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GEE based soil loss estimation in Eastern Tigray Zones, Ethiopia 

Abstract: Soil loss and its geostatistical analysis was studied at the kebele level in 

Tigray. The method applied to estimate soil loss was the revised universal soil loss 

equation. Earth Engine's public data archive was used for data collection. The R factor 

was developed from the SM2RAIN-ASCAT (2007-2021) global daily satellite rainfall 

data, the K-factor was developed from USDA-3A1A1A_M/v02 soil data, the C-factor 

was derived from MODIS/006/MOD13A2, and LS factor was derived from WWF Hydro 

SHEDS Hydrologically Conditioned DEM. By integrating all factor, the soil loss was 

obtained by the RUSLE model. Spatial Autocorrelation (Morans I) statistic was used to 

identify the pattern of soil loss and Ordinary Least Squares (OLS) linear regression 

was used to model a soil loss in terms of its relationships to R, K, LS, C, and P factors. 

The grouping analysis tool was used to Group kebele based on soil loss. The results 

indicate that the estimated average soil erosion is 82760 t ha−1 y−1. The pattern of 
soil loss at the kebele level was found highly clustered with a z-score of 23.39. The 

groping analysis tool divides the kebele into five categories to identify the cause of 

spatial variation of the soil loss in Tigray. Groups 1, 4 & 5 were found as in the outlier 

positions due to the high LS factor. The results deliver valuable information for 

decision-makers and planners to take suitable land administration measures to 

minimize the soil loss. It, therefore, indicates google earth engine is a significant 

platform to analyse the RUSLE model for evaluating and mapping soil erosion 

quantitatively and spatially.  

Keywords: RUSLE, GEE, Soil Erosion, OLS, Grouping Analysis. 
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Introduction 

Land degradation hinders people across the globe from ensuring food security. 
Around 1.05 billion people are currently food insecure (Kuria et al. 2018). This 
phenomena is likely to get worse with this trend of land degradation with the world's 
population expected to rich 9 billion by 2050 (Rockström and Falkenmark, 2015). It is 
caused by many factors of both natural and anthropogenic sources. Deforestation and 
soil erosion are among the major reasons of land degradation. while deforestation is 
caused of increased population and the subsequent need for agricultural expansion, Soil 
erosion is caused by runoff (more than 90% is caused by water erosion) (Megerssa and 
Bekere 2019). The effects of land degradation might not be revealed over short period 
of time; it is however manifested gradually with a catastrophic draught and starvation 
(Tesfahunegn 2020). 

Soil erosion has continuously been an issue for human creatures all through history 
(Demirci & Karaburun, 2012). Soil erosion by water is a serious global problem. 
Around 5 Mg ha-1 of beneficial topsoil is misplaced in lakes and seas each year 
(Angima et al., 2003). Land degradation is a serious problem across Sub-Saharan 
Africa. More than sixty-five % of the land has degraded up to some extent from very 
low to high. (Sileshi et al., 2019).  Therefore, a precise evaluation of soil loss caused 
by precipitation is basic for common and rural assets administration (CHEN et al., 
2017). Evaluation of soil disintegration is valuable in arranging and preservation works 
in a basin or a region (Ganasri & Ramesh, 2016). 

Ethiopia, a country is mostly hit by land deterioration that resulted in poverty, 
reduction in agricultural yield, food insecurity, loss of human life, loss of livestock etc. 
Around two billion tons of soil is eroded annually which is equivalent to loss of about 
1 million tons of grains annually (Megerssa and Bekere 2019). Soil erosion has a direct 
effect on yield reduction of agricultural products by altering the pysico-chemical 
properties of soil such as a change in soils organic matter, texture, soil water content, 
soil nutrient decline etc. which are all a determining factor for the growth of crops. 
Consequences of Soil erosion vary from nutrient losses at upper stream to 
sedimentation deposition downstream, declining soil fertility, and yield loses. 

Soil erosion in Ethiopia is more common on the highlands (semi-arid areas) when 
compared to the low lands, which receive relatively adequate rainfall amount. Semi-
arid areas are with low vegetation cover, high runoff & soil loss. Soil erosion rates are 
generally highly dependent on land use type and agro climatic zones. For instance, 
cultivated lands encounter higher erosion rate than grasslands. The Tigray region in 
northern Ethiopia is highlands that is severely prone to soil erosion. The main reason 
are associated to mountainous topography, intense rainfall, lack of /little vegetation 
cover. Frequent soil erosion in the Tigray has occurred for decades, which made 
farming on old arable lands difficult, and farmers had to look for more marginal lands 
(Esser and Haile 2002). 

Soil erosion is because of runoff produced during the summer short but intense 
rainfall in Tigray. Other activities that aggravate soil erosion are the clearing of forests 
for the sake of alternative fuel sources. In Tigray, only the urban areas that account 15% 
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of the its population have access to power. The rest 85% living in remote areas are 
deprived to energy and all they depend is on wood fuel. Besides, cow dungs and cover 
crops that are vital to soil fertility are again used as fuel source. This has a detrimental 
effect on the quality of soil. Expansion of cultivated land by clearing forests has 
degraded the condition of the soil and accelerated soil erosion. The hilly and steep slope 
areas in the region are the most vulnerable to erosion because of the topography, old 
farming techniques of conventional tillage, and over cultivation (Kaygusuz, 2011). 

Most of researches conducted so far focus on mitigating soil erosion mainly on 
implementation of soil and water conservation programs (Biazin et al. 2012), integrated 
watershed management (Teka et al. 2020), water harvesting (Filho and de Trincheria 
Gomez 2017; Nyssen et al. 2010), and conservation tillage (Zerssa et al. 2021) etc. this 
programs are meant to enhance food and cash production, improve soil fertility and 
improve small holder farming. Those programs have been implemented at both house 
hold and community level. Those measures, although are limited to only few areas in 
the region such as the case of Abraha with Atsebha have shown promising results 
(Tadesse, Gebrelibanos, and Geberehiwot 2016). Soil and water conservation programs 
have the capacity to reverse erosion by reducing slope length, building a small retention 
basin to accumulate sediment and runoff, reducing water overland flow or water erosion 
(Vancampenhout et al. 2006). 

However research on the estimation of soil losses in at regional or zonal level is very 
limited or insignificant. Despite being very limited, research conducted on soil loss 
estimation are conducted at plot scale and thus might not be used for estimating soil 
loss for large areas. Govers and Moeyersons (2005), conducted research on soil loss 
estimation at a plot scale on stone bunds, which are commonly, applied soil 
conservation technique by comparing plots with and without stone bunds. They found 
that mean annual soil loss estimated from sheet and rill erosion was 57 ton/ha/yr. no 
research has been conducted for estimating soil loss for larger areas at wereda level (the 
second administration unit in the region). Another study conducted on exclosure areas. 

