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Abstract
Since the beginning of the pandemic caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) the gastro-intestinal (GI) tract has emerged as an important organ influencing the
propensity to and potentially severity of the related COVID-19 disease. However, the contribution of the
SARS-CoV-2 intestinal infection on COVID-19 pathogenesis remains to be clarified. In this exploratory
study, we evidenced that alterations in the composition of the gut microbiota depends on the levels of
SARS-CoV-2 RNA in the gastrointestinal tract but not on the presence of SARS-CoV-2 in the respiratory
tract, COVID-19 severity and GI symptoms. Altered molecular functions in the microbiota profiles of high
SARS-CoV-2 RNA level faeces as established by metaproteomics highlight mechanisms that may
contribute to vicious cycles. Uncovering the role of this gut microbiota dysbiosis could drive the
investigation of alternative therapeutic strategies to favour the clearance of the virus and potentially
mitigate the effect of SARS-CoV-2 infection.

Background
Novel coronavirus pneumonia, COVID-19, is caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The most common pathognomonic symptoms include cough, fever, and dyspnoea, but the
heterogeneity of clinical manifestations is one of several intriguing facets of SARS-CoV-2 infection 1.
Thus, even though COVID-19 is mainly considered to be a respiratory disease, gastrointestinal symptoms
have been described in COVID-19 patients, the most recurrent of which are diarrhoea, vomiting, nausea,
and abdominal pain. These symptoms suggest that SARS-CoV-2 infection also has a direct impact on the
gastrointestinal system 2.

Early in the pandemic, digestive symptoms were reported to be an early symptom of COVID-19 3. Various
aetiopathogenetic hypotheses were subsequently advanced to explain the occurrence of diarrhoea in
COVID-19 patients, including loss of absorption capability by enterocytes 4, microscopic inflammatory
damage to gastrointestinal mucosal, and impaired ACE2 function. The role of ACE2 functions in
maintaining gut homeostasis is recognized. However, SARS-CoV-2 viral particles were also reported to be
detectable in stool samples from patients without diarrhoea 5. Other coronavirus diseases, such as SARS
in 2002 and Middle East Respiratory Syndrome (MERS) in 2012 – with which SARS-CoV-2 shares 70%
and 40% genomic sequence similarities, respectively – were also reported to show some enteric
involvement 6. Although the human intestinal tract was demonstrated to serve as an alternative infection
route for MERS-CoV 7, the role of intestinal SARS-CoV-2 infection in the pathogenesis of COVID-19
remains to be clarified.

A faecal-oral route of transmission for SARS-COV-2 was proposed based on the evidence that viral RNA is
detected in up to 50% of faecal samples from patients diagnosed with COVID-19 despite a negative
nasopharyngeal (NP) swab 8,9. The persistent shedding of SARS-CoV-2 in stools from infected patients
between 1 and 12 days after a negative NP test result 10–12 led to the hypothesis that infectious virions
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are secreted from infected gastrointestinal cells. Furthermore, re-emergence of coronavirus disease in
several regions was recently associated with processing of frozen food products 13, and initial
contamination via ingestion cannot be excluded. Evidence obtained using organoid models revealed
SARS-CoV-2 to exclusively target the apical surface of mature villous enterocytes expressing high levels
of three proteins enhancing virus entry into enterocytes: angiotensin conversion enzyme 2 (ACE2) and
two related membrane-bound serine proteases, TMPRSS2 and TMPRSS4 14,15. Although infected
enterocytes form syncytia and viral particles are shed into the lumen, experiments examining the effect of
simulated human colonic fluid on the virus suggest that shed virus is rapidly inactivated as it passes
through the colon 16.

