V1 neurons  in layers (L) 2/3. 113 

Retrograde label was also found in L4A-B. However, our analysis focused solely on V1 inputs from L2/3, 114 

as these neurons are the ones contributing to the functional responses recorded with optical imaging 115 

from the cortical surface.  116 

V1 L2/3 neurons labeled by a single injection had POs that were distributed broadly, but were 117 

strongly biased towards the POs represented at the injected V2 site (Fig. 2B,C,E,F, and Extended Data Fig. 118 

2A,B,D-G). Specifically, on average across the population of injection sites 47.7%±13.2% (SD) of labeled 119 

V1 cells had a PO within ±22.5° of that at the V2 injection site. However, there was variability among the 120 

different injection cases, with some injections showing narrower and other broader distributions of POs 121 

in the labeled V1 cells (range: 35.4%, for case MK365-CTB555, to 72.7% for case MK368-CTB488). There 122 

was a tendency for pale CO stripes to show narrower distributions than thick stripes, but differences 123 

among CO stripe types were not statistically significant (Pale-lateral: 53.6%±16.6, Pale-medial: 124 
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47.9%±13.8, thick 38.7%±4.7%). When mapped in visual field coordinates, the entire field of V1 input cells 125 

labeled by each V2 injection encompassed approximately 1-2° of visual space, i.e. slightly larger than the 126 

average RF of a V2 cell in parafoveal V230 (Fig. 3 and Extended Data Fig. 3). 127 

The data in Fig. 2 and Extended Data Fig. 2 demonstrate that each V2 injection labeled input neurons 128 

in a discrete region of V1 (for the example case MK373-CTB647, this corresponds to the area of the 129 

orientation map inside the white contour in Extended Data Fig. 4A). Moreover, within this labeled V1 130 

region, labeled neurons were concentrated in patches, rather than being uniformly spread over the 131 

region. This raised the question of whether the labeled patches are sampling V1 orientations selectively, 132 

with a bias towards the PO of the V2 injection site, or non-selectively. To address this question, we 133 

performed three kinds of analyses. First, we asked whether the orientation bias observed in the 134 

distribution of POs of the V1 inputs simply reflects an overrepresentation of a subset of orientations in 135 

the V1 orientation map. To answer this question, for each injection case we compared the distribution of 136 

POs of the labeled V1 cells with the distribution of POs of all the pixels within the V1 labeled cell field (e.g. 137 

the area of the orientation map inside the white contour in Extended Data Fig. 4A), as well as within the 138 

entire imaged V1 field of view, excluding blood vessels (i.e. the entire map V1 region shown Fig. 1E).  In 139 

contrast to the V1 input cells labeled by the V2 injections (Fig. 2B for the example case MK373-CTB647), 140 

the POs of all pixels within the labeled V1 field (Extended Data Fig. 4B Top panel) or within the entire V1 141 

imaged field of view (Extended Data Fig. 4F Top panel) showed no bias towards representing the PO at 142 

the V2 injection site. The complete set of control data showed a slight bias towards multiple orientations, 143 

but the biased orientations differed in different cases. For example, in case MK373-CTB647, the 144 

orientation map within the labeled field and within the entire imaged field of view showed a slight 145 

overrepresentation of the cardinal axes (0, 90°; top panels in Extended Data Fig. 4B and F, respectively), 146 

but in other cases the orientation maps were slightly biased towards non-cardinal orientations. 147 

Importantly, the biased orientations in the control data did not match the bias in the real data (the V1 148 

labeled cells), and a chi-square goodness of fit test, showed that the distributions of POs in the control 149 

and real data were significantly different from each other for all cases (p <<0.05, degree of freedom = 7, 150 

i.e. number of bins minus 1). These results suggest that V1-to-V2 connections arise from selective regions 151 

in the V1 map and that the bias in the distribution of POs in these inputs does not reflect an orientation 152 

bias intrinsic to the V1 orientation map.  153 

We performed two additional statistical tests to determine whether the observed orientation bias in 154 

the distribution of POs of the labeled V1 cells could result from a random spatial pattern of V1-to-V2 155 

connections within the V1 projection field, or from the observed spatial pattern of connections placed 156 

randomly within V1. To this goal, we simulated control data by two different random placement 157 

strategies. In the first analysis, the observed distribution of POs of the labeled V1 cells was compared to 158 

the distribution of POs under an equivalent number of pixels randomly selected within the labeled cell 159 

field 1,000 times (Extended Data Fig. 4A, B bottom panel, C). As a second test, simulated data were 160 

generated by shifting the real pattern of labeled cells (i.e. preserving the spatial pattern) to >1,000 161 

different locations within the imaged field of view (Extended Data Fig. 4E, H), and then calculating the 162 

resulting distribution of POs (Extended Data Fig. 4F bottom panel, and G). For both analyses, in contrast 163 

to the observed V1 distribution, the simulated V1 distributions showed no bias towards representing the 164 

PO at the V2 injection site (bottom panels in Extended Data Fig. 4B, F). Given the cyclical nature of the 165 

orientation data, we applied circular statistics as a summary metrics for statistical comparison of observed 166 

and simulated distributions; specifically, we estimated the mean resultant length (MRL) and the circular 167 

standard deviation (CSD), as described by Fisher (1993)31.  The circular statistics calculated from the 168 
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observed distributions consistently fell at the extremes of the distributions generated by the simulations 169 

(Extended Data Fig. 4D, I, and Extended Data Tables 1-2). Further statistical analysis, utilizing the 170 

Kolmogorov–Smirnov test with a Bonferroni-corrected family-wise p-value of 0.05, rejected the 171 

hypothesis that the observed distributions were reproducible by random sampling from the imaged V1 172 

orientation maps. 173 

These results suggest that V1-to-V2 connections sample V1 orientations selectively, and 174 

preferentially link neurons in these two areas having similar POs. Like-to-like connectivity could represent 175 

the anatomical substrate for the processing of elongated oriented contours and orientation-selectivity in 176 

V2 cells, but it would not lead to the more complex RF structures also described for V2 cells. In fact, the 177 

observed like-to-like connectivity is not absolute, as many V1 inputs contacted V2 regions having different 178 

(>±30°) and even orthogonal POs. Computer simulations further indicated that this “imperfect’ like-to-like 179 

connectivity was not due to the V2 injection site not being confined to single V2 orientation columns. 180 

Specifically, we simulated V1 PO distributions under conditions of perfect like-to-like connectivity, and 181 

then compared these to the real distributions. These simulations took into account that orientation 182 

responses had been measured with gratings separated by 22.5°orientation, that the computation of 183 

orientation preferences for V1 neurons included Gaussian smoothing, and that the V2 injection site was 184 

not perfectly confined to a single orientation column. We tested whether the observed variation in input 185 

POs was broader than simulated by these factors (see Methods for details), and found that the observed 186 

distributions in PO were significantly broader (p << 0.05) than the simulated distributions (Extended Data 187 

Fig. 5), underscoring the complexity of the real neural connections. 188 

 To gain greater insights onto the spatial distribution of POs of the labeled V1 input cells, for each 189 

case we plotted an oriented line element at each cell’s estimated location in visual space  (as described in 190 

Fig. 1K). The orientation of these lines matched the PO for each corresponding cell (Fig. 3 and Extended 191 

Data Fig. 3). In Fig. 3 and Extended Data Fig. 3, for each injection case we show black and color-coded 192 

versions of the same visuotopic map. In both the black and color map, each cell is represented as an 193 

oriented line, and in the color map, the color scale indicates the number of cells at each retinotopic 194 

location. The resulting maps revealed complex patterns of orientation flows, such as collinear and parallel 195 

edge elements, angular and curvature configurations, and textural patterns. This complexity suggests that 196 

the integration of these local line elements by V2 cells could shape the more complex RF properties of V2 197 

cells such as their selectivity for angles12, and textures32. This led to the important questions of how V2 198 

cells combine information from these oriented V1 RFs, and what RF properties emerge from this 199 

combination. In the next section, we tested whether a simple feedforward model can provide adequate 200 

answers. 201 

The orientation tuning of V2 columns is predicted by a linear combination of their V1 inputs. 202 

To understand how V2 cells integrate their V1 inputs, and what RF characteristics emerge from this 203 

integration, we developed a simplified feedforward model. This model incorporated some simplifications 204 

that were dictated by the limitations of our data. As our imaging experiments did not characterize the 205 

phase sensitivity of the imaged V1 cells, we explored two model variants with V1 cells modeled as either 206 

complex or simple. First, V1 cells were modeled as phase-invariant (complex RFs), comprising the three 207 

layers illustrated in Fig. 4A. The first layer consisted of all the labeled V1 cells projecting to the V2 injected 208 

site. Each cell was represented by four Gabor filters with spatial phases offset by 90 degree (two with an 209 

even-symmetric spatial structure and two with an odd-symmetric spatial structure)33. The parameters of 210 

the Gabor functions, including orientation and aspect ratio of the Gaussian envelope, were estimated 211 
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from our recorded functional imaging data by fitting tuning curves of a bank of Gabor filters to the tuning 212 

curves measured from the imaging maps (see Methods for details). The spatial frequency of the sinusoidal 213 

carrier was set at 1 cycle/ degree to correspond to the spatial frequency of the gratings used to measure 214 

orientation selectivity in our imaging experiments. The responses of V1 complex cells to an input image 215 

(visual stimulus) were modeled in the second layer as the sum of responses of the four Gabor filters after 216 

half-wave positive rectification34. Finally, in the third layer, a V2 cell’s response was modeled as a weighted 217 

spatial sum of the responses of its V1 input cells, so the V2 RF reflected both the retinotopic locations and 218 

the strength of connection of the V1 cells. In the simple cell model, instead, V1 cells were modeled as 219 

phase-sensitive simple cells (single Gabor filters in the same phase for all cells), and then the weighted 220 

spatial sum of the V1 responses was taken in the same way as for the complex cell model. 221 