Estimating the rate of soil erosion for a larger area is however very essential element 
that should have been prioritized before the implementation of soil conservation works. 
It helps to quantify the amount of soil lost and the resulting decline in economy both at 
regional and country level. 2 billions of soil loss is equivalent to a loss of about 1 million 
ton of grains. Assessment of soil erosion at wider scale can help on the planning and 
design of agricultural policy and strategies in the region. It can help categorize areas 
from the most degraded areas to areas with less erosion hence, to identify areas of focus. 
Thus answers the question, which areas need to be prioritized during soil conservation 
programs. This can facilitate the implementation and adoption more soil conservation 
works. 

Soil erosion models play a key role at forecasting the impacts of landscape alterations 
on both socio economic and environmental sustainability. They help estimate soil loss 
and runoff from different land use, gives information about the present and future 
erosion and scenario analysis. They also serve as a guideline for policies and strategies 
linked to soil water conservation. 

There exist several erosion models have been developed so far including the RUSLE 
model (revised universal soil loss equation), soil & water assessment tool (SWAT), 
AGNPS (Agricultural non-point source pollution), Euro SEM (European soil erosion 
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model),WEPP (water erosion predication project) etc. all with a common goal of 
sediment or soil loss estimation but mostly differ on the input parameters, whether an 
empirical, conceptual or physical based models are used for  simulating the model, 
process and complexity of the model etc.(Moges and Bhat 2017). The selection on a 
suitable model is highly dependent on the aim of the study, catchment properties, data 
availability, model accuracy and simplicity (Luvai, Obiero, and Omuto 2022).For 
instance, RUSLE, is a commonly applied empirical soil erosion model designed for 
areas with hilly topography. Empirical models such as RUSLE are easy to use models, 
which can even be applied in case of limited input data (P.U. et al. 2017). It has been 
applied by (Bagegnehu, Alemayehu, and Nigatu 2019; Ganasri and Ramesh 2016; K., 
F., and O. 2020; Mekuria et al. 2009; Moges and Bhat 2017). The USLE model that 
was developed by Wischmeier and Smith, (1978) was first designed to estimate soil 
loss for sloppy areas where parameters like slope length and slope steepness were used 
to determine the impact of terrains on erosion. This model was later on improved to a 
RUSLE model which made it applicable for more land use types such as crop land, 
range lands, forest lands, and steep areas(P.U. et al. 2017; Van Remortel, Hamilton, and 
Hickey 2001).  The RUSLE model have been applied enormously for the last 20 year 
and continued to be the most preferred soil erosion model used to estimate sheet & rill 
erosion caused by runoff (Borrelli, Alewell, and Alvarez 2021). 

Nowadays, including remote sensing in to existing soil loss modeling has become a 
popular technique in areas of hydrology, agriculture, soil science etc. for simulating 
events and processes with the help of spatial analysis (Ahmed Harb Rabia 2012). GIS 
based water erosion model can help examine spatial pattern of soil attrition, its transfer 
and deposition as well as its effect on the landscape formation (Mitasova et al. 2013). 
Combination soil erosion models, with remote sensing data such can identify highly 
erosive areas on a cell-by-cell basis with input from digital elevation model (Ganasri 
and Ramesh 2016).  

Erosion models, depending on the catchment scale for which they are designed need 
different spatial dataset resolutions. For instance, a spatial resolution up sub meter is 
needed for hill slope scale where sheet and rill erosion is dominant. A 
watershed/catchment scale model on the other hand requires a spatial resolution of up 
to 10 meter and includes large gullies. Regional scale modeling are macroscale 
catchments of up to thousands of km2, thus require a spatial resolution from 30 meter 
to hundred meters (Mitasova et al. 2013). Some of the papers that combined GIS and 
one of the RUSLE erosion models (Ahmed Harb Rabia 2012; Bagegnehu et al. 2019; 
Borrelli et al. 2021; K. et al. 2020; Luvai et al. 2022; Moges and Bhat 2017). 

The USLE (Wischmeir & Smith, 1965, 1978) was formulated to predict the long 
term twenty years mean soil loss per year from field size areas using five factors 
focusing on the effect of climate, especially rainfall, soil, topography, cropping, and 
soil conservation activities (Kinnell, 2014). The RUSLE has also expanded its uses to 
different conditions (Lu & others. 2004). RUSLE is one of the most widely used (Abu 
Hammad & others. 2004) soil erosion models worldwide (Tanyaş et al., 2015). 

The rainwater erosivity factor denotes the kinetic energy of raindrops, which could 
affect the steadiness of soil aggregates (Yue et al., 2020) and enhance soil loss 
(Hateffard et al., 2021). The soil erodibility calculate k appears the resistance of soil 
against disintegration due to the effect of a raindrop and the rate and sum of runoff 
created for that precipitation impact, under a standard condition (Ghosal & Das 
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Bhattacharya, 2020). Climate change could further accelerate the process of soil loss, 
in consequence of climate change, an increase in local flash floods and soil erosion 
intensity would be expected (Fiener & others. 2013). As the temporal resolution of 
precipitation measurement declines, calculated precipitation erosivity declines (Yue et 
al., 2020). 

 The soil erodibility variables for showing soil erosion are stated as the k variable in 
the widely used soil erosion model the USLE and its revised version RUSLE (Panagos 
et al., 2014). The soil erodibility variable (K) denotes the power of soil against 
disintegration because of the effect of the drop of the rain and the rate and amount of 
run-off developed for that precipitation effect, under a standard condition (Ghosal & 
Das Bhattacharya, 2020). The utmost problem with soil erosion modeling at greater 
spatial scales is the absence of data on soil characteristics. 

When utilizing the USLE or RUSLE, the impacts of terrain on soil disintegration are 
evaluated by the steepness & length of the slope constituents of the dimensionless LS 
factor, where LS is one of five variables (R, K, LS, C, and P) that are multiplied all to 
calculate the normal yearly soil removal per unit area (Van Remortel et al., 2001). The 
LS figure contains the slope length figure (L) and the slope factor (S). It is broadly 
accepted that slope length is the trickier portion. The improvement of GIS permits for 
programmed extraction of slope length from high-resolution DEMs, hence an 
inefficient manual process is avoided (Liu et al., 2015). The LS-factor was initially 
created for slopes less than 50% slant and has not been tried for more extreme slopes. 
To overcome this confinement, (Schmidt et al., 2019) adjusted both components slant 
length L and slant steepness S for conditions tentatively watched at Swiss elevated 
prairies. 