Currently, little is known about the impact of the gastrointestinal presence of SARS-CoV-2 on the course
of COVID-19. Evidence that the gut microbiome influences ACE2 expression has led to several groups
hypothesizing a contribution of intestinal microbes to COVID-19, but only very limited data are available
on the profile of the gut microbiome in SARS-CoV-2-infected patients 17,18. Notably, alterations to the
microbiota have mainly been discussed in relation to the detection of SARS-CoV-2 in the respiratory tract
and COVID-19 severity. Thus, Zuo et al. 19 investigated transcriptional activity of SARS-CoV-2 and
temporal microbiome alterations in faecal samples from patients with COVID-19. They observed that
faecal samples showing high SARS-CoV-2 infectivity contained higher abundances of bacterial species
Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, and Morganella morganii.
Metatranscriptomics analysis revealed higher functional capacity for de novo nucleotide biosynthesis,
amino acid biosynthesis, and glycolysis in these samples. In contrast, faecal samples with low-to-no
SARS-CoV-2 infectivity were associated with higher abundances of short-chain fatty acid-producing
bacteria.

Nevertheless, transcript presence does not necessarily indicate protein synthesis and thus a functional
impact. To obtain this type of information, more precise functional information could be obtained by
metaproteomics characterization. Profiling of the human gut microbiome via metaproteomics has proven
its value in pathogenesis research in the context of several diseases 20,21. The potential of these
techniques to help guide future clinical diagnosis has also been highlighted 22.

In this study, we used a mass spectrometry-based approach to profile the gut microbiota in terms of
bacterial, archaeal, yeast, and fungal content, and analysed the associated metaproteomic functions in
patients with intestinal COVID-19 infection. Altered microbiota compositions were found to be
independent of the presence of SARS-CoV-2 in the respiratory tract, disease severity, and gastro-intestinal
(GI) symptoms, but correlated with GI levels of SARS-CoV-2 RNA. Examination of the functional
composition of the metaproteome provided a shortlist of both microbial and human biomarker
candidates indicative of intestinal SARS-CoV-2 infection. These biomarkers could be used to monitor
infection. Information on how intestinal SARS-CoV-2 affects the microbiota and the host could be useful
in the search for alternative therapies promoting viral clearance, with a view to mitigating the impact of
SARS-CoV-2 infection.
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Results

Levels of SARS-CoV-2 RNA in the gut
A total of 39 faecal samples collected from 39 patients has been studied (Table 1). Among them, 32 were
included in the COVID group due to a RT-PCR and/or a positive CT-scan (Fig. 1A). The remaining 7
patients were without COVID-19 diagnosis (RT-PCR and CT-scan negative). The median ages and sex
ratios of patients with COVID-19 and non-COVID-19 were 76.5 years (34–96) versus 79 (61–99) and 0.89
versus 1.33, respectively. To investigate the effect of intestinal SARS-CoV-2 infection on the composition
of the gut microbiota, faecal samples were characterized by applying the pipeline presented in Fig. 1B.
The presence of SARS-CoV-2 in the gut was analysed by subjecting stool samples to RT-qPCR. Of the 39
patients, 10 (25.6%) presented a positive RT-qPCR result. Among them, one (C01P001) belonged to the
non-COVID group (RT-PCR and CT-scan negative). The median faecal viral load was 3.7 log10 copies per
mg [IQR 4.5–2.7], as estimated by RT-qPCR performed in parallel with standards. A viral load of 1.7 log10

copies per mg (50 copies/mg) was arbitrarily chosen as the cut off value to group samples into high
SARS-CoV-2 RNA levels, low SARS-CoV-2 RNA loads, and negative samples (Fig. 2). No obvious
association (Kruskal-Wallis test, p < 0.05) was found between plasma C-reactive protein (CRP) levels and
GI tract SARS-CoV-2 levels (p = 0.21). No correlation (Fisher exact test, p < 0.05) between the levels of
SARS-CoV-2 RNA in the faecal samples and the positivity of nasopharyngeal swab tests on the first hand
(p = 0.40), and with severity of COVID-19 on the other (p = 1.00), were detected.
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Table 1
Clinical characteristics of subjects involved in this study.