 V2 RFs calculated as the weighted sum of their V1 inputs would reflect the simplest combination 222 

rule. Since a regression would be ill-conditioned, because of rank deficiency and multicollinearity between 223 

similarly tuned V1 inputs, the weight for each V1 cell - V2 pixel pair was estimated as the dot product of 224 

their mean-subtracted and normalized tuning curves (see Methods for details). Figure 4B shows the 225 

parameters of the Gabor functions, including orientation, location and aspect ratio, along with the weights 226 

used for modeling two example V2 cells/pixels. The largest weights are, as expected, from V1 inputs with 227 

similar PO to the V2 cell, and the figure shows that such inputs are distributed in small clusters over the 228 

whole V2 RF, and are flanked by clusters of V1 inputs with orthogonal POs having negative weights. This 229 

organization is reminiscent of previous analyses of responses of V2 neurons to natural stimuli, showing 230 

that local excitatory edges have nearby suppressive edges with orthogonal orientations26; this 231 

organization increases the sparseness of responses to natural images and enhances the local 232 

representation of excitatory signals.  233 

To picture the spatial configurations of V2 RFs resulting from the linear combination, the RFs of 234 

V1 cells were spatially summed using the weights from the linear model, separately for even-symmetric 235 

and odd-symmetric filters. The resulting RFs (Fig. 5) could be broadly categorized into two types: 236 

elongated filters resembling V1 RFs with distinct ON and OFF oriented regions, but usually more elongated 237 

than typical V1 cells (e.g. cell MK368-CTB488 in Fig. 5), and more complex RFs containing several non-238 

oriented regions (e.g. cell MK373-CTB647 in Fig. 5) as well as multiple oriented regions (e.g. cells MK365-239 

CTB488 odd, MK373-CTB555 and CTB488, MK368-CTB555 in Fig. 5), akin to those reported previously for 240 

experimentally measured RFs of macaque V2 cells30. In some cases, the RFs that are the sums of odd filters 241 

differ from the RFs that are the sum of even filters by just a luminance polarity reversal, but in other cases 242 

the difference between these RFs is more marked. Note that results are shown for only 8 injection cases 243 

because for two cases (MK335-CTB488 and CTB55) we lacked a complete set of orientation responses (in 244 

these two cases, 8 orientations were sampled in four separate trials as opposed to a single trial which 245 

would allow appropriate baseline correction for tuning curve analysis which is essential step in model 246 

estimation).  247 

 The combination weights were not collectively optimized to fit any V2 properties, and  the dot 248 

products were largest for the V1 cells whose orientation tuning is closest to the orienation tuning of the 249 

V2 target, so we evaluated how well the calculated linear combination predicts the responses of V2 250 

cells/pixels to oriented gratings, i.e. their orientation preference and tuning. To accomplish this, we 251 

conducted an eight-fold cross-validation analysis. In this analysis, the model was iteratively constructed 252 

eight times, each time utilizing the responses of V1 cells and V2 pixels to seven of the eight orientation 253 

stimuli. The experimental data corresponding to the omitted orientations served as the validation set. 254 
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Figure 6A displays the predicted (using the complex cell model) versus observed responses of V2 255 

cells/pixels to the excluded grating stimuli. The prediction error was quantified as a relative error (defined 256 

as the absolute difference between predicted and measured responses of V2 cells/pixels to grating stimuli, 257 

divided by the measured response range across all 8 orientations), averaged across eight iterations and 258 

then across all V2 cells/pixels for each case (Fig. 6B). The complex cell model exhibited robust performance 259 

across all eight injection cases (Fig. 6B) with a grand average relative cross-validation error of 0.16±0.04 260 

(standard deviation across all 8 cases). For the simple cell model, the relative cross-validation error for the 261 

majority of injection cases was higher compared to the complex cell model (Extended Data Fig. 6A-D), 262 

with mean relative cross-validation errors of 0.33±0.15 (for the model based on odd-symmetric V1 filters) 263 

and 0.26±0.13 (for the model based on even- symmetric V1 filters). Overall, both linear feedforward 264 

models (simple and complex) demonstrated strong predictive capability for the orientation preference of 265 

V2 cells/pixels with a median absolute error (defined as absolute value of predicted PO minus measured 266 

PO) of about 5° for the complex cell model, and of about 5° and 6° for the odd and even simple cell model, 267 

respectively (Fig. 6C and Extended Data Fig. 6E-F). However, the complex cell model performed noticeably 268 

better than the simple cell model in predicting the orientation tuning width of the modeled V2 cells (Fig. 269 

6D and Extended Data Fig. 6G-H) (median absolute error for HWHH = 5o versus 37°, respectively). In 270 

subsequent sections we will be focusing on the complex cell model, as the latter performed better overall 271 

than the simple cell model. 272 

 273 

Texture sensitivity can emerge from linear feedforward connections. 274 

We asked what V2 RF response properties emerge from the simple linear combination of V1 inputs, 275 

compared to the responses of their V1 inputs. The elongation of some RFs and the complex organization 276 

of unoriented ON and OFF sub-regions of other V2 RFs shown in Figure 5 suggests that both may facilitate 277 

the representation of naturalistic visual textures in this cortical area13. To investigate this, we measured 278 

the responses of V1 and V2 model cells to a large set of synthesized naturalistic texture images, which 279 

include the higher-order statistical dependencies found in natural textures35, and to their spectrally-280 

matched noise images, which lack these dependencies. For each of several original images of visual 281 

textures, 30 samples of naturalistic texture images and their noise counterparts were synthesized, forming 282 

what we refer to as a texture family (see Methods). We used 97 texture families, i.e. 97x30= 2,910 images. 283 

Images were cropped to be square shape, resized to 320 x 320 pixels, and masked using a circular mask 284 

of 3.2° in diameter (approximately twice the RF size of the model V2 cells), and were presented at the 285 

center of the V1 input cells aggregate RF. To maximize the response to the texture pattern of cells  having 286 

different orientation preferences, each texture and noise image pair was presented at 8 different 287 

rotations. A texture modulation index (MI), defined as response to texture minus response to noise 288 

divided by the summed response (texture + noise)13, was calculated at each texture orientation and we 289 

analyzed results at the orientation that provided the most significant differential response between 290 

texture and noise images, i.e. the orientation that provided the largest mean over variance value). A higher 291 

MI corresponds to a model cell being more sensitive to the higher-order statistical dependencies that are 292 

shared by different samples of a naturalistic texture. We found that, compared to model V1 cells, the 293 

model V2 cells exhibited stronger responses to subsets of texture families relative to their noise 294 

counterparts, as indicated by higher MI values . Specifically, Figure 7A shows for each case the mean MI 295 

value of V2 vs V1 cells (averaged across cells) for each of 97 texture families. For 6 out of 8 cases, average 296 

mean V2 MI (across all 97 texture families) was higher than average mean V1 MI. The average mean V2 297 
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MIs for the entire population was 0.19±0.04 (S.D.), while it was 0.16±0.01 for V1 (yellow dot in Fig. 7A). 298 

Figure 7B shows for the entire population of V1 (top) and V2 (bottom) cells across all 8 cases the 299 

distribution of MIs averaged across all texture families for each cell. V2 cells showed a greater spread of 300 

MI values than V1 (range for V2 0.14- 0.43, for V1 0.15-0.17), and a higher average mean MI value (V2: 301 

0.19±0.1.; V1: 0.16±0.06). Naturalistic textures vary considerably in their texture structure, and the closer 302 

the RF structure is to the texture structure, the higher will be the MI for that texture-family. MI averaged 303 

over all texture families may, thus, underestimate the ability of V2 cells with complex RFs to differentiate 304 

between selected naturalistic textures and their matched noise. In keeping with this conjecture, the 305 

difference in mean MI values between V1 (0.33±0.03) and V2 (0.48±0.16) became even more pronounced 306 

when only the maximum MI value was taken for each cell (Figure 7C). The histograms in Fig. 7C show that 307 

the mean MI for V2 is larger than all the MI for V1, so all values larger than the mean are exclusively from 308 

V2 model cells. Statistical analysis (t-test, p< 0.05) demonstrated a significant difference in mean MI values 309 

between V1 and V2 across all texture families in 6 out of 8 injection cases (Table 1). Notably, this 310 

distinction was particularly pronounced for the thick (t-test, p < 10-11) and pale-lateral (t-test, p < 0.001) 311 

CO stripe types (Extended Data Fig. 7) compared to the pale medial-stripes.  312 

In Figure 8A we show representative images taken from the 15 texture families that evoked the 313 

highest responses from model V2 cells ranked by V2 MI values. MI values in response to these textures 314 

were higher in V2 than in V1. The converse was true for the 15 texture families that evoked the lowest 315 

responses from V2 cells, most of which instead evoked higher MI values in V1 than in V2 (Figure 8B). For 316 

comparison, Figure 8C shows the 15 texture families that evoked the highest responses from V1 cells 317 

ranked by MI value. Notably, V1 and V2 cells preferred many of the same texture families, but MI values 318 

in response to these preferred textures were  generally higher in V2 than in V1. Moreover, V2 responses 319 

to these textures were much more robust, i.e. less variable than V1 responses to the same textures, as 320 

indicated by the much larger error bars for V1 mean MIs compared to those for V2 MIs. The average 321 

standard errors for the MIs across all textures were 0.164, and 0.002 for V1 and V2, respectively, and the 322 

mean divided by the standard error was 112.2 and 1.1 for V1 and V2, respectively. These results along 323 

with the statistics in Fig. 7 demonstrate that even simple linear feedforward connections from identified 324 