Greenery cover is seen among the foremost critical saving measures for controlling 
soil disintegration caused by rainfall. a lot of work has been published related to the 
fact that vegetation cover is more sensitive, down to earth, it is possible to calculate 
normalized difference vegetation list (NDVI) for calculating ‘‘cover management (C) 
factor’’ within the Changed Universal Soil Loss Condition (RUSLE), the foremost 
commonly recognized soil disintegration prediction show around the world 
(Vatandaslar & Yavuz, 2017). Land cover, a vital calculation for checking changes in 
land use and disintegration chance, has been broadly checked and assessed by 
vegetation indices (Durigon et al., 2014). 

The conservation practice variable (P) of the RUSLE stays to a great extent hazy 
(Tian et al., 2021). The variables utilized in these models were ordinarily assessed or 
calculated from field estimations. The strategies of evaluating soil misfortune based on 
disintegration plots have numerous confinements in terms of fetched, 
representativeness, and unwavering quality of the coming about information. They 
cannot give the spatial distribution of soil disintegration loss due to the limitation of 
constrained tests in complex situations. So, mapping soil disintegration in large zones 
is regularly exceptionally troublesome utilizing these conventional strategies (Lu et al., 
2004). In any case, the utilization of farther detecting and geographical information 
framework (GIS) procedures makes soil disintegration estimation and its spatial 
dispersion attainable with reasonable costs and way better precision in bigger zones. 
The RUSLE has been adopted in a Geographical data information system (Kouli et al., 
2009). Spatial analysis is a part of geography, which has a varied and inclusive ability 
that comprises the basic visual investigation of maps and imagery, computational 
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analysis of areal patterns, finding best routes, point selection, and advanced forecast 
modeling (ESRI, 2013). 

GIS is included in many disciplines have been used significantly in combinations of 
many different models, such as RUSLE, to predict soil disintegration (Demirci & 
Karaburun, 2012). Spatial statistics were somehow developed by Pearson and Fisher, 
but their modern appearance is mainly due to Whittle, Moran, and Geary (Waters, 
2012). 

Using GIS models any one can forecast soil removal risk, based on the level of 
erosion at a variety of levels (Evans & Boardman, 2016), but field-based assessments 
are very important for result validation. As we know the population is increasing day 
by day so the protection of soil has been a very significant task (CHEN et al., 2017).  

The Geographers and GIS experts focus on the need of the land administrators and 
policy developers and they are more concerned with the spatial variation of soil removal 
risk than only numerical figures of soil erosion loss (Lu & others, 2004). 

This research focuses on application of geostatistical analysis for estimating soil loss 
for Tigray. It had done by combining GIS data with the revised universal soil loss 
equation model (RUSLE). 

Purpose of the work 

The purpose of this is; first, to predict the soil erosion using RUSLE; second, to 
predict the pattern of soil loss at the kebele level in Tigray Region; third, to exercise 
linear regression to understand the impact of variables of soil loss and the last to group 
the kebele based on soil loss estimation. 

There have been relatively few regional studies in the Tigray regional state of 
Ethiopia on the use of RUSLE technologies for finding the kebele prone to more water 
erosion. Using Geostatistics, the current study tried to analyze the areal differentiation 
of soil loss due to rainfall in the study area. 

Material and Methods 

Study Area 

Eastern Tigray Zone is located in the northern part of Ethiopia and is composed of 18 

woredas, with a total area of 6,392 km2. It is located between 13°32'59''N up to 

14°40'56''N latitude and between 39°11'39''E up to 39°59'43''E longitude. Generally, 

this zone is bordered by Eritrea in the North, by the Central zone in the West, by the 

South Eastern in the South, and by the Afar regional State in the East. 

Topography of the Study Area 

The general topography of the influence area ranges from its lowest 148 meters above 

sea level up to 3,298 meters above sea level. Its mean elevation above sea level equals 

2,225 meters. It is characterized by the local climate primarily ‘degua’, ‘weyna degua’ 
and ‘kola. 
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Climate of the Study Area 

The climate is commonly defined as the weather average over a long period mostly 

used for 35 years. Climate includes the statistics of temperature, humidity atmosphere 

pressure, wind, and precipitation. However, the data is limited to temperature and 

rainfall. These two climatic elements of the course are the most important for both 

agriculture and hydrology. 

In Eastern Tigray, as in other parts of the country, the climate is determined by 

latitudinal and altitudinal factors. Annual rainfall of the zone ranges from its minimum 

in Erob about 140 mm up to the highest in Saesie-Tsaeda-Emba about 672mm. 

Similarly, with regard to temperature, the lowest temperature is experienced in Ganta 

Afeshum including Adigrat about 6°C up to the maximum of about 30°C in Erob 

(Adigrat University, 2018). 

Several land use types including forests, croplands, built-up area, and exclosure areas 

exist in Tigray. Typical soil types  in the region include, lithosols, cambisols, acrisols, 

vertisols luvisols, xerosols regosols, arenosols, fluvisols rendzinas 

nitosols(Gebregziabher et al., 2009) .Mixed farming system of crop farming with 

livestock production are typical farming practices in the region of which more than 90% 

of farming is practiced by small holder farming.(Zerssa et al., 2021). Agriculture is the 

mainstay economy in the region contributing to 60% of GDP. The main crops grown in 

in the region are barley, maize, wheat, sorghum, Teff (Eragrostis tef), along with 

leguminous crops: chickpeas, field peas, and horse bean. Sheep, goat, Cattle, beehives, 

and chicken are common livestock reared in the zone. 

 

 
Figure 1 Study Area Map 
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Workflow 

RUSLE is fit for the soil loss estimation model that can be used at any level of region 
(Ganasri & Ramesh, 2016). The workflow implemented in this study is given in fig. 02. 

 
Figure 2 RUSLE Workflow chart 

Data Used 

The source and type of data used are given in table 01. 

Data Processing 

2.4.1 RUSLE 

 
RUSLE, one of the foremost widely used models (Eq. 1), gives an idea of how to 
get the interaction between precipitation and soil erosion (Xu et al., 2013). 

 

 𝐴 =  𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃 (1) 

 
where, R stands for precipitation runoff erosivity factor 

(MJ·mm·km−2·h−1·month−1); K is for the soil erodibility variable 
(t·km2·h·km−2 MJ−1·mm−1); LS is steepness and length of the slope factor 
(dimensionless); C is the factor for cover management (dimensionless); P is the 
erosion control practice factor (dimensionless, between 0 and 1) and A is the 
calculated soil loss (t·km−2·annum−1). 
Rainfall factor (R): For the monthly R, it is calculated according to daily data or 
monthly data.  

 𝑅 = 1.73 ∗  10(1.5∗𝑙𝑜𝑔(𝑃𝑚2𝑃𝑎 )−0.08188)
 

(2) 

Where R is the erosivity by rainfall in MJ in mm /ha h−1 y−1, Pm is the 
precipitation in the month and Pa is the precipitation in a year. 