Patient Sex Age RT-
PCR
NP
swab

status

CT-
scan
signs
of
COVID-
19

SARS-CoV-2
in stool
(copies/mg)

Δ RT-
PCR NP
swab
and
stool
(days)

PlasmaCRP
(mg/L)

Severity of
pulmonary
signs

C01P001 M 99 (-) No 3.6E + 04 34 68.9 No sign

C01P002 M 66 (-) Yes (-) 5 64.5 Mild

C01P003 M 79 (+) Yes 1.4E + 03 8 32.4 Moderate

C01P004 F 67 (+) Yes (-) 17 3.2 Moderate

C01P005 F 91 (+) No (-) 1 7.4 No sign

C01P006 F 54 (+) Yes (-) 14 30.1 Moderate

C01P007 F 88 (+) No 1.4E + 01 1 2.4 No sign

C01P008 M 60 (+) Yes (-) 20 1.2 Severe

C01P009 F 83 (+) No (-) 4 12.3 No sign

C01P010 F 92 (-) No (-) - 103.1 No sign

C01P011 M 85 (+) No (-) 7 4.2 No sign

C01P012 F 83 (+) Yes (-) 9 3.9 Mild

C01P013 F 47 (+) Yes (-) 1 15.6 Moderate

C01P014 M 63 (+) Yes (-) 21 1.9 Severe

C01P015 F 54 (-) Yes (-) 8 7.6 severe

C01P016 M 82 (+) No 6.8 5 48.9 No sign

C01P017 M 61 (-) No (-) - 23.3 No sign

C01P018 M 48 (+) Yes (-) 11 65.6 Mild

C01P019 F 77 (+) No (-) 15 2.2 Mild

C01P020 M 96 (+) No (-) 3 37.9 No sign

C01P021 F 56 (+) Yes (-) 6 30 Moderate

C01P022 M 76 (+) Yes 2.5E + 01 10 251.3 Severe

C01P023 F 82 (-) No (-) 3 70.9 Mild

C01P024 M 60 (-) Yes (-) 30 3.9 Severe
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Patient Sex Age RT-
PCR
NP
swab

status

CT-
scan
signs
of
COVID-
19

SARS-CoV-2
in stool
(copies/mg)

Δ RT-
PCR NP
swab
and
stool
(days)

PlasmaCRP
(mg/L)

Severity of
pulmonary
signs

C01P025 M 75 (-) No (-) - 37.9 No sign

C01P027 M 79 (-) No (-) - 13 No sign

C01P028 F 40 (-) Yes (-) - 25.8 Mild

C01P029 F 84 (+) No 3.6E + 04 4 133.7 No sign

C01P030 F 78 (-) Yes (-) - 2.3 No sign

C01P031 F 76 (-) No (-) - 32.4 No sign

C01P032 M 69 (-) Yes (-) 4 8 Severe

C01P033 F 95 (+) Yes 9.6E-01 2 14.1 Mild

C01P035 M 34 (+) No 1.5 3 1.6 No sign

C01P036 F 58 (+) Yes 1.0E + 01 - 66.5 Moderate

C01P037 M 87 (+) No (-) 6 38.5 No sign

C01P038 M 96 (+) No (-) 1 5 No sign

C01P039 F 68 (+) Yes (-) 8 21.2 Moderate

C01P040 M 79 (+) No (-) 9 20.8 Moderate

C01P041 M 91 (+) No 6.9E + 01 3 85 No sign

Significantly altered microbiota profile in patients with a high level of SARS-CoV-2 RNA in the GI tract