V1 inputs to target V2 cells can generate the increased selectivity to naturalistic textures that has been 325 

claimed to be a signature feature of area V232. 326 

 327 

DISCUSSION 328 

We used  optical imaging of orientation and retinotopic maps in macaque visual areas V1 and V2 combined 329 

with injections of retrograde tracers in V2 orientation columns to study the functional organization of V1 330 

inputs to V2. Single tracer injections involving one or two V2 orientation columns labeled between 162 331 

and 7402 V1 neurons in L2/3. The aggregate RF of the labeled V1 inputs to a single injected V2 site  was 332 

about the size of a single V2 RF in visual space. The V1 cells sending inputs to a single V2 site had preferred 333 

orientations that were generally biased within ±22.5° of the orientation preferred at the V2 site, but 334 

encompassed a broader range of orientations, forming complex spatial patterns that included collinear 335 

and parallel edge elements, angular and curvature configurations, and textural patterns. To understand 336 

whether and how the combination by V2 cells of information from these oriented V1 RFs could generate 337 

the more complex RF properties of V2 cells, we built a simple  linear feedforward model. In this model, 338 

V2 RFs were calculated as the spatial weighted sum of their anatomically-identified V1 inputs. The 339 
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resulting V2 RFs fell in two broad classes: elongated RFs with distinct ON and OFF oriented regions, 340 

resembling, but more elongated than, typical V1 cells, and complex RFs containing multiple orientations 341 

as well as non-oriented regions. Remarkably, and despite the simplifying assumptions necessitated by the 342 

limitations of our data, this simple feedforward model accurately predicted the responses of V2 343 

orientation columns to oriented gratings, and explained the greater selectivity for naturalistic visual 344 

textures of V2 cells compared to V1 cells. Our results demonstrate that a simple linear combination of 345 

identified V1 feedforward inputs can account for the orientation-tuning of V2 RFs and their enhanced 346 

selectivity to naturalistic textures, a signature feature of area V232. 347 

 Several prior studies of V2 responses have indicated that V2 RFs consist of two or more 348 

populations30, 36-39. We found that the distribution of POs of V1 afferents was sometimes narrow and 349 

strongly biased towards the PO of the target V2 site, particularly for the V1 inputs to V2 pale stripes, and 350 

other times was broader, representing a wider diversity of orientations, particularly so for V1 inputs to 351 

thick stripes. Consistent with this orientation-organization of the V1 afferents, our model V2 RFs 352 

generated by a linear weighted combination of these V1 afferents fell into two broad RF classes, analogous 353 

to the  “uniform’ and “non-uniform” RFs previously described by Anzai et al. 38, or the “ultralong-Gabor” 354 

and “complex-shaped” neurons previously described by Liu et al.30. Consistent with our finding of 355 

narrower distributions of POs for V1 inputs to the pale stripes, Liu et al.30 found that V2 neurons with 356 

“ultralong-Gabor” RFs were preferentially localized within pale stripes. These authors found neurons with 357 

complex-shaped RFs to dominate in thin stripes, but our study did not investigate V1 inputs to thin stripes. 358 

Liu et al.30 further demonstrated that the responses to natural images of both the elongated and complex 359 

V2 RFs can be well fitted by the summation of multiple Gabor functions, and suggested a simple 360 

feedforward convergent model as the basis for the generation of V2 RFs. However, these authors lacked 361 

the anatomical data on V1-to-V2 connections that  we have in our study. Thus, our study demonstrates 362 

for the first time that V2 RFs similar to those previously reported by these and other authors can be 363 

generated by a simple feedforward convergence of their anatomically-identified V1 inputs.   364 

Any V1 input can potentially contact excitatory and/or inhibitory V2 neurons, and therefore excite 365 

or suppress V2 cells. In our model, by design, V1 inputs with positive weights were those with POs similar 366 

to the target V2 PO, while those with the negative weights were those with POs orthogonal to the V2 367 

site’s PO. We observed a complex distribution of these positive and negative inputs with a noticeable 368 

pattern of clusters of positive iso-oriented weights flanked by clusters of negative cross-oriented weights 369 

(Fig. 4B). Previous studies based on a statistical analysis of neural responses to natural images found 370 

similar patterns of On and Off subregions within V2 RFs 22, 26. Such an organization may serve to enhance 371 

the local representation of excitatory signals through cross-orientation suppression. 372 

 Our linear feedforward model could accurately describe the orientation-tuning properties of V2 373 

cells. We explored a simple-cell and a complex-cell model and found increased predictive performance 374 

using the complex cell model, more noticeably in the prediction of the width of the orientation tuning 375 

curves. This result supports Rowekamp and Sharpee’s suggestion26 that when phase-sensitive V1 neurons 376 

project to V2 they form quadrature pairs by projecting together with other V1 neurons tuned to other 377 

spatial phases with similar orientation/position.  378 

  A signature feature of primate area V2, that distinguishes it from V1, is its greater sensitivity to 379 

naturalistic textures13. Most V2 cells respond more vigorously to naturalistic textures, which contain 380 

higher-order statistical dependencies found in natural textures, than to their spectrally-matched noise 381 

images, which lack these dependencies. Consistent with these previous electrophysiological recording 382 
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studies of V2, our model V2 cells on average responded more robustly to naturalistic textures compared 383 

to V1 cells, demonstrating that this complex property of V2 RFs can be generated by a linear weighted 384 

combination of feedforward V1 inputs. That feedforward mechanisms can generate V2 neuron sensitivity 385 

to naturalistic textures is also supported by experimental evidence13 that the greater response to textures 386 

vs. noise, measured as a modulation index (MI), is present from the onset of V2 cell responses to 387 

naturalistic stimuli. This differential response to texture vs. noise instead appears in the later part of V1 388 

neuron responses, suggesting it may be inherited from V2 via feedback mechanisms. 389 

 Freeman et al.13 found lower MI values in V1 and, to a lesser extent, in V2 than we found for our 390 

model cells. This could have resulted from a number of methodological differences between the two 391 

studies. First, we tested a much wider range of texture families (n=97) than Freeman et al.  (n=15). As in 392 

both studies subsets of texture families evoked greater responses from V1 and V2 cells, sampling from a 393 

wider range of textures may have led us to identify a larger number of preferred textures for V1 and V2 394 

cells, with resulting larger MI values. Second, unlike Freeman et al., we rotated our texture images and 395 

analyzed responses to the rotation that evoked the strongest modulation. Finally, unlike Freeman et al., 396 

we do not have negative MI values, as in the complex cell model V1 and V2 responses were phase 397 

invariant. The latter two differences among the two studies likely contributed to  the larger MI values in 398 

our study.   399 

In our study, while our sample of modeled V1 and V2 cells (11,479 and 844, respectively) was 400 

substantial, the number of independent V2 cells was limited by the number of injection cases. This 401 

limitation underscores the necessity for caution in generalizing our findings, as the sampled V2 cells may 402 

not fully represent the diversity of the V2 cell population. Moreover, we made the assumption that all V1 403 

input cells labeled by a single injection contributed to the response of each pixel at the V2 injected site. 404 

This assumption was justified by the large overlap in RF tuning properties and retinotopic location of 405 

neurons at the V2 injected column, and the observation that the aggregate RF of the entire V1 labeled 406 

field matched the average RF size of V2 neurons. However, our methods, cannot rule out that only a 407 

subset of the large labeled V1 neuron population contributed to each V2 cell RF within the injected 408 

column, or that the orientation selectivity of these subsets could provide better fits to the V2 orientation 409 

tuning. 410 

In summary, our results demonstrate that a weighted linear combination of V1 feedforward 411 

inputs can substantially account for the more complex RF structure of V2 cells and their tuning to oriented 412 

contours and naturalistic textures.  413 

 414 

METHODS  415 

Animals  416 

All procedures were approved by the University of Utah’s Animal Care and Use Committee and were in 417 

accordance with National Institute of Health and USDA guidelines. Four adult macaque monkeys (Macaca 418 

fascicularis; 2 males, 2 females; 3-6.5 kg) were used in this study. Animals were purchased from a 419 

commercial breeder, quarantined for 6 weeks and group-housed at the University of Utah prior to being 420 

used for experimentation. In 3 of the 4 animals, optical imaging and tracer injections were performed 421 

during a single 4 day-long anesthetic event, at the end of which the animal was euthanized. In the fourth 422 

animal (MK368), a quick (2-3hrs long) imaging session was performed under anesthesia to obtain 423 

functional maps and identify the V2 CO stripes, the tracers were then injected, and the animal recovered 424 
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from anesthesia. Four days later this animal was re-anesthetized and maintained under anesthesia for an 425 

additional 4 days during which additional optical imaging was performed and the animal was euthanized 426 

at the end of the 4th day.  427 

 428 

Surgical procedures 429 

Animals were pre-anesthetized with Ketamine (10-20 mg/kg i.m.), intubated with an endotracheal tube 430 

and artificially ventilated. During surgery, anesthesia was maintained with isoflurane (0.5–2.5%) in 100% 431 

oxygen. End-tidal CO2, blood O2 saturation, electrocardiogram, blood pressure, lung pressure, and body 432 

temperature were monitored continuously. The animal’s head was fixed in a stereotaxic apparatus. The 433 

scalp was incised, a large craniotomy and durotomy were made to expose the lunate sulcus and areas V2 434 

and V1 posterior to it. A clear sterile silicone artificial dura was placed on the cortex, and the craniotomy 435 

was filled with a sterile 3% agar solution and sealed with a sterile glass coverslip glued to the skull with 436 