RUSLE Model

Soil Data

K - Factor 

map

Rainfall Data

R - factor 

map

DEM

Flow 

accumulation

LS Factor 

map

Soil Loss Map: Area (t ha-1 year -1) = K*R*LS*C

Slope Map

NDVI

C - Factor
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Box 1 shows the Java script used in GEE to find the R factor. 

 
 
 
 
 
 
 
 
 
 
 

Soil factor (K): It can be assessed using soil’s texture and organic data (Sharpley 
and Williams, 1990).  
 

 𝐾 = [0.2 + 0.3 ∗ 𝑒𝑥𝑝 − 0.0256 ∗ 𝑆𝐴𝑁∗ (1 − 𝑆𝐼𝐿/100)] ∗ 

[1 − 0.25 ∗ 𝐶𝐿𝐴𝐶𝐿𝐴 + 𝑒𝑥𝑝(3.72 − 2.95 ∗ 𝐶𝐿𝐴)] 
(3) 

 
where SAN is the sand percentage, SIL is the silt percentage and CLA is the 
clay percentage. 
Box 2 shows the Java script used in GEE to find the factor of soil erodibility 
(K). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var Precipitation_E_Tigray= 

ee.Image("OpenLandMap/CLM/CLM_PRECIPITATION_SM2RAIN_M/v01") 

var Annual_Precipitation_ E_Tigray= Precipitation_ E_Tigray.reduce(ee.Reducer.sum()) 

var Monthly_Precipitation_T E_igray= 

ee.Image(10).pow(ee.Image(1.5).multiply(Precipitation_E_Tigray.pow(2).divide(Annual_Pre

cipitation_E_Tigray).log10().subtract(-0.08188))).multiply(1.735) 

var factorR = Monthly_Precipitation_Tigray.reduce(ee.Reducer.sum()) 

Box 1 GEE code for rainfall erosivity factor (R) 

var sand = ee.Image("OpenLandMap/SOL/SOL_CLAY-WFRACTION_USDA-

3A1A1A_M/v02").select('b0') 

var silt = ee.Image('users/aschwantes/SLTPPT_I').divide(100) 

var clay = ee.Image("OpenLandMap/SOL/SOL_SAND-WFRACTION_USDA-

3A1A1A_M/v02").select('b0') 

var morg = ee.Image("OpenLandMap/SOL/SOL_ORGANIC-CARBON_USDA-

6A1C_M/v02").select('b0').multiply(0.58) 

var sn1 = sand.expression('1 - b0 / 100', {'b0': sand}) 

var orgcar = ee.Image("OpenLandMap/SOL/SOL_ORGANIC-

CARBON_USDA-6A1C_M/v02").select('b0') 

var soil = ee.Image([sand, silt, clay, morg, sn1, orgcar]).rename(['sand', 'silt', 

'clay', 'morg', 'sn1', 'orgcar'] ) 

var factorK = soil.expression( 

  '(0.2 + 0.3 * exp(-0.0256 * SAND * (1 - (SILT / 100)))) * (1 - (0.25 * CLAY / 

(CLAY + exp(3.72 - 2.95 * CLAY)))) * (1 - (0.7 * SN1 / (SN1 + exp(-5.51 + 22.9 

* SN1))))', 

Box 2 GEE code for soil erosivity factor (K) 
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LS factor: It is an accelerating factor for rainfall erosion. Moore (1985) 
developed the method of slope length. S is assessed by step coupling techniques 
(McCool. 1989; Liu.1994). 

 

 𝐿𝑆 = (0.4 + 1) ∗ (𝐹𝑙𝑜𝑤𝑎𝑐𝑐 ∗ 𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒/22.13)0.4  ∗  (𝑠𝑖𝑛𝜃/0.0896)1.3 

(4) 

 
where LS is the horizontal length of the slope; Flowacc is the horizontal length 
of the slope θ is the slope of DEM (Degrees). Box 3 shows the Java script used  
in GEE to obtain the LS factor. 

 
 
 
 
 
 
 
 
 
 

 

 

C factor: It is related to cover management, which was calculated from the 
NDVI (Eq. 5): 
 

 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅e𝑑) (5) 

 
Where Red & NIR are the wavebands of EMR. 
 
The technique (Eq. 6) for the C factor was used because the CrA is dependent 
on NDVI & tropical climate conditions (Almagro et al., 2019). 
 

 𝐶𝑟𝐴 =  0.1 ∗ ((−𝑁𝐷𝑉𝐼 + 1)/2) (6) 

 
 

Box 4 shows the Java script used in GEE to obtain the C factor. 
 
 

 

 

 

 

 

 

 

var facc = ee.Image("WWF/HydroSHEDS/15ACC") 
var dem = ee.Image("WWF/HydroSHEDS/03CONDEM") 
var slope = ee.Terrain.slope(dem) 
var ls_factors = ee.Image([facc, 
slope]).rename(['facc','slope']) 
var factorLS = ls_factors.expression( 
  '(FACC*270/22.13)**0.4*(SLOPE/0.0896)**1.3', 
  { 
    'FACC': ls_factors.select('facc'), 
    'SLOPE': ls_factors.select('slope')   }); 
Box 3 GEE code for LS erosivity factor (LS) 

var ndvi_median = ee.ImageCollection ("MODIS/006/MOD13A2"). 
median().multiply(0.0001).select('NDVI') 
var factorC = ndvi_median.expression( 
    '0.1 * ((- NDVI + 1) / (2))', { 
      'NDVI': ndvi_median, }); 

Box 4  GEE code for cover management factor (C) 
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P factor: The P-factor signifies comprehensive, overall effects of practices 
supporting conservation. It accounts for how surface environments distress flow 
paths and flow hydraulics. Presently, no major erosion control/support practices 
data of Tigray was available; henceforth it was given a value of 1.0 such that it 
had no effect on the design of soil loss. 

 
2.4.2 Geostatistical Analysis 

To predict the pattern of soil loss at kebele level in Tigray the Spatial Autocorrelation 
(Global Moran's I) tool was used. This tool calculates spatial autocorrelation based 
on both location and values of the features simultaneously. The pattern may be 
dispersed, clustered, or random, it depends on the location and the attribute values of 
the features. 

The Moran’s I statistic for spatial autocorrelation is given as eq. 07 to 11. 

 

 𝐼 = 𝑛𝑆0 ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗∑  𝑛𝑖=1 𝑧𝑖2  
(7) 

Where zi denotes the feature's attribute deviation from its average is the spatial 
weightage in between feature j and i, n is all number of features, and S0 is the 
combination of all the spatial weights: 

 

 𝑆0 = ∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝑤𝑖,𝑗 
(8) 

The zi-score for the statistic is computed as: 

 

 𝑧𝐼 = 𝐼 − 𝐸[𝐼]√𝑉[𝐼]  
(9) 

 
Where:  

 𝐸[𝐼] = −1/(𝑛 − 1) (10) 

 𝑉[𝐼] = 𝐸[𝐼2] − 𝐸[𝐼]2 (11) 
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To meet the third research objective ordinary least squire regression type was used (Eq. 
12). 