To gain insight into the relationship between SARS-CoV-2 infection, microbiota, and host, we
differentiated samples based on the levels of SARS-CoV-2 RNA detected in the GI tract. The total
metaproteomic dataset from the 117 nanoLC-MS/MS runs comprised 7,761,229 MS/MS spectra. With
the adjustment procedure of the peptide quantities to inject based on a pre-screen by mass spectrometry,
an overall average of 66,335 ± 3,248 MS/MS was obtained per sample with low variation between
samples. Peptides were identified by searching tandem mass spectra in a two-step cascaded search
against a sample-specific database. This strategy allowed 31 ± 6% of spectra to be assigned per sample.
For each sample, the distribution of the assigned TSMs as a function of their origin – microbial, host, or
food-related – (Supplementary Table S1) revealed a higher percentage of host signal in samples positive
for SARS-CoV-2 RNA (Fig. 3A). The microbial component of the metaproteomes expressed as a
proportion of the average protein biomass at the phylum level was dominated by bacteria (61 ± 19%;
mean ± SD), followed by fungi and archaea, which represented 5 ± 2% and 3 ± 1%, respectively. Firmicutes,
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Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant bacterial phyla, which combined
accounted for an average of 48% of the biomass. Among the archaeal signatures, the Euryarchaeota
phylum was the most highly represented (3 ± 1%). A total of 201 genera were identified in microbiota
profiles, with Clostridium, unclassified Lachnospiraceae, Bacteroides, and Lachnoclostridium as
dominant taxa in addition to the host. The relative biomass contributions for these groups ranged from
less than 1 to 6% for bacterial genera, and up to 58% for Homo sapiens. Among the 13 archaeal genera
identified, Methanobrevibacter (28,792 TSMs) was the most abundant. Even though it remained a minor
component of the microbiota, sequence coverage for this genus was high (6392 taxon-specific peptides).
Ascomycota and Streptophyta tended to be the most abundant Eukaryota phyla, with the notable
exception of the Chordata host (Fig. 3B). After filtering out food-related and host signals, dimension
reduction by principal component analysis (PCA) revealed distinct microbiota profiles for patients with
high intestinal levels of SARS-CoV-2 RNA (viral load > 50 copies per mg of faecal material) compared to
profiles for patients with low or no viral RNA (Fig. 3C). Two outliers were observed: sample C01P003
(faecal viral load 1.4 x 103 copies/mg), which clustered among negative samples; and sample C01P033
(1 copy/ mg) which had a microbiota composition resembling high SARS-CoV-2 samples.

Because age-related changes to the microbiota have recently been reported 23, we further examined the
alpha diversity of our samples after matching positive (viral load > 50 copies per mg of faecal material)
and negative patients by age (88.2 (± 8.7) and 80.5 (± 7.8) years old, respectively). Both Inverse Simpson
and Shannon indices indicated that microbial diversity was significantly decreased (Tukey’s Honest
Significant Difference) in samples containing SARS-CoV-2 RNA compared to negative samples (Fig. 3D).
Overall comparison between microbiota determined for patients with a high SARS-CoV-2 load and
negative samples (Wilcoxon Rank Sum test, p-value < 0.05) showed that patients with SARS-CoV-2 RNA in
the intestine had a higher relative abundance (log2 FC > 1.6) of certain fungal genera, such as Candida,
Fusarium, Penicillium, Aspergillus, and Saccharomyces (Fig. 3E). For archaea, Methanosphaera and
unclassified Halobacteriales were among the most enriched genera in samples containing SARS-CoV-2
(log2 FC = 1.4) (Fig. 3F). Among bacteria, several genera belonging to the Actinobacteria class (e.g.,
Streptomyces, Actinomadura, Amycolatopsis, Nocardia, Mycobacterium, and Arthrobacter), as well as
Paenibacillus, Chitinophaga, and Sphingomonas were significantly enriched in SARS-CoV-2-positive
samples compared to controls (log2 FC > 1) (Fig. 3G). In contrast, significantly lower relative abundance
was observed for genera belonging to the Ruminococcaceae and Lachnospiraceae families (log2 FC >
-1), and more broadly to the Firmicutes phylum, with the exception of members of the Bacilli class.
Several genera from Odoribacteraceae, Prevotellaceae, Eggerthellaceae, and Coriobacteriaceae families
(log2 FC = -1), as well as Akkermansia (log2 FC = -1.7) were also detected at significantly lower
abundance in virus-positive samples (Fig. 3G).