Glutures (Abbott Laboratories, Lake Bluff, IL). On completion of the surgery, the isoflurane was turned off 437 

and anesthesia was maintained with sufentanil citrate (5-10 µg/kg/h,  i.v.). The pupils were dilated with a 438 

long-acting topical mydriatic agent (atropine; 3 animals) or a short-acting one (tropicamide; in 1 animal 439 

that was recovered after surgery), the corneas protected with gas-permeable contact lenses, the eyes 440 

refracted, and optical imaging was started. In one animal (MK368), optical imaging was performed for 441 

about 2 hours to obtain orientation maps and identify the V2 stripes. Then the glass coverslip, agar and 442 

artificial dura were removed, and the tracer were injected into V2, targeted at specific orientation 443 

domains and V2 stripe types using the surface vasculature as guidance. We only made injections in V2 444 

thick or pale stripes, as, unlike thin stripes, these contain well defined orientation maps. On completion 445 

of the injections, new artificial dura was placed on the cortex, the craniotomy was filled with Gelfoam and 446 

sealed with sterile parafilm and dental cement, the skin was sutured, and the animal was recovered from 447 

anesthesia. After a 4 day survival period, this animal was again anesthetized, a new optical window was 448 

made over the craniotomy as described above and imaging of V1 and V2 was performed continuously for 449 

4 days under sufentanil anesthesia and paralysis (vecuronium bromide, 0.1-0.3µg/kg/h, i.v.) to stabilize 450 

the eyes, at the end of which the animal was euthanized with Beuthanasia (0.22 ml/kg, i.v.) and perfused 451 

transcardially with saline for 2–3 min, followed by 4% paraformaldehyde in 0.1M phosphate buffer for 20-452 

25 min (thus post-injection survival time for this animal was 8 days).  453 

In the other 3 animals, initial optical imaging of V1 and V2 was performed for up to 12 hours, the 454 

chamber was then removed, and the tracer injections made in V2 thick and pale stripes. After the 455 

injections a new optical window was made and imaging was continued under anesthesia for an additional 456 

3-3.5 days post-injections, after which they animals were euthanized and perfused as described above. 457 

 458 

Tracer injections 459 

 A total of 12 retrograde tracer injections were made in 4 animals (2-4 injections per animal in the same 460 

hemisphere). We excluded 2 injection sites from analysis because they spanned too many orientation 461 

columns for the purposes of our study. The  tracers consisted of Cholera Toxin B (CTB)-alexa conjugated 462 

to different fluorophores (647, 488, 555). In animals that received 4 injections in the same hemisphere, 463 

two injections of the same tracer (CTB-555) were spaced by at least 5 mm to ensure no overlap of the 464 

resulting labeled fields in V1. The tracers were pressure injected using picospritzer and a glass 465 

micropipette (30-40 µm tip). The pipette was lowered to a depth of 600-800 µm from pia, with the goal 466 
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of targeting layers 3-4 (where the majority of V1 inputs terminate in V2) and 30-45nl of tracer solution 467 

(3% in distilled water) were slowly injected. The pipette was left in place for an additional 10 minutes 468 

before being retracted. 469 

 470 

Intrinsic signal Optical imaging 471 

We performed intrinsic signal optical imaging (OI) using the Imager 3001 and VDAQ software (Optical 472 

Imaging Ltd, Israel40) under red light illumination (630 nm). The surface vasculature was captured using 473 

green light (546 nm) illumination (as in Extended Data Fig. 1A) and used as guidance to target injections 474 

to specific functional domains in vivo, as well as for ex vivo co-registration of the functional images with 475 

the histological sections (Extended Data Fig. 1). Data acquisition rate was 5Hz.  476 

 477 

Visual Stimuli 478 

Orientation maps were obtained by presenting binocularly full-field, high-contrast (100%), 479 

pseudorandomized achromatic drifting square-wave gratings of 8 orientations (0°–horizontal, 22.5°, 45°, 480 

etc.), spatial frequency of 0.5-2.0 cycles/° and temporal frequency of 1.5 cycles/s, drifting back and forth, 481 

orthogonal to the grating orientation. Each grating orientation was presented 30 times, resulting in a total 482 

of 240 trials. Retinotopic maps were obtained by presenting monocularly oriented gratings (horizontal or 483 

vertical) occupying complementary adjacent strips of visual space, i.e. masked by 0.5-1° strips of uniform 484 

gray repeating every 0.5-1°, with the masks reversing in position in alternate trials (Fig. 1 H,I), for a total 485 

of 60 trials. Each trial lasted 6s, and consisted of 1s of gray screen, 4s of stimulus presentation, 1s of 486 

stimulus off.  487 

 488 

Histology 489 

After perfusion the block containing areas V1 and V2 was post-fixed between glass slides for 1-2 hrs. to 490 

slightly flatten the cortex in the imaged area, then sunk in 30% sucrose for cryoprotection, and frozen-491 

sectioned at 40 µm tangentially, parallel to the plane of optical imaging. Sections were mounted and 492 

coverslipped and imaged for fluorescent label using a confocal microscope. Every third section was 493 

reacted free-floating for cytochrome oxidase (CO) staining and imaged on a Zeiss Axio Imager Z2 light 494 

microscope. Imaged CO sections were aligned to images of fluorescent label in adjacent sections using 495 

blood vessels as guidance. Histological sections were aligned to in vivo imaged functional maps as 496 

described in the Data Analysis section below. 497 

 498 

 Data analysis 499 

Analysis of optical imaging data 500 

Retinotopic Maps. Responses to visual stimuli were averaged frame by frame across all trials resulting in 501 

a single stack for each stimulus condition. Frames were binned into 1-second frames and the first frame 502 

was subtracted from the rest to remove baseline signal. Difference images were obtained by subtracting 503 

two complementary conditions (reversed masks stimuli). Extended spatial decorrelation (ESD)41 analysis 504 

was applied to difference stacks in order to separate stimulus evoked changes in signal from biological 505 

noise and other imaging artifacts. The ESD component that showed the relevant response was used as 506 

the retinotopic map. Retinotopic stripes were hand traced (Fig. 1H-I) by three different individuals.  507 
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Computation of orientation tuning curves from optical imaging data. For each trial, a response map was 508 

measured by subtracting the baseline map (average of first two frames) from the stimulus-evoked map 509 

(average of frames 15 to 20). These response maps were then inverted (multiplied by -1), so that the 510 

bright patches corresponded to the domains most responsive to the stimulus. Pixel intensity values were 511 

cut between +/-100 (pixels values above/below +/-100 were set to +/-100, respectively). The resulting 512 

maps were divided by a control image, consisting of the average of the first five frames of the first 513 

recorded trial. To reduce low spatial frequency noise, these maps were, then, high-pass filtered by 514 

subtracting low frequency noise maps (maps smoothed by an isotropic 2D Gaussian kernel with standard 515 

deviation equal to 25 pixels ≈ 0.45 𝑚𝑚) from smoothed response maps (smoothed by Gaussian kernel 516 

with standard deviation equal to 2.5 pixels ≈ 45 𝜇𝑚). Responses to each grating orientation were 517 

calculated by averaging across trials for that orientation, excluding the first trial. A stimulus non-specific 518 

response map (minimum response map across eight orientation maps) was subtracted from each stimulus 519 

response map. Finally, these single condition maps were rescaled so that pixel values in the map ranged 520 

between 0 and 100. This was done by dividing each map by the maximum of the difference map 521 

(calculated by subtracting the minimum map - across orientations - from the maximum map, and 522 

excluding blood vessels) and multiplied by 100 following established procedures42. Tuning curves were 523 

finally estimated by fitting Von Mises function to the data using the Levenburg–Marquardt algorithm43, 44.  524 

Functional maps were up-sampled by 20x to match the size of the microscopy images of tissue sections. 525 

Blood vessels were segmented semi-automatically using a script kindly provided by Dr. Amir Shmuel (Brain 526 

Imaging Signals Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute).  527 

Orientation Preference Maps. Orientation preference maps were generated through pixel-by-pixel vector 528 

summation of the responses to eight grating orientations (8 single condition maps). The PO of each pixel 529 

was the angle of the resultant vector45.  530 

Identification of V2 stripes. To target injections of tracers to specific V2 stripes, the latter were identified 531 

on the functional maps imaged in vivo as follows. Thick stripes were identified as the middle of regions 532 

having an orientation-preference map, and pale stripes as regions having an orientation-preference map 533 

immediately neighboring a striped region with weak or no systematic orientation maps (the latter 534 

corresponding to thin stripes (Extended Data Fig. 1E). Stripe identity and borders were then confirmed 535 

postmortem by aligning CO-stained sections to the functional maps as described below. On CO-stained 536 

tissue sections, dark CO stripes were classified as thick or thin if they appeared thicker or thinner, 537 

respectively, than the two adjacent dark stripes and coincided with thick or thin stripes, respectively, as 538 

defined in the optical imaging maps (Extended Data Fig. 1D, E).  539 

 540 

 541 

Analysis of anatomical data 542 

Alignment of histological sections to in vivo functional maps. The retinotopic position and orientation 543 

preference of V1 labeled cells and V2 injection sites were based on these cell/pixel locations on the 544 

functional maps. To this purpose, functional maps and histological tissue sections were aligned using the 545 

surface vasculature as guidance. Specifically, the most superficial tangential tissue section containing the 546 

surface vessels (which run parallel to the cortical surface; Extended Data Fig. 1B) was warped to the image 547 

of the cortical surface vasculature obtained in vivo under green light (the latter in register with the 548 

functional maps obtained under red light; Extended Data Fig. 1A,E). Extended Data Fig. 1C shows the two 549 

warped images co-registered. Each deeper tissue section was then registered sequentially to the top 550 
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sections by aligning the radial blood vessels (which run perpendicular to the cortical surface). This 551 

alignment procedure is illustrated in Extended Data Fig. 1. Warping of tissue sections to functional maps 552 

was performed using IR-tweak warping software (NCR toolset, Scientific Computing and Imaging Institute, 553 