 

 𝛾 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3+. . . . . . . 𝛽𝑛𝑋𝑛 +  ɛ (12) 

Where 𝛾 is the dependent variable, 𝛽 is coefficients, X is explanatory variables and ɛ  
is the random error.  
To better understand how the factors are affecting the soil loss predictions Grouping 
Analysis tool was used to partition the kebele of Tigray (Eq. 13 & 14).  
 

 Calinski − Harabasz pseudo F − statistic= (𝑅2/𝑛𝑐 − 1)/(1 − 𝑅2/𝑛 − 𝑛𝑐) 

(13) 

 
Where: 

 𝑅2 = 𝑆𝑆𝑇 − 𝑆𝑆𝐸SST  
(14) 

In addition, SST is a reflection of between-group differences and SSE reflects within-
group similarity: 

 SST = ∑ ∑ ∑(𝑉𝑖𝑗𝑘 − 𝑉𝑘̅̅̅̅ )2𝑛𝑣
𝑗=1

𝑛𝑖
𝑘=1

𝑛𝑐
𝐼=1  

(15) 

 
 

 

Where 
n = the number of features 

ni = the number of features in group t 

nc = the number of classes (groups) 

nv = the number of variables used to group features 𝑉𝑖𝑗𝑘 = the value of the kth variable of the jth feature in the tth group 𝑉𝑘̅̅̅̅  = the mean value of the kth variable 𝑉𝑖𝑘̅̅̅̅  = the mean value of the kth variable in group i 

 SST = ∑ ∑ ∑(𝑉𝑖𝑗𝑘 − 𝑉𝑖𝑘̅̅̅̅  )2𝑛𝑣
𝑗=1

𝑛𝑖
𝑘=1

𝑛𝑐
𝐼=1  

(16) 
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3. Results  

3.1 Precipitation runoff erosivity factor (R) 

The predicted map of the annual R factor is given in Fig. 03. The min. and max. R is 
found 178.24 to 4329.05 respectively. The mean annual R in Eastern Tigray zone is 
2478 with a standard deviation of 1069.  

3.2 Soil erodibility factor (K) 

The predicted map of the annual R factor is given in Fig. 04. The min. and max. K is 
found at 0.245 to 0.3558 respectively. The mean annual K in Tigray is 0.27 with a 
standard deviation of 0.01. 

3.3 Slope length steepness factor (LS) 

The predicted map of the annual LS factor is given in Fig. 05. The min. and max. LS 
is found 00 to 318523 respectively. The mean annual K in Eastern Tigray zone is 3607 
with a standard deviation of 9046. 

3.4 Cover management factor (C) 

The predicted map of the annual C factor is given in Fig. 06. The min. and max. C is 
found at 0.020 to 0.046 respectively. The mean annual C in Eastern Tigray Zone was 
found 0.04. 
 
 

3.5 Annual Soil Loss 

The estimated soil loss in Tigray is shown in Fig.07. The min. and max. soil loss is 
found 00 to 7425130 t ha-1 year -1 respectively. The mean annual K in Eastern Tigray 
Zone is 65677 t ha-1 year -1 with a standard deviation of 144121. 

3.6 Pattern of Soil loss at the kebele level 

The result of autocorrelation for pattern analysis is given in table 02 & Fig. 07,           
which, indicates soil loss at the kebele level is highly clustered (z = 3.94).  

3.7 Standard Residuals of Annual soil loss Prediction 

 
Fig. 08 & 09 shows the map and histogram of Standard Residuals respectively. Table 
03 & 04 shows the results of the model variables & OLS diagnostics. The multiple R2 
was obtained as 0.70 from the ordinary least squared (OLS) regression model. 

3.8 Groups of Annual soil loss Prediction 

 
Figure 10 & 11 shows the map of the groups of Annual soil loss Prediction & Parallel 
box plot chart respectively. Group numbers one and five are of special interest because 
of their outlier positions as shown in the Parallel box plot chart (Fig.10).   
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Discussion  

Eastern Tigray zone is a very zig zag region; different types of topography are found 
here. Many researchers have also assessed soil erosion in Eastern Tigray zone. 
However, very less work is done on soil erosion at Kebele level in Eastern Tigray zone 
based on GIS. Estimates of soil removal by water show significant variation at the 
kebele level, this variation is a result of the variation in the distribution of different 
types of the soil, high flow accumulation, variations in vegetation cover, and finally 
spatial variation of rainfall. The R factor; which shows the impact of rainfall was 
calculated based on reliable rainfall data with quality control. Data record provides 
better information, especially in Africa  (Brocca & others 2019). The K factor that is 
modeled in this study is also based on the full soil properties currently available. The 
same soil data was used by other researchers such as Viscarra, E. N., & Baldock, J. A.  
in 2014. de Brogniez, D., Ballabio, C., Stevens, A., Jones,  Montanarella, L., & van 
Wesemael, B. in 2015. The results are consistent with other scholars. Most areas of 
Tigray have a relatively small value of K. The vegetation data MOD13A2 used to 
calculate cover management was collected from the Google Earth engine archive. The 
same data has also been used by He et al., 2022; Wu et al., 2022; Chabot et al., 2022; 
He & others, 2022. The results were validated and published.  
The OLS regression model was used to predict the significance of the factors; different 
tests are required to confirm the reliability of the OLS regression model. The modeled 
relationships are consistent because obtained statistic of Koenker is not statistically 
significant (p more than 0.005). The residuals show a Gaussian spatial pattern by the 
areal autocorrelation (Global Moran's I) analysis. Model predictions are unbiased 
because the Jarque-Bera Statistic test is also not statistically significant (p more than 
0.01). There are no high intercorrelations among explanatory variables. 
In the result of the grouping analysis Group, five has maximum mean soil loss, and this 
is primarily due to the high rainfall erosivity factor. The low soil loss in-group one is 
due to the low LS factor. 

Conclusion  

Smart techniques such as the GEE interface were used for erosivity factors of R, LS, 
C and K. In general, it was found that the soil erosion is high due high rainfall and 
zigzag topography in the Eastern Tigray zone, which equates to heavy annual soil losses 
over this area. The kebele that suffers from severe soil erosion occurs in areas having 
higher rainfall, more slope length and steepness (LS) factors; therefore, these areas 
should be further studied. GEE is useful for the estimation of soil removal. As it can 
process data input at any level, RUSLE can provide quantitative estimates of long-term 
soil removal in Eastern Tigray. 