Functional composition of the metaproteome reveals
potential biomarkers of SARS-CoV-2 infection
To retrieve functional information from the metaproteome for different sample groups, microbiota and
host proteins identified with an FDR of 1% were annotated. A total of 88,135 proteins and 60,179 protein
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groups were listed in the dataset, functions of which were assigned to 887 KO (KEGG Orthology) entries
(Supplementary Table S2). The relative abundance of each functional term was calculated at phylum
level to reduce loss of information when peptides were unambiguously assigned to the different taxa at a
finer resolution. To investigate dissimilarities in microbiota-derived KO functions (n = 664), unsupervised
PCA was performed on age-matched SARS-CoV-2-positive (faecal viral load > 50 copies/mg) and negative
samples (Fig. 4A). This PCA analysis revealed distinct clustering based on the presence of SARS-CoV-2,
with only SARS-CoV-2-positive C01P003 sitting closer to the negative samples. Comparative analysis of
the functional profiles (Wilcoxon test, FDR-adjusted p < 0.05) revealed 341 KOs to be significantly
differentially abundant between the two groups of samples. Of these, 21 were increased in SARS-CoV-2-
positive samples (Fig. 4B/C). These KOs are included in 67 KEGG pathways, the most populated of which
were metabolic pathways (10), biosynthesis of secondary metabolites (5), glycolysis / gluconeogenesis
(3), and microbial metabolism in diverse environments (3). Interestingly, the identification of molecular
functions related to citrulline flux (KO names OTC and arcA) suggested that Firmicutes species were still
adapting to cope with stress and gain an energetic advantage. Evidence for this ongoing adaptation was
also provided by the increase in abundance of polypeptides belonging to two-component systems (mcp
and yesN) and cobalamin production (cobS - cobV, Firmicutes). Similarly, KOs for drug exporter pump
(K06994), NADPH:quinone reductase (qor, CRYZ), and NTE family proteins associated with
Actinobacteria suggesting the implementation of mechanisms conferring a competitive advantage in
stressful environments, such as the SARS-CoV-2-infected gut. Modules involved in sulfur (soxD,
Bacteroidetes) and glutathione metabolism (pepN, Actinobacteria) were also significantly increased.
Another marker of the host response, K06856 (IGH, immunoglobulin heavy chain), was increased in
association with both Actinobacteria and Firmicutes. Some fungi-associated molecular functions were
also altered (PDC, AdhP, SET2). Among these markers, AdhP is known to be involved in retinol
metabolism, and the histone modification protein SET2 plays a key role in mucosal immune responses,
and could be critically involved in integrating a variety of external signals driving fungal expansion. This
fungal expansion would in turn influence the host immune response. Among the 21 altered KOs identified,
9 (K00134, K00344, K01256, K07001, K01568, K22622, K07720, K11686, K16703) were linked to 14
pathways. Levels of these pathways were also significantly increased relative to age-matched samples in
which lower levels of SARS-CoV-2 RNA were detected (viral load < 50 copies/mg) (Fig. 4B/C).