University of Utah). IR-tweak is an interactive, multithreaded, application for manual slice-to-slice 554 

registration. As control points are placed by the user in one image, their locations in the other image are 555 

estimated by the current thin-plate spline transform parameters46.  556 

Plotting labeled cells and injection sites. An experienced observer marked by hand a single pixel at each 557 

V1 labeled cell location in the stack of aligned tissue sections through L2/3, and the marked cells were 558 

overlaid to the functional maps (e.g. Fig. 1C,H). Tracer injection sites in V2 were outlined on multiple 559 

images of injection sites through the depth of the cortex; a composite injection site encompassing all 560 

outlines in individual sections was overlaid onto the merged stack, and its size and V2 stripe location were 561 

determined. The size of the CTB-alexa injection site (the tracer uptake zone) was defined as the dense 562 

core seen under fluorescence microscopy, within which no labeled cell bodies were discernible47 (e.g. Fig. 563 

1F). 564 

 565 

Cortex to visual field mapping 566 

In order to locate the RF locations of the labeled V1 cells in the visual field, we used retinotopic maps co-567 

registered to the histological sections. An area encompassing all V1 labeled cells with borders drawn 568 

parallel to the imaged horizontal and vertical retinotopic stripes was defined (yellow contour in Fig. 1H,I). 569 

The V1-V2 border (extracted from co-registered CO images), corresponding to the representation of the 570 

vertical meridian, served as one of four sides of this area. The size of the area was estimated in degrees 571 

of visual angle based on the number and size of the retinotopy stripes it encompassed, which 572 

corresponded to the known width of the stripes in the visual stimulus used to activate the cortex (insets 573 

in Fig. 1H,I). We used an Elliptic grid generation29 approach for dividing this odd-shaped area into a grid 574 

and registering it to a grid in visual space (Fig. 1 J,K). In this approach, in an iterative way (2500000 575 

iterations and convergence error <10-5), the space is divided into smaller pieces until an evenly distributed 576 

grid is achieved (more details are provided in Supplementary Methods). Each cell’s retinotopic location 577 

in visual space was estimated from its closest proximity to the grid points in the cortex (Fig. 1K).  578 

 579 

Statistics 580 

We performed several statistical tests to examine whether the observed distributions of preferred 581 

orientation (PO) of the labeled V1 cells were significantly different from distributions simulated to test 582 

particular selectivity hypotheses. As described in the Results and in Extended Data Fig. 4, we performed 583 

3 kinds of statistical comparisons. First, we compared the observed distributions of the V1 labeled cells’ 584 

POs with the distribution of POs of all the pixels within the V1 labeled field (Extended Data Fig. 4A, B top), 585 

and of all the pixels within the V1 imaged area (Fig. 1E and Extended Data Fig. 4F top), using a chi-square 586 

goodness of fit test. We also compared the observed distribution of the V1 labeled cells’ POs with 587 

simulated distributions that we obtained by two different random placement strategies. In the first test, 588 

control distributions were simulated by resampling M pixels (M = number of labeled V1 cells) 1,000 times 589 

within the labeled field area (Extended Data Fig. 4A). Summary statistics were calculated for observed 590 

and simulated distributions. Because of the circular nature of the orientation data, circular statistics 591 

including mean resultant length (MRL) associated with the mean orientation and circular standard 592 

deviation (CSD) - as described by Fisher (1993)31 - were used. MRL and CSD from observed distributions 593 
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were compared to distributions of those statistics from simulated distributions. Furthermore, observed 594 

and simulated distributions were compared using the Kolmogorov–Smirnov test at a Bonferroni-corrected 595 

family-wise p-value of 0.05 (Extended Data Fig. 4D). In the second test, control distributions were 596 

obtained by shifting randomly (> 1500 times and as much as the field of view/ imaging area allowed) the 597 

observed pattern of cell label across the V1 orientation map for that case (Extended Data Fig. 4E,H). 598 

Circular statistics (MRL and CSD; Extended Data Fig. 4I) and the Kolmogorov–Smirnov test were calculated 599 

as described above. 600 

To understand how the orientation organization of V1 to V2 connections differs from a perfect 601 

like-to-like connectivity (i.e. V1 cells connecting exclusively with V2 cells having the same PO), we 602 

simulated  these distributions under like-to-like connectivity and compared them to the observed 603 

distributions (Extended Data Fig. 5). We postulated that under like-to-like connectivity, if the retrograde 604 

tracer injection sites were precisely confined to a single orientation column, the resulting distribution of 605 

POs of the labeled V1 cells would resemble a Gaussian function. This is because POs are derived from 606 

orientation maps that undergo spatial smoothing with a Gaussian kernel (as described above). We used 607 

22.5o for full width at half maximum because the orientation responses were experimentally sampled at 608 

a resolution of 22.5o. In most experiments, however, the tracer injections were not perfectly confined to 609 

a single V2 orientation column, therefore the join probability distribution of V1 cells POs ( 610 

𝑝(𝜃', . . , 𝜃*))	were simulated as a weighted sum of Gaussian functions centered at the PO of the injection 611 

site as described by (Eq.1) and illustrated in Extended Data Fig. 5A:  612 

																																																𝑝(𝜃', . . , 𝜃*) = ∑ 𝛼0
*
01' 𝐺(𝜃0)          (Eq.1) 613 

 614 

Where 𝐺(𝜃0) is Gaussian function centered at 𝜃0  and 𝛼0 is the fraction of pixels at the injection site that 615 

have PO of 𝜃0.	𝑁 is the number of orientation columns involved by the injection site. The simulated 616 

distributions were binned similarly to the observed data, and we conducted a Chi-square analysis of the 617 

binned data, to determine the similarity of the two distributions. If the test didn't refute the null 618 

hypothesis, it indicated that V1-to-V2 connections follow a perfect like-to-like connectivity. Our results 619 

indicated otherwise. 620 

Modeling V2 cells responses to visual stimuli 621 

The responses of V2 cells to visual stimuli were modeled as a linear weighted sum of the responses of 622 

their V1 inputs. Given the absence of data on the phase sensitivity of V1 cells in our imaging, V1 cells were 623 

modeled (i) as phase-sensitive simple cells all with either even-parity RFs or odd-parity RFs, or (ii) as phase-624 

invariant complex cells. Two dimensional (2D) Gabor functions (Eq.2) were used to model simple cells’ 625 

RFs48, 49, and their response to an image (visual stimulus) was estimated by half-wave rectifying the inner 626 

dot product of the image and the RF. The  estimated retinotopic location of each cell in visual space 627 

(determined as described above) was used for the center coordinates of the Gabor function (xc, yc),  and 628 

the cell’s PO was used for orienting the Gabor function (𝜃4). To estimate the aspect ratio of the cell’s RF 629 

(𝛾4), we first simulated the responses of a set of Gabor functions with 40 different aspect ratios, ranging 630 

from 0.1 to 4, to grating stimuli of 8 different orientations, and measured their orientation tuning curves. 631 

Next, these tuning curves were fit to each V1 cell’s tuning curve computed from our OI data (see above 632 

for details), and the aspect ratio was selected based on the goodness of fit. The standard deviation of the 633 

elliptical Gaussian along x (𝜎7) was set to » 0.6 corresponding to an optimal spatial frequency (𝑠9) of 1 634 

cycles per degree and a bandwidth of 1 octave50. 635 
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 637 

							𝐺	(𝑥, 𝑦, 𝑥4 , 𝑦4 , 𝜃4 , 	𝛾4 	, 𝜙) = 	A	exp(−
(7B7C)DEFGCE	(HBHC)DE	

IJK
E ) cos(2𝜋𝑠9 	(𝑦 − 𝑦4)Q +𝜙)        (Eq.2) 638 

																𝑤ℎ𝑒𝑟𝑒													(𝑥 − 𝑥4)Q = −(	𝑦 − 𝑦4) sin(𝜃4) + (	𝑥 − 𝑥4) cos(𝜃4)     (Eq.3) 639 

														𝑎𝑛𝑑																		(𝑦 − 𝑦4)Q = (	𝑦 − 𝑦4) cos(𝜃4) + (	𝑥 − 𝑥4)sin	(𝜃4)     (Eq.4) 640 

 641 

In equation 2 above, A is a normalization factor that sets the L2 norm of the Gabor function to 1, and 𝜙 is 642 

0 for even-parity and 𝜋/2 for odd- parity RFs.  643 

The response of a V1 complex cell to an image was measured by summing half-wave rectified 644 

responses of four simple cells with RFs modeled as Gabor filters with identical parameters except for 645 

spatial phase that was offset by 90 degree (Fig. 4A)33.  646 

Weights in the linear model were estimated for each V1-V2 cell/pixel pair as the dot product of 647 

their mean-subtracted and normalized tuning curves. Specifically, this was estimated by considering each 648 

tuning curve as an 8-dimensional vector, subtracting the mean, normalizing by dividing to the vector’s 649 

length, and calculating the two vectors inner products: 650 

 651 

																																											𝑤0] =	
(^_B	^̀_)

|^_B	^̀_|
	.		
(^bB	^̀b)

c	^bB^̀bc
  (Eq.5) 652 

 653 

where, 𝑤𝑖𝑗 is the weight for 𝑖th V1 cell and 𝑗th V2 pixel pair, 𝑋𝑖  & 𝑋𝑗 and 𝑋g𝑖 & 𝑋g𝑗 are 8 dimensional vectors 654 

representing the tuning curve and its mean for given V1 cell and V2 pixel respectively.  |𝑋| indicates the 655 

magnitude of the vector 𝑋. Subtracting the mean and normalizing the tuning curves results in negative 656 

weights for the pairs with orthogonal PO (maximum weight = -1) and positive weight (maximum weight = 657 