 
 

 

 

 

 



14 

 

 

 
 
 
 
 
 
 

References 

Abu Hammad, A., Lundekvam, H., & Børresen, T. (2004). Adaptation of RUSLE in the 
eastern part of the Mediterranean region. Environmental Management, 34(6), 829–841. 
https://doi.org/10.1007/s00267-003-0296-7 

Adigrat University. (2018). Adigrat city structural plan preparation (2018–2028), 
unpublished material 

Ahmed Harb Rabia. (2012). GIS Spatial Modeling for Land Degradation Assessment in 
Tigray, Ethiopia. 161–166. https://sites.google.com/site/aharbrabia/services 

Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Marcato Junior, J., Rodrigues, 
D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-
factor) estimation using remote sensing approaches for tropical regions. International 

Soil and Water Conservation Research, 7(4), 325–334. 
https://doi.org/10.1016/j.iswcr.2019.08.005 

Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil 
erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, 

Ecosystems and Environment, 97(1–3), 295–308. https://doi.org/10.1016/S0167-
8809(03)00011-2 

Bagegnehu, B., Alemayehu, M., & Nigatu, W. (2019). Geographic Information System 
(GIS) based soil loss estimation using Universal Soil Loss Equation Model (USLE) for 
soil conservation planning in Karesa Watershed, Dawuro Zone, and South West 
Ethiopia. International Journal of Water Resources and Environmental Engineering, 
11(8), 143–158. https://doi.org/10.5897/ijwree2018.0820..143-158 

Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., & Stroosnijder, L. (2012). Rainwater 
harvesting and management in rain fed agricultural systems in sub-Saharan Africa - A 
review. Physics and Chemistry of the Earth, 47–48, 139–151. 
https://doi.org/10.1016/j.pce.2011.08.015 

Borrelli, P., Alewell, C., & Alvarez, P. (2021). CO. March. 
https://doi.org/10.31223/X5GS3T 

Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., … Wagner, W. 
(2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from 
ASCAT soil moisture observations. Earth System Science Data, 11(4), 1583–1601. 
https://doi.org/10.5194/essd-11-1583-2019 

Chabot, D., Stapleton, S., & Francis, C. M. (2022). Using Web images to train a deep 
neural network to detect sparsely distributed wildlife in large volumes of remotely 
sensed imagery: A case study of polar bears on sea ice. Ecological Informatics, 68, 
101547. https://doi.org/10.1016/J.ECOINF.2021.101547 

CHEN, H., Oguchi, T., & WU, P. (2017). Assessment for soil loss by using a scheme of 
alterative sub-models based on the RUSLE in a Karst Basin of Southwest China. 

https://doi.org/10.1007/s00267-003-0296-7
https://doi.org/10.1016/S0167-8809(03)00011-2
https://doi.org/10.1016/S0167-8809(03)00011-2
https://doi.org/10.5897/ijwree2018.0820..143-158
https://doi.org/10.1016/j.pce.2011.08.015


15 

 

Journal of Integrative Agriculture, 16(2), 377–388. https://doi.org/10.1016/S2095-
3119(16)61507-1 

de Brogniez, D., Ballabio, C., Stevens, A., Jones, R. J. A., Montanarella, L., & van 
Wesemael, B. (2015). A map of the topsoil organic carbon content of Europe generated 
by a generalized additive model. European Journal of Soil Science, 66(1), 121-134. 

Demirci, A., & Karaburun, A. (2012). Estimation of soil erosion using RUSLE in a GIS 
framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. 
Environmental Earth Sciences, 66(3), 903–913. https://doi.org/10.1007/s12665-011-
1300-9 

Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS Vegetation Index User’s 
Guide (MOD13 Series) Version 3.0 Ccollection 6). 2015(May), 38. 

Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. 
M. (2014). NDVI time series for monitoring RUSLE cover management factor in a 
tropical watershed. International Journal of Remote Sensing, 35(2), 441–453. 
https://doi.org/10.1080/01431161.2013.871081 

ESRI. (2013). The Language of Spatial Analysis. Esri, 36(June), 1–49. 
Esser, K., Vågen, T. G., Tilahun, Y., & Haile, M. (2002). Soil conservation in Tigray. Soil 

Conservation, 5, 1-21. 
Evans, R., & Boardman, J. (2016). The new assessment of soil loss by water erosion in 

Europe. Panagos P. et al., 2015 Environmental Science & Policy 54, 438-447-A 
response. Environmental Science and Policy, 58, 11–15. 
https://doi.org/10.1016/j.envsci.2015.12.013 

Fiener, P., Neuhaus, P., & Botschek, J. (2013). Long-term trends in rainfall erosivity-
analysis of high resolution precipitation time series (1937-2007) from Western 
Germany. Agricultural and Forest Meteorology, 171–172, 115–123. 
https://doi.org/10.1016/j.agrformet.2012.11.011 

Filho, W. L., & de Trincheria Gomez, J. (2017). Rainwater-smart agriculture in arid and 
semi-arid areas: Fostering the use of rainwater for food security, poverty alleviation, 
landscape restoration and climate resilience. Rainwater-Smart Agriculture in Arid and 
Semi-Arid Areas: Fostering the Use of Rainwater for Food Security, Poverty 
Alleviation, Landscape Restoration and Climate Resilience, December, 1–392. 
https://doi.org/10.1007/978-3-319-66239-8 

Fitsum, H., John, P., & Nega, G. (2000). Land degradation in the Highlands of Tigray and 
Strategies for Sustainable Land Management. Policies for Sustainable Land 
Management in the Highlands of Ethiopia, 30(July 1999), 2–75. 

Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using 
remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, 
7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007 

Gebregziabher, et al. (2009). Contour furrows for in situ soil and water conservation, 
Tigray, Northern Ethiopia. Soil and Tillage Research, 103(2), 257–264. 
https://doi.org/10.1016/j.still.2008.05.021 
 

Ghosal, K., & Das Bhattacharya, S. (2020). A Review of RUSLE Model. Journal of the 

Indian Society of Remote Sensing, 48(4), 689–707. https://doi.org/10.1007/s12524-019-
01097-0 

Govers, G., & Moeyersons, J. (2005). Effectiveness of stone bunds in controlling soil 
erosion on cropland in the Tigray Highlands, northern Ethiopia. 287–297. 
https://doi.org/10.1079/SUM2005321 

https://doi.org/10.1016/j.agrformet.2012.11.011
https://doi.org/10.1007/978-3-319-66239-8
https://doi.org/10.1016/j.gsf.2015.10.007
https://doi.org/10.1007/s12524-019-01097-0
https://doi.org/10.1007/s12524-019-01097-0


16 

 

Hateffard, F., Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Heidari, A., Abdo, H. G., & 
Rodrigo-Comino, J. (2021). CMIP5 climate projections and RUSLE-based soil erosion 
assessment in the central part of Iran. Scientific Reports, 11(1). 
https://doi.org/10.1038/S41598-021-86618-Z 