To investigate alterations in host molecular functions, the relative abundance of host-associated KOs
was also analysed. The abundance of a total of 72 out of 187 KOs was altered in samples containing
high levels of SARS-CoV-2-RNA (viral load > 50 copies/mg) compared to negative samples
(Supplementary Table S2). Of these KOs, 42, represented in 117 pathways, were increased in SARS-CoV-2-
positive samples with a high viral load (Fig. 4D). These KOs included host molecular functions involved
in the ACE2 signalling network (Renin-angiotensin system) such as peptidyl-dipeptidase A (ACE),
aminopeptidases (ANPEP/CD13), glutamyl aminopeptidase (ENPEP), and neprilysin (MME). In parallel,
functions described by KOs such as latexin (LXN), sphingomyelinase-related protein SMPDL3,
dihydrolipoamide dehydrogenase (DLD), SOD2, Cu/Zn superoxide dismutase (SOD1), ferritin heavy chain
(FTH1), tissue-nonspecific alkaline phosphatase (K01077), antileukoproteinase (SLPI), bleomycin
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hydrolase (BLMH), aminopeptidase (NAALADL1), glutamate carboxypeptidase II (GCPII), and
transmembrane serine protease 15 (TMPRSS15), proteins from the enterocyte brush-border membrane –
including sucrase-isomaltase, calmodulin, cadherin-17, and glutamate carboxypeptidase II, trefoil factor
family peptides (TFF2 and TFF3) were also significantly increased in faecal samples with high levels of
SARS-CoV-2 RNA. Interestingly, faeces with high levels of SARS-CoV-2 contained a statistically higher
abundance of proteins with CRP-mediated functions: immunomodulatory Gal-9, bone marrow
proteoglycan (PRG2), glutathione S transferase (GST), deleted in malignant brain tumour 1 (DMBT1),
gastric intrinsic factor (GIF), members of the lysosome pathway (DNASE2, CTSH, CD63 antigen, GAA and
NPC2), L-Tryptophan (SLC3A1), and choline (SLC44A2) transporters. These proteins are linked to
functional pathways, and as such provide further insight into the host-microbiota crosstalk in SARS-CoV-
2-positive GI tracts. In parallel, the increase in MHC class I antigen (MHC1), ADP-Ribosyl Cyclase 2
(BST1), nicastrin (NCSTN), pre-B lymphocyte gene (VPREB), and ferritin heavy chain (FTH1) suggest
activation of immune processes. Sixteen of the altered KOs identified (K00382, K01203, K01316, K01346,
K01389, K04565, K06497, K11140, K11141, K12316, K13912, K14210, K17286, K18152, K23879,
K24332) were also specifically increased in samples containing < 50 copies/mg viral RNA following
comparison with their relative levels in SARS-COV-2 positive samples with high SARS-CoV-2 load.

Discussion
The gut microbiota plays multiple critical roles not only in nutrition through food processing, but also by
maintaining human health as a result of both local and systemic effects, such as limiting pathogen
colonization, helping maintain the intestinal barrier function, and training the immune system.
Importantly, in the context of SARS-CoV-2 infection, the GI tract has emerged as an organ significantly
influencing the propensity to develop, the ensuing disease, COVID-19, and potentially predict its severity.
Studies based on taxonomical molecular biology approaches have demonstrated that respiratory
infections are associated with changes in the composition of the gut microbiota 4, but the correlation
between respiratory disease and the amount of virions present in the gut has received less attention 19.
Here, we provide a broad profile of gut microbiota obtained by a mass spectrometry-based detecting
bacteria, archaea, yeasts, and fungi. Organisms were proteotyped and their respective biomass
contributions directly compared. We also investigated whether the presence of SARS-CoV-2 in the
gastrointestinal tract was associated with changes to the composition of the microbiota.