+1) for those with similar orientations. The motivation for using this method for measuring weighs was to 658 

replicate the cross-orientation organization of local edges previously described for V2 RFs26 (see Results 659 

and Discussion). 660 

Model performance was tested by eight-fold leave-one-out cross validation process 51. Model 661 

error was quantified as mean relative error (with respect to the measured response range).  662 

 663 

Texture images 664 

Texture images were synthesized from 228 texture photographs obtained from the online collections by 665 

Phil Brodatz (https://www.ux.uis.no/~tranden/brodatz.html), Javier Portilla and Eero P. Simoncelli 666 

(http://www.cns.nyu.edu/~lcv/texture/index.php), and VisTex, MIT Media Laboratory 667 

(https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html) using a software package 668 

(https://github.com/LabForComputationalVision/textureSynth) written by Javier Portilla and Eero 669 

Simoncelli35, 52, 53. These 228 original images were converted to grayscale and resized to have 256x256 670 

pixels, and texture parameters were extracted using a ‘textureAnalysis’ code that processed the images 671 

with a multi-scale, multi-oriented bank of filters with 4 orientations, 4 spatial scales, and in a 9 by 9 local 672 

neighborhood. Naturalistic textures were synthesized using the ‘textureSynthesis’ code with the number 673 

of iterations set to 25, and output image size set to 192x128 pixels. These synthesized images were then 674 

cropped to a square shape and resized to 320x320 pixels, and a circular mask (diameter = 320 pixel) was 675 

applied (in our analysis 100 pixels correspond to 1o in visual field). For each original image, 30 naturalistic 676 
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texture images (NTI) and 30 corresponding spectrally-matched noise images (SMNI) were synthesized13. 677 

Each SMNI was generated by randomizing the phase values of the Fourier transform of the original image 678 

and then inverting the Fourier transforms. A user was asked to look at the 30 samples and rate the 679 

“naturalness” of the synthesized textures from 1 to 10; the textures with a naturalness score <8 were 680 

discarded.  From the 228 synthesized texture families, 97 passed the test. These images were rotated 8 681 

times around the clock in 22.5o steps, resulting in 240 texture and 240 noise samples within each texture 682 

family. 683 

 684 

Analysis of responses to textures in the model 685 

V1 and V2 RFs and images were standardized to have zero mean and unit standard deviation before 686 

calculating their dot product. For each texture and noise pair, a modulation index (MI) was defined as the 687 

response to the texture minus the response to the noise divided by their sum.  To compare across different 688 

cells, we opted to use results at the image rotation that provided the most significant differential response 689 

(i.e.  the smallest relative variance, in other words, the largest across sample mean over variance value). 690 

This approach ensures that when comparing across different cells, the effect of oriented features in the 691 

responses are similarly considered and the comparison reflects the effect of higher-order statistical 692 

dependencies that are common across different samples of a naturalistic texture.  693 

 694 

DATA AVAILABILITY STATEMENT 695 

The data presented here will be provided upon request to the corresponding authors. Source data for the 696 

figures are provided with the paper. 697 

 698 
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 700 
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 844 

Table 1. Statistical Analysis of difference in texture sensitivity between V1 and V2 cells in the model 845 

Case CO stripe Mean MI – V1 Mean MI – V2 t-stats SD p-value 

MK373 – CTB 555 Pale Medial 0.164 0.180 2.33 0.058 0.021* 

MK373 – CTB 488 Thick 0.164 0.220 5.09 0.071 0.000* 

MK373 – CTB 647 Pale Lateral 0.164 0.190 2.34 0.065 0.020* 

MK368 – CTB 488 Pale Lateral 0.161 0.150 -2.05 0.052 0.042* 

MK368 – CTB 555 Pale Medial 0.164 0.170 0.76 0.055 0.448 

MK365– CTB 488 Pale Medial 0.160 0.170 0.90 0.059 0.370 

MK365 – CTB 555 Thick 0.163 0.300 8.31 0.116 0.000* 

MK365 – CTB 647 Pale Lateral 0.163 0.250 6.89 0.089 0.000* 

SD: estimate of population standard deviation 846 

  847 
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FIGURE LEGENDS 848 

 849 

Figure 1. Experimental approach used to map in visual space the orientation and retinotopic 850 

organization of V1 inputs to single V2 orientation columns: example case MK373  851 

(A) Schematics of the experimental approach. Intrinsic signal optical imaging (OI) of a region 852 

encompassing V1 and V2 (red box) was performed in vivo to obtain functional maps of stimulus orientation 853 

and retinotopy, and injections of retrograde tracers were made into a single orientation column in V2. (B) 854 

In vivo image of the surface vasculature, obtained under green light illumination, used as reference to 855 

position pipettes for tracer injections to specific functional domains, as well as to register functional maps 856 

to confocal images of histological sections (see Extended Data Fig. 1). In this representative case, three 857 
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different tracer injections were made; confocal images of these injection sites are shown superimposed 858 

to the surface vasculature inside the colored boxes, and at higher magnification in panel (F): CTB647 859 

(purple ), CTB488 (green), and CTB555 (red). The white contour here and in (C-E) delineates the V1/V2 860 

border based on the functional maps. Scale bar: 1 mm and valid for B-E and H-J. (C, D) Difference 861 

orientation maps obtained by subtracting responses to two orthogonally-oriented gratings (45o–135o and 862 

22.5o – 112.5 o, respectively), as shown in the insets above the panels. The orientation maps in V2 show 863 

larger orientation domains than in V1, and a stripy organization, with regions having strong orientation 864 

responses corresponding to the thick (delineated by the cyan dotted contours) and pale stripes, and 865 

regions with weak or no orientation responses corresponding to the thin stripes (Tn; delineated by the 866 

white dotted contours). The outlines of the stripes shown on these maps are based on both the orientation 867 

and CO maps (see also Extended Data Fig. 1). Superimposed to the maps in (C-E) and (H-I) are manual 868 

plots of the locations of the V1 cells (green dots in C-D and H-I, black dots in E) labeled by the CTB488 869 

injection, and the contour of the CTB488 injection site (green oval in V2). V1 label from the other tracer 870 

injections is shown in Figure 2 and Extended data Fig. 2. (E) V1 cells (black dots) labeled by the CTB488 871 

injection (black oval) are shown superimposed to the composite orientation map. Other conventions are 872 

as in (C-D). (F) Confocal images of injection sites taken under 647 nm (left), 488 nm (middle), and 555 nm 873 

(right) light illumination. Injection sites in V2 were outlined manually as indicated by the colored ovals. 874 

Scale bar: 200µm. (G) Confocal images of V1 cells labeled by each respective tracer injection site taken 875 

under illumination with different light wavelengths. Scale bars: 100 µm. (H,I) Retinotopic maps generated 876 

by subtracting responses to 90° (H) or 0° (I) oriented gratings occupying complementary and adjacent 877 

strips (0.5° in width) of visual space (as shown in the insets above). This visual stimulation paradigm 878 

generates response stripes (manually delineated by white dashed contours) corresponding to the 879 

stimulated visual locations between the masks. The area encircled by the yellow contour is estimated to 880 

correspond to ~2.5° along an axis parallel to  the vertical meridian (corresponding to the location of the 881 

V1/V2 border) and 1.5° along the orthogonal axis. (J) Visual cortex-to-visual space mapping grid generated 882 

within the retinotopic mask (area delimited by the yellow contour). This grid contains 125 points along the 883 

vertical meridian and 75 points along the orthogonal axis, which provides a resolution of 0.02° in both 884 

directions. CTB488-labeled V1 cells (green dots) are superimposed on the grid. For the purpose of the final 885 

analysis, the V1 cells that lay on vessels were discarded and are not shown here. (K) Visual field map of 886 

the retinotopic location and orientation preference of the CTB488-labeled V1 cells. The location of the 887 

vertical meridian is at 0° on the Horizontal Meridian axis and corresponds to the location of the V1/V2 888 

border on the brain. As there is no landmark for the horizontal meridian representation on the brain, its 889 

location relative to the labeled cells could not be determined accurately, and as such it is not indicated on 890 

the vertical meridian axis. The labeled field is located at parafoveal eccentricities (3-7°).  891 
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 892 

Figure 2. Orientation organization of V1 inputs to V2 orientation columns in 4 representative cases 893 

(A) CTB647 (purple oval) and CTB488 (green oval) injection sites in V2, and resulting labeled cells in V1 894 

(purple and green dots, respectively) are shown superimposed onto the imaged 0° retinotopic map for 895 
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case MK373. The orientation map for the region inside the dashed white box is shown in panels (B-C).  896 

Other conventions are as in Fig. 1. (B) TOP: The locations of the CTB647 injection site in V2 (black oval) 897 

and resulting labeled cells (black dots) in V1 are shown superimposed to the composite orientation map 898 

for the same case shown in (A). BOTTOM:  Distribution of POs at the V2 CTB647 injection site (gray bars; 899 

right Y axis) and under the CTB647 labeled cells in V1 (colored bars: left Y axis). (C) Same as (B), but for 900 

injection case MK373-CTB488. (D-F) Same as (A-C), but for two additional injection cases: MK368-CTB555 901 

(D-E), and MK368-CTB488 (D,F).  Scale bars: 1mm. The reminder of cases used in this study are shown in 902 

Extended Data. Fig. 2.  903 
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Figure 3. Visuotopic maps of V1 inputs to V2 orientation columns in 4 representative cases 905 