He, Y., Wang, L., Niu, Z., & Nath, B. (2022). Vegetation recovery and recent degradation 
in different karst landforms of southwest China over the past two decades using GEE 
satellite archives. Ecological Informatics, 68, 101555. 
https://doi.org/10.1016/J.ECOINF.2022.101555 

K., K., F., B., & O., O. (2020). Assessment of Soil Erosion By Rusle Model Using Gis: a 
Case Study of Chemorah Basin, Algeria. Malaysian Journal of Geosciences, 4(2), 70–
78. https://doi.org/10.26480/mjg.02.2020.70.78 

Kinnell, P. I. A. (2014). Applying the RUSLE and the USLE-M on hillslopes where runoff 
production during an erosion event is spatially variable. Journal of Hydrology, 
519(PD), 3328–3337. https://doi.org/10.1016/j.jhydrol.2014.10.016 

Kaygusuz, K. (2011). Energy services and energy poverty for sustainable rural 
development. Renewable and Sustainable Energy Reviews, 15(2), 936–947. 
https://doi.org/10.1016/j.rser.2010.11.003 

Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the Revised 
Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern 
Crete, Greece. Environmental Geology, 57(3), 483–497. 
https://doi.org/10.1007/s00254-008-1318-9 

 
Kuria, A. W., Barrios, E., Pagella, T., Muthuri, C. W., Mukuralinda, A., & Sinclair, F. 

L. (2018). Farmers ’ knowledge of soil quality indicators along a land degradation 
gradient in Rwanda Geoderma Regional Farmers ’ knowledge of soil quality 
indicators along a land degradation gradient in Rwanda. Geoderma Regional, 
December, e00199. https://doi.org/10.1016/j.geodrs.2018.e00199 

Liu, K., Tang, G., Jiang, L., Zhu, A. X., Yang, J., & Song, X. (2015). Regional-scale 
calculation of the LS factor using parallel processing. Computers and Geosciences, 78, 
110–122. https://doi.org/10.1016/j.cageo.2015.02.001 

Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in 
Rondônia, Brazilian Amazonia: Using RUSLE, remote sensing and GIS. Land 

Degradation and Development, 15(5), 499–512. https://doi.org/10.1002/ldr.634 
Luvai, A., Obiero, J., & Omuto, C. (2022). Soil Loss Assessment Using the Revised 

Universal Soil Loss Equation (RUSLE) Model. Applied and Environmental Soil 
Science, 2022. https://doi.org/10.1155/2022/2122554 

Mitasova, H., Barton, M., Ullah, I., Hofierka, J., & Harmon, R. S. (2013). GIS-Based Soil 
Erosion Modeling. In Treatise on Geomorphology (Vol. 3, Issue November 2017). 
https://doi.org/10.1016/B978-0-12-374739-6.00052-X 

Megerssa, G. R., & Bekere, Y. B. (2019). Causes, consequences and coping strategies of 
land degradation: Evidence from Ethiopia. Journal of Degraded and Mining Lands 
Management, 7(1), 1953–1957. https://doi.org/10.15243/jdmlm.2019.071.1953 

Mekuria, W., Veldkamp, E., Haile, M., Gebrehiwot, K., Muys, B., & Nyssen, J. (2009). 
Effectiveness of exclosures to control soil erosion and local community perception on 
soil erosion in Tigray, Ethiopia. African Journal of Agricultural Research, 4(4), 365–
377. 

Moges, D. M., & Bhat, H. G. (2017). Integration of geospatial technologies with RUSLE 
for analysis of land use/cover change impact on soil erosion: case study in Rib 

https://doi.org/10.1016/J.ECOINF.2022.101555
https://doi.org/10.1016/j.jhydrol.2014.10.016
https://doi.org/10.1007/s00254-008-1318-9
https://doi.org/10.1002/ldr.634
https://doi.org/10.1155/2022/2122554
https://doi.org/10.15243/jdmlm.2019.071.1953


17 

 

watershed, north-western highland Ethiopia. Environmental Earth Sciences, 76(22), 1–
14. https://doi.org/10.1007/s12665-017-7109-4 

Nyssen, J., Clymans, W., Descheemaeker, K., Poesen, J., Vandecasteele, I., Vanmaercke, 
M., Zenebe, A., Van Camp, M., Haile, M., Haregeweyn, N., Moeyersons, J., Martens, 
K., Gebreyohannes, T., Deckers, J., & Walraevens, K. (2010). Impact of soil and water 
conservation measures on catchment hydrological response-a case in north Ethiopia. 
Hydrological Processes, 24(13), 1880–1895. https://doi.org/10.1002/hyp.7628 

Okoye, C. U. (1998). Comparative analysis of factors in the adoption of traditional and 
recommended soil erosion control practices in N. Soil and Tillage Research, 45(3–4), 
251–263. https://doi.org/10.1016/S0933-3630(96)00137-7 

Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil 
erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total 

Environment, 479–480(1), 189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010 
P.U., I., A.A., O., O.C., C., I.I., E., & M.M., M. (2017). Soil Erosion: A Review of Models 

and Applications. International Journal of Advanced Engineering Research and 
Science, 4(12), 138–150. https://doi.org/10.22161/ijaers.4.12.22 

Rockström, J., & Falkenmark, M. (2015). Agriculture: Increase water harvesting in Africa. 
Nature, 519(7543), 283–285. https://doi.org/10.1038/519283a 

Schmidt, S., Tresch, S., & Meusburger, K. (2019). Modification of the RUSLE slope 
length and steepness factor (LS-factor) based on rainfall experiments at steep alpine 
grasslands. MethodsX, 6, 219–229. https://doi.org/10.1016/j.mex.2019.01.004 

Sileshi, M., Kadigi, R., Mutabazi, K., & Sieber, S. (2019). Determinants for adoption of 
physical soil and water conservation measures by smallholder farmers in Ethiopia. 
International Soil and Water Conservation Research, 7(4), 354–361. 
https://doi.org/10.1016/j.iswcr.2019.08.002 

Tanyaş, H., Kolat, Ç., & Süzen, M. L. (2015). A new approach to estimate cover-
management factor of RUSLE and validation of RUSLE model in the watershed of 
Kartalkaya Dam. Journal of Hydrology, 528, 584–598. 
https://doi.org/10.1016/j.jhydrol.2015.06.048 

Tadesse, A., Gebrelibanos, T., & Geberehiwot, M. (2016). Characterization and Impact 
Assessment of Water Harvesting Techniques : A Case Study of Abreha Weatsbeha 
Watershed , Tigray , Ethiopia . 1–28. 