In this article, we report that the presence of SARS-CoV-2 RNA in the GI tract is not directly related to the
detection of the virus in the respiratory tract or to COVID-19 severity at the time of detection. This result is
in agreement with the detection of SARS-CoV-2 in tissues throughout the GI tract, and virus shedding in
stools in a significant proportion of patients. GI shedding often continues for prolonged periods following
virus clearance from the respiratory tract 17. In addition, we provide evidence of changes in the
composition of the gut microbiota as a function of the abundance of SARS-CoV-2 RNA in the intestine. In
particular, our results show that the microbiota was significantly different in patients with a faecal viral
load greater than 50 copies per mg, whereas microbiota from patients with a lower or negative viral load
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tended to be more similar. Closer examination revealed a relatively high level of SARS-CoV-2 RNA to be
associated with a significantly higher abundance of several genera belonging to the Euryarchaeota and
Ascomycota phyla, as well as bacterial genera from the Actinobacteria order, Chitinophaga, Paenibacillus,
Sphingomonas, and Bacillus. The overgrowth of fungi is in itself indicative of a disruption of commensal
communities. In addition, fungal overgrowth in the gut can cause macrophage polarization which has
been linked to increased infiltration of inflammatory cells in allergic airways 24. Interestingly, bacterial
genera from the Bacteroidetes phylum – known to be associated with suppression of colonic expression
of ACE2 in the murine gut 25 – were significantly more abundant in SARS-CoV-2-positive samples.
Similarly, the relative abundance of bacterial genera belonging to the Firmicutes phylum, such as
Faecalibacterium, Mitsuokella, and Frisingicoccus, correlated well with the absence of SARS-CoV-2 in the
gut. Interestingly, this class of bacteria are the main producers of butyrate in the intestinal lumen, which is
extensively used by colonic epithelial cells as an energy source 26. An in-depth shotgun metagenomics
analysis of samples from 15 patients hospitalized in Hong Kong 27 revealed a similar shift in the
composition of microbiota, particularly an increased proportion of opportunistic fungal pathogens
(Candida albicans, Candida auris, and Aspergillus flavus) in COVID-19 patients compared to controls. In
this cohort, a negative correlation between the abundance of Faecalibacterium prausnitzii (an anti-
inflammatory bacterium) and both COVID-19 severity and changes in faecal shedding of SARS-CoV-2
particles was also reported. Other authors have studied connections between amino acid transport based
on the association between ACE2 and microbial ecology in the gut during SARS-CoV-2 infection 28, and
the possibility that features of gut microbiota could serve as indicators of a predisposition to severe
COVID-19 29.

Our peptide-based functional metaproteome analysis confirmed the differences observed between
samples containing high levels of SARS-CoV-2 RNA and negative samples, and the existence of a
complex interplay between the gut and SARS-CoV2 infection. In particular, the alterations to host
functions observed in faeces containing high levels of SARS-CoV-2 revealed an inflamed GI tract
characterized by activation of the immune response, as reflected by the molecular alterations governing
the host’s antiviral defence system. In addition to serving as a receptor for SARS-CoV-2, ANPEP/CD13
expression is known to be dysregulated in inflammatory diseases. Its detection in wide numbers of gut
samples led to the persistent intestinal inflammation hypothesis 30. In our samples, expression levels for
this marker were consistent with increased latexin and SMPDL3, a sphingomyelinase-related protein
abundantly expressed on macrophages and dendritic cells 31. Both of these proteins are upregulated by
inflammatory stimuli. In parallel, functions described by KOs such as dihydrolipoamide dehydrogenase
(DLD), SOD2, Cu/Zn superoxide dismutase (SOD1), and ferritin heavy chain (FTH1) could reflect
mitochondrial dysfunction and interplay between inflammation and oxidative stress. Interestingly,
expression of tissue-nonspecific alkaline phosphatase in the colon was also previously reported to be
upregulated during inflammatory episodes as a consequence of inflammation-driven tissue-infiltration by
neutrophils 32. The identification of elevated levels of KOs linked to functions located in the enterocyte
brush border supports inflammation-induced enterocyte damage and increased intestinal permeability.
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This possibility is supported by the over-detection in faecal samples containing SARS-CoV-2 RNA of
trefoil factor family peptides. These essential proteins are involved in protection and repair of the
gastrointestinal tract 33. This response suggests that expression of TFF variants could be used to predict
prognosis, or to monitor therapeutic efficacy. Similarly, the increased abundance of several leaky-gut-
related functions like those associated to antileukoproteinase (SLPI) 34; bleomycin hydrolase (BLMH), a
cytosolic aminopeptidase thought to contribute to MHC class I peptide presentation 35; aminopeptidase
(NAALADL1), glutamate carboxypeptidase II (GCPII), and transmembrane serine protease 15
(TMPRSS15) may contribute to the dysregulation of the protease/antiprotease balance and could
potentially lead to epithelial damage and increased intestinal permeability. In parallel, the increase in
MHC class I antigen (MHC1), ADP-Ribosyl Cyclase 2 (BST1), nicastrin (NCSTN), pre-B lymphocyte gene
(VPREB), and ferritin heavy chain (FTH1) suggests activation of immune processes that could be further
explored in future studies to unravel the links between SARS-CoV-2 infection and gastrointestinal
perturbations.