(A) Visual field maps of POs and retinotopic layout of labeled V1 cells for case MK373-CTB647 (same case 906 

as in Fig. 2A-B). LEFT: Each labeled V1 cell is represented as a black oriented line segment centered on 907 

each cell’s RF location in visual space with the line orientation corresponding to the cell’s PO. RIGHT: the 908 

same map is shown as a color-coded version, in which the colors of lines indicate the number of labeled 909 

cells (in logarithmic scale) mapped at each cell’s RF location in visual space. (B-D) Same as in (A) but for 910 

different injection cases as indicated (same cases as in Fig. 2). Whereas relative cell density is better 911 

revealed by the color maps, the overall pattern of the V1 inputs is better captured by the black maps. The 912 

visuotopic maps for the reminder of cases are shown in Extended Data Fig. 3. 913 

 914 

Figure 4. The linear complex-cell feedforward network model  915 

(A)  The key components of the three-layer complex-cell model are illustrated. Layer 1 (purple): the 916 

receptive field (RF)  of each V1 cell (𝑐) is characterized by four two-dimensional Gabor functions (𝐺40 	, 𝑖 =917 

1: 4, each having a distinct spatial phase 0, 180, 90 and 270 degrees, respectively).  The response of each 918 

model V1 cell’s RF to an input image, 𝐼, is quantified as the half-wave rectified dot product between the 919 

image and the corresponding Gabor function (𝑅4	0 =	𝐺40 	. 𝐼).  Layer 2 (cyan): a complex V1 cell’s response 920 

to the input image is modeled by summing responses of the four RFs modeled in layer 1.  Layer 3 (khaki): 921 

the response of a V2 pixel/cell to the input image, 𝑅o,  is modeled as a weighted sum of all inputs from 922 

V1. 𝜔4o  represents the weight for a V1-V2 cell-pixel pair (B) Spatial distribution of various parameters 923 

employed in constructing the RFs of two distinct V2 cells/pixels in case MK373-CTB647. These cells/pixels 924 
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exhibit POs of 45° (TOP) and 90° (BOTTOM). In these plots, each projecting V1 cell is depicted as an ellipse, 925 

aligning with the orientation and aspect ratio of its associated Gabor function. The colors used here 926 

denote the weights within the linear model. 927 

 928 

Figure 5. Spatial structure of modeled V2 receptive fields 929 

Representative examples of modeled V2 RFs in 8 different injection cases, constructed by combining odd- 930 

or even-symmetric V1 Gabor filters. Both the tracer and CO V2 stripes injected are indicated for each case. 931 
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 932 

Figure 6. Performance of the complex-cell feedforward linear model 933 

(A) Responses of V2 cells/pixels to excluded grating stimuli of 8 different orientations predicted by the 934 

complex cell model in the leave-one-out (LOO) procedure (y axis) versus responses measured 935 

experimentally (x axis). This plot shows data for all V2 cells/pixels in eight injection cases. The mean 936 

correlation coefficient between measured and predicted responses across the 8 LOO tests is 0.88±0.04.  937 

(B) Averaged relative cross-validation error for each injection case. Zero indicates a (perfect) prediction, 938 

while a value of 1 indicates that the difference between predicted and measured response equals the 939 

range (i.e. max minus min) of the cell’s measured response to the full set of 8 orientations; in practice the 940 

relative errors were never >0.6. The inset shows a color-coded relative error map at the  V2 injection site 941 

for a representative case (MK373-CTB647). (C) Averaged absolute error (defined as the absolute value of 942 

predicted PO minus measured PO) in the model’s prediction of the preferred orientation (PO) of V2 943 

cells/pixels. The inset is a color-coded signed error map calculated for each pixel at the V2 injection site 944 

for case MK373-CTB647. (D) Averaged absolute error in the model’s prediction of the width of the tuning 945 

curves (HWHH: half width at half height) of V2 cells/pixels. The inset is a color-coded signed error map 946 

calculated as predicted HWHH minus measured HWHH for each pixel at the V2 injection site for case 947 

MK373-CTB647 . Error bars: s.e.m.   948 
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 949 

Figure 7. Responses of model cells to naturalistic textures 950 

(A) Each black dot in the scatter plot represents the MI for a given texture family averaged across all 951 

modeled V2 and V1 cells for each injection case; there are a total of 97 dots per case, corresponding to 952 

the number of texture families used. Colored dots indicate mean MIs across all 97 texture families for each 953 

case. Yellow dot is the grand average across the entire population of cells. (B) Distribution of mean MIs 954 

for V1 (TOP) and V2 (BOTTOM) model cells. Here, for each V2 and V1 cell we calculated the average MI 955 

across all 97 texture families. Arrowheads: population mean. (C) Distribution of MIs for V1 (top) and V2 956 

(Bottom) model cells. Here, for each cell we took the MI with the largest value.  957 

 958 

 959 
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 960 

Figure 8. Naturalistic textures preferred by V2 and V1 cells 961 

(A) Example images of the 15 naturalistic texture families most preferred by V2 cells are shown above the 962 

mean MIs (averaged across all cells) for that texture for all modeled V2 cells (n=844, black) and for their 963 

V1 input cells (n=11497, gray). Error bars: s.e.m. (B) Example images of the 15 naturalistic texture families 964 

least preferred by V2 cells are shown above the mean MIs for that texture for all modeled V2 and V1 cells. 965 

(C) Same as (A) but for the 15 naturalistic texture families most preferred by V1 cells. 966 

 967 

 968 

  969 
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SUPPLEMENTARY METHODS 970 

Elliptic Grid Generation. Elliptic grid generation is one of several methods used to generate structured 971 

grids for odd geometries. This approach works well particularly for domains where all the physical 972 

boundaries are specified. In this approach a pair of Laplace equations, which is a system of elliptic 973 

equations, is solved using an iterative numerical scheme (here, Gauss-Seidel with successive over 974 

relaxation).  The final solution determines the location of the interior grid point given a set of 975 

predetermined boundary points.  976 

For this purpose, consider two separate spaces including (1) physical and (2) computational 977 

spaces. Physical space is the real-world 𝑥 − 𝑦 space (cortex) which can be mapped to an abstract 978 

rectangular space (visual field), which we call computational space. The pair of coordinates defining a two-979 

dimensional computational space is commonly denoted as (𝜂, 𝜁). Here, the following pair of Laplace 980 

equation provides the aforementioned mapping from the computational to the physical domain: 981 

𝜁77 + 𝜁HH = 0
𝜂77 + 𝜂HH = 0,                                                                                                                                                                              982 

such that a uniform mesh in the computational space can be mapped to the physical space with uniformly 983 

distributed (equidistributed) nodes and grid lines which are locally perpendicular to the boundaries. In 984 

order to solve these Laplace equations, first we need to interchange the independent (𝜂, 𝜁) and 985 

dependent variables (𝑥, 𝑦) through applying a simple mathematical transformation. Remember we know 986 

what the computational coordinates are: (1) they vary between zero and one; (2) we are the one who sets 987 

∆𝜁 and ∆𝜂 (or number of nodes); and they produce a uniform grid in a one-by-one square domain. Thus, 988 

in essence we are mapping a square domain to our desired odd geometry.  The resultant nonlinear partial 989 

differential equation can be written as: 990 

𝑎𝑥uu − 2𝑏𝑥uw + 𝑐𝑥ww = 0
𝑎𝑦uu − 2𝑏𝑦uw + 𝑐𝑦ww = 0 , 991 

 992 

Where 𝑎, 𝑏 and 𝑐 are functions of physical coordinates derivatives. Here, the resultant mesh adapts to 993 

the boundary of the physical space as the boundaries are fed to the solution in the form of Dirichlet 994 

boundary conditions.  The simplest way to solve these equations is using an iterative method which is 995 

basically another form of the traditional trial and error scheme. First, we guess the results and next we 996 

plug them into the equations in an iterative fashion to correct our guess. Finally, the outcome of this 997 

solution is an equidistibuted node distribution with respect to the given boundary (e.g. Fig. 1J).  998 

  999 



 33 

EXTENDED DATA FIGURE LEGENDS 1000 

 1001 

Extended Data Figure 1. Alignment of histological sections with in vivo  optical images, and 1002 

identification of V2 stripe types 1003 

(A) In vivo image of the cortical surface vasculature in case MK373 (same case as in Fig. 1) taken under 1004 

green light illumination. Colored ovals here and in (B-E): outlines of 3 different tracer injection sites. Scale 1005 

bar : 1mm, valid for all panels. (B) The most superficial histological tissue section cut parallel to the imaging 1006 

plane and stained for CO, showing the surface vasculature running tangentially to the brain surface. (C) 1007 

Overlay of the section in (B) and the optical image in (A) demonstrate excellent alignment of superficial 1008 

blood vessels. Deeper tissue sections containing cell label or CO stripes are aligned to the superficial 1009 

section using the radial blood vessels. This approach allows for accurate alignment of labeled cells, 1010 

injection sites and CO compartments in histological sections to the in vivo imaged functional maps. The 1011 

histological section in (B) was colored red for purpose of illustration. (D) A deeper tissue section stained 1012 

for CO showing the CO stripes in V2. Thin stripes (Tn) are outlined in white, while thick stripes are outlined 1013 

in cyan. The same stripe outlines are shown superimposed to the orientation maps in panel (E) and in Fig. 1014 

1C-E. Green dots: locations of the CTB488-labeled V1 cells. (E) Difference orientation map (same 22.5°-1015 
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112.5° map shown in Fig. 1D) with superimposed the CO stripe outlines from (D), the 3 tracer injection 1016 

sites in V2, and the CTB488-labeled V1 cells (green dots). 1017 
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 1018 