Teka, K., Haftu, M., Ostwald, M., & Cederberg, C. (2020). Can integrated watershed 
management reduce soil erosion and improve livelihoods? A study from northern 
Ethiopia. International Soil and Water Conservation Research, 8(3), 266–276. 
https://doi.org/10.1016/j.iswcr.2020.06.007 

Tesfahunegn, G. B., & Gebru, T. A. (2020). Variation in soil properties under different 
cropping and other land-use systems in Dura catchment, Northern Ethiopia. PloS one, 
15(2), e0222476. 

Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., Guo, W., Chen, L., & Liu, M. (2021). 
Soil erosion assessment by RUSLE with improved P factor and its validation: Case 
study on mountainous and hilly areas of Hubei Province, China. International Soil and 

Water Conservation Research, 9(3), 433–444. 
https://doi.org/10.1016/j.iswcr.2021.04.007 

Tomislav Hengl, & Ichsani Wheeler. (2018). Soil organic carbon content in x 5 g / kg at 6 
standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v02) [Data 
set]. Zenodo. 10.5281/zenodo.1475457 

Van Remortel, R. D., Hamilton, M. E., & Hickey, R. J. (2001). Estimating the LS factor 
for RUSLE through iterative slope length processing of digital elevation data within 

https://doi.org/10.1007/s12665-017-7109-4
https://doi.org/10.1016/j.scitotenv.2014.02.010
https://doi.org/10.22161/ijaers.4.12.22
https://doi.org/10.1016/j.jhydrol.2015.06.048
https://doi.org/10.1016/j.iswcr.2021.04.007


18 

 

arclnfo grid. Cartography, 30(1), 27–35. 
https://doi.org/10.1080/00690805.2001.9714133 

Vancampenhout, K., Nyssen, J., Gebremichael, D., Deckers, J., Poesen, J., Haile, M., & 
Moeyersons, J. (2006). Stone bunds for soil conservation in the northern Ethiopian 
highlands: Impacts on soil fertility and crop yield. Soil and Tillage Research, 90(1–2), 
1–15. https://doi.org/10.1016/j.still.2005.08.004 

Vatandaşlar, C., & Yavuz, M. (2017). Modeling cover management factor of RUSLE 
using very high-resolution satellite imagery in a semiarid watershed. Environmental 

Earth Sciences, 76(2). https://doi.org/10.1007/s12665-017-6388-0 
Waters, N. (2012). A Review of “Handbook of Applied Spatial Analysis: Software Tools, 

Methods and Applications.” In Annals of the Association of American Geographers 
(Vol. 102, Issue 1). https://doi.org/10.1080/00045608.2011.624965 

Wu, T. Y., Yeh, K. T., Hsu, H. C., Yang, C. K., Tsai, M. J., & Kuo, Y. F. (2022). 
Identifying Fagaceae and Lauraceae species using leaf images and convolutional neural 
networks. Ecological Informatics, 68, 101513. 
https://doi.org/10.1016/J.ECOINF.2021.101513 

Xu, L., Xu, X., & Meng, X. (2013). Risk assessment of soil erosion in different rainfall 
scenarios by RUSLE model coupled with Information Diffusion Model: A case study 
of Bohai Rim, China. Catena, 100, 74–82. https://doi.org/10.1016/j.catena.2012.08.012 

Yue, T., Xie, Y., Yin, S., Yu, B., Miao, C., & Wang, W. (2020). Effect of time resolution 
of rainfall measurements on the erosivity factor in the USLE in China. International 

Soil and Water Conservation Research, 8(4), 373–382. 
https://doi.org/10.1016/j.iswcr.2020.06.001 

Zerssa, G., Feyssa, D., Kim, D., & Eichler-löbermann, B. (2021). Challenges of 
Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart 
Agriculture. 1–25. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

https://doi.org/10.1080/00690805.2001.9714133
https://doi.org/10.1016/j.iswcr.2020.06.001


19 

 

Appendixes I 

 
     Figure 3 Erosivity factor R 

 
Figure 4 Erosivity factor K 
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Figure 5 Erosivity factor LS 

 
Figure 6 Erosivity factor C 
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Figure 7 Estimated Annual soil erosion 
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Figure 8 Pattern at Kebele level 

 
 
 

 
Figure 9 Standard Residual Map 
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         Figure 10 Histogram of residuals 
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   Figure 11 Groups of Annual soil loss Prediction 

 
 

 
Figure 12 Parallel Box Plot 
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Figure 13 Groups based on mean soil loss 

 

Table 01 Data Types and sources 

Dataset Content Format Data Source 

Precipitation Monthly Rainfall in 
mm, one km spatial 
resolution, Covering 
Period 2007-2018. 

tif https://openlandmap.org/ 
(Brocca et al., 2019)  

Soil Sand, Silt, Clay, 
Organic Content 

tif https://openlandmap.org/ 

DEM SRTM dataset with 1 
km spatial resolution 

tif https://www.hydrosheds.org/ 

NDVI The MODIS 
vegetation index 
(VI) products. 

tif https://lpdaac.usgs.gov/ 

Basic 
geographical 
information 

Administrative Map Vector https://www.diva-gis.org/gdata 

 

Table 02 Global Moran's I Summary 

Moran's Index: 0.148521 

Expected Index: -0.007692 

Variance: 0.001568 

z-score: 3.944822 

p-value: 0.000080 

 

Table 03 OLS Results - Model Variables 

Variable Coefficient Std Error t-
Statistic 

Probability Robust_SE Robust_t Robust_Pr VIF 

Intercept 446729.83 78704.50 5.67 0.000 71907.48 6.212 0.000000* -------- 

C 940082.00 1159673.5 0.81 0.4190 1041922.70 0.902 0.368633 1.52001 

K -
1961511.5 

347615.20 -5.64 0.000 329113.78 -5.95998 0.000000* 1.458368 

LS 15.03751 0.905789 16.60 0.000 1.240123 12.125 0.000000* 1.912069 

R 25.58718 2.279686 11.22 0.000 2.562404 9.98562 0.000000* 1.952451 

https://openlandmap.org/
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Table 04 OLS Diagnostics 

Input Features: Kebele 
Dependent 
Variable: 

Est. Soil 
Loss 
Mean 

No. of 
Observations: 

131 Akaike's 
Information 
Criterion (AICc) 

2930.81 

Multiple R-
Squared: 

0.701 Adjusted R-
Squared 

0.69 

Joint F-Statistic: 73.968 Prob(>F), (4659) 0.000000* 

Joint Wald 
Statistic: 

177.372 Prob(>chi-
squared), (4) 

0.000000* 

Koenker (BP) 
Statistic: 

42.608 Prob(>chi-
squared), (4) 

0.000000* 

Jarque-Bera 
Statistic: 

0.488 Prob(>chi-
squared), (2) 

0.784 

 

 