 36 

Extended Data Figure 2. Orientation organization of V1 inputs to V2 orientation columns in 6 additional 1019 

cases 1020 

(A-E)  Same as panels (A-B) in Figure 2, but for 4 different injection cases: MK373-CTB555 (A), MK335-1021 

CTB488 (B), MK365-CTB488 (C-D), and MK335-CTB555 (C,E). (F-G) For these two additional cases, MK 365-1022 

CTB647 (F) and MK335-CTB555 (G) only the orientation histogram of V1 labeled cells are shown.    1023 

 1024 

Extended Data Figure 3. Visuotopic maps of V1 inputs to V2 orientation columns in 6 additional cases 1025 

(A-F) Black (LEFT) and color-coded (RIGHT) visual field maps of POs and retinotopic layout of labeled V1 1026 

cells for the same 6 injection cases shown in Extended Data Fig. 2. Conventions are as in Fig. 3.  1027 
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 1028 

Extended Data Figure 4. Statistical tests 1029 

(A) Control data generated for one example case (MK373-CTB647; same case as in Fig. 2A-B). Within the 1030 

V1 region containing the real labeled cells (white contour), we either determined the distribution of POs 1031 

for all pixels (shown in the top panel of B), or randomly selected as many V1 pixels (black dots) as the 1032 

number of labeled cells in the real data. Other conventions are as in Fig. 2. (B) TOP: Distribution of POs 1033 

for all pixels within the white contour in (A). BOTTOM: Distribution of POs for the pixels (black dots) 1034 



 38 

selected in (A). Colored bars: PO distribution of simulated V1 pixels (black dots in A). Gray bars: PO 1035 

distribution at the real V2 injection site. (C) The POs of selected pixels for the control V1 data (black dots 1036 

in A) are shown as oriented line segments centered on their corresponding location in visual space. (D) 1037 

Distribution of circular statistics (TOP: mean resultant length; BOTTOM: circular standard deviation) 1038 

obtained by repeating random pixel sampling from the labeled field 1000 times. The red arrow indicates 1039 

the circular statistics obtained from real data. (E) Control data for the same example case generated by 1040 

shifting the real pattern of cell label from its original location (black dots) to a new randomly selected 1041 

location within the imaged V1 area (white dots); in this analysis the relative layout of the real cell label 1042 

was preserved. (F) TOP: Distribution of POs for all pixels within the V1 imaged field of view shown in (E). 1043 

BOTTOM: Distribution of POs for the control V1 data (white dots in E) and for the real V2 data. (G) POs 1044 

and retinotopic mapping for the control V1 data (white dots in E and their POs in F bottom). (H) The real 1045 

pattern of cell label (black dots and contour) was shifted over the imaged V1 region >1000 times to 1046 

randomly selected locations (white contours) to generate control data. (I) Distribution of circular statistics 1047 

(TOP: mean resultant length; BOTTOM: circular standard deviation) for the control data (black bars) obtain 1048 

by randomly shifting the real pattern of V1 labeled cells. The red arrow indicates the circular statistics 1049 

obtained from real data. Scale bars in (A,E,H): 1 mm. 1050 

 1051 

Extended Data Figure 5. Comparison of PO distribution for real V1-to-V2 connection data with simulated 1052 

data following a perfect like-to-like connectivity rule.   1053 

(A) Distribution of POs of V1 cells predicted by a perfect  like-to-like connectivity rule (black curve) 1054 

modeled by weighted summing over three Gaussian functions (gray curves) centered at 45o, 67.5o, and 1055 

90o, respectively, corresponding to three orientation columns in V2 involved by the real V2 injection site 1056 

in case MK373-CTB647. (B) Simulated PO distribution (after binning) of V1 cells under a perfect like-to-1057 

like connectivity rule (black bars (see Methods). The simulated distribution differs significantly (p<0.05, 1058 

Chi square comparison) from the distribution of POs obtained from the real V1 data (colored bars). Gray 1059 

bars: Distribution of POs at the real V2 injection site. 1060 
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Extended Data Figure 6. Performance of the simple-cell feedforward linear model. (A,B) Responses of 1062 

V2 cells to excluded grating stimuli of 8 different orientations predicted in the leave-one-out procedure 1063 

by the two- layer odd and even models, respectively, versus responses measured experimentally. This plot 1064 

shows data for all the V2 cells/pixels in eight injection cases. The mean correlation coefficients are 0.27+/-1065 

0.53 and 0.53±0.44, respectively. C) Averaged relative cross-validation error for each injection case , under 1066 

the odd and even models.  (D) Color-coded relative cross-validation error maps at the V2 injection site for 1067 

case MK373-CTB647 under the odd (TOP) and even (BOTTOM) models. (E) Averaged absolute error in the 1068 

model’s prediction of the preferred orientation (PO) of V2 cells/pixels under the odd and even models. (F) 1069 

Color-coded maps of signed errors in PO calculated for each pixel at the V2 injection site in case MK373-1070 

CTB647 using the odd (TOP) and even (BOTTOM) models. (G) Averaged absolute error in the model’s 1071 

prediction of the width of the tuning curves (HWHH) of V2 cells/pixels under the odd and even models. 1072 

(H) Color-coded maps of signed errors in HWHH for V2 pixels in case MK373-CTB647 under the odd (TOP) 1073 

and even (BOTTOM) models. Error bars: s.e.m. 1074 
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 1075 

Extended Data Figure 7. Responses to naturalistic textures of V2 model cells in different V2 CO stripes 1076 

compared to their V1 input cells. 1077 

(A) Each black dot in the scatter plots represents the MI for a given texture family averaged across all 1078 

model V2 cells and their V1 input cells grouped by V2 stripe type. Left: thick stripes; Middle: pale-lateral 1079 

stripes; Right: pale-medial stripes. Colored dots indicate mean MIs across all 97 texture families for each 1080 

injection case. Yellow dot is the grand average across the entire population of cells in that stripe type. (B) 1081 

Distribution of mean MIs for V2 model cells in each stripe type (BOTTOM) and their V1 input cells (TOP). 1082 

Here, for each V2 and V1 cell we plot the MI with the largest value across all 97 texture families. 1083 

Arrowheads: population mean.  1084 
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 1085 

EXTENDED DATA TABLES 1086 

Extended Data Table 1. Statistical tests for data shown in Extended Data Fig. 4D. Mean resultant length 1087 

(MRL) and circular standard deviation (CSD) for real data and control data generated by randomly 1088 

sampling from the V1 cell labeled field. For each case, we report the range of values for the control data, 1089 

as well as the fraction of times MRL is larger and CSD smaller than the control data .  1090 

Case MRL real data Range of MRL 

for control data  

CSD real data Range of CSD 

for control data 

MK373LH - 488 0.2  

F(MRL>0. 2) = 0 

0.01 – 0.17 1.79  

F(CSD<1.79)= 0 

1.88 – 3.02 

MK373LH - 555 0.56 

F(MRL>0.56) = 0 

0.01 – 0.13 1.08 

F(CSD<1.08)= 0 

2.01 – 2.97 

MK373LH-647A 0.32 

F(MRL>0.32) = 0 

0.05 – 0.1 1.52 

F(CSD<1.52)= 0 

2.14 – 2.47 

MK368RH - 488 0.6  

F(MRL>0.6) = 0  

0.11 – 0.25 1.0 

F(CSD<1.0) =0 

1.65 – 2.09 

MK365LH - 488 0.35 

F(MRL>0.35) =0.003 

0.03 – 3.37 1.46 

F (CSD<1.46) = 0 

.003 

1.4 – 2.6 

MK335LH - 488 0.27 

F(MRL>0.27) = 0 

0.0005 – 0.06 1.61 

FCSD<1.61) = 0 

2.40 – 3.91 

MK335LH - 555 0.22 

F(MRL>0.22) = 0 

0.02 – 0. 13 1.74 

F(CSD<1.74) =0 

2.01 – 2.86 

 1091 

  1092 
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Extended Data Table 2. Statistical tests for data shown in Extended Data Fig. 4I. Mean resultant length 1093 

(MRL) and circular standard deviation (CSD) for real data and control data generated by randomly shifting 1094 

the position of the V1 cell labeled field over the orientation map. For each case, we report the range of 1095 

values for the control data, as well as the fraction of times MRL is larger and CSD smaller than the control 1096 

data.  1097 

Case MRL real data Range of MRL 

for control data  

CSD real data Range of CSD 

for control data 

MK373LH - 488 0.2  

F(MRL>0. 2) = 0.15 

0.003- 0.38 1.79  

F(CSD<1.79)= 0.15 

1.38 -3.39 

MK373LH - 555 0.56 

F(MRL>0.56) = 0 

0.005 – 0.46 1.08 

F(CSD<1.08)= 0 

1.24 – 3.26 

MK373LH-647A 0.32 

F(MRL>0.32)= 0.018 

0.003-0.46 1.52 

F(CSD<1.52)=0.018 

1.24-3.40 

MK368RH - 488 0.6  

F(MRL>0.6)=0 

0.005 – 0.6 1.0 

F(CSD<1.0) =0 

1.01 -3.25 

MK365LH - 488 0.35 

F(MRL>0.35) =0.17 

0.011-0.64 1.46 

F (CSD<1.46) = 0.17 

0.94- 2.999 

MK335LH - 488 0.27 

F(MRL>0.27) = 0.006 

0.001 – 0.31 1.61 

FCSD<1.61) = 0.006 

1.52 – 3.66 

MK335LH - 555 0.22 

F(MRL>0.22) = 0.05 

0.006 – 0.32 1.74 

F(CSD<1.74) = 

1.51 – 3.83 

 1098 

 1099 
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