In this dysfunctional environment, individual members of the altered microbiota battle to gain an
energetic advantage. Given the known regulatory role played by H2S in mucosal inflammation, and the
involvement of glutathione in bio-reduction of reactive oxygen species, the observed alterations suggest
that the presence of SARS-CoV-2 triggers activation of microbial metabolic pathways that further fuelling
inflammation and related immune responses. An Ig-like domain is frequently present in bacterial proteins
that affect adhesion to host cells and tissues, as part of invasion, or other steps in the infection process
36.

Our results corroborate the alterations recently reported in the faecal metabolome for COVID-19 patients
37. However, the question of whether COVID-19-related intestinal lesions are the result of a secondary
response following systemic inflammation, of primary intestinal infection, or of the combined
consequences of both mechanisms, remains open. The altered molecular functions described here
suggest mechanisms feeding into vicious cycles. Furthermore, our results provide markers that could be
potentially be valuable in monitoring the progression of SARS-CoV-2 infection and assessing therapeutic
strategies to promote viral clearance and restore normal intestinal function. Among the protein functions
described, some such as Galectin-9 and CRP are already under investigation as biomarkers of disease
severity 38–40. Interestingly, elevated serum levels of CRP, especially in association with a high
concentration of D-dimers, are reported to be indicative of an increased risk of adverse outcomes in
COVID-19 41. Consequently, faecal CRP levels could represent a useful biomarker to stratify COVID-19
patients as a function of the level of SARS-CoV-2 in the GI tract.

Although the COVID-19 pandemic has led to the launch of a large number of clinical studies 42, to our
knowledge, this is the first time the composition and functionality of gut microbiota have been analysed
by differential metaproteomics, with samples distinguished based on the presence of SARS-CoV-2 RNA in
the intestinal tract. Interestingly, even in stool specimens containing high levels of viral genetic material,
no SARS-CoV-2-derived peptides were detected in our discovery metaproteomics approach. This negative
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result could be ascribed to the complexity of the samples and a lack of sensitivity of our approach.
Indeed, although targeted proteomics can successfully detect SARS-CoV-2 proteins in nasopharyngeal
swabs and gargle samples 43–45, viral proteins have never been detected by discovery proteomics
approaches applied to complex matrices 42. Alternatively, these samples may only contain RNA
fragments as previously reported for faeces collected at later time points following disease onset 10.
Whatever the case, and despite the relatively modest number of samples analysed and the fact that extra-
pulmonary detection of viral RNA does not constitute proof that infectious virus particles are or were
present, our results confirm the clinical relevance of testing for viral RNA in faeces because of its direct
correlation with altered gut microbiota.

The association between COVID-19 and the presence of SARS-CoV-2 in the intestine remains to be further
explored. SARS-CoV-2 is the third highly pathogenic coronavirus (after SARS-CoV and MERS-CoV) to
cross to humans within less than 20 years, suggesting that new zoonotic coronavirus spill-overs are likely
to occur in the future. The potential role of the gut in the diseases induced by this family of viruses
should be further explored in multiple cohorts and settings, longitudinally over the course of different
stages of infection. “Long Covid” describes the situation when the effects of Covid-19 continue for weeks
or months beyond the initial illness, and has now been reported for a significant number of patients 46.
Some of these cases could be linked to continuous infection of the gut epithelium or severe alterations of
the gut microbiota. Ultimately, mechanistic studies will be required to examine how composition of the
microbiota affects how SARS-CoV-2 infects the GI tract, and to advance in the search for novel therapies
to reduce the severity of COVID-19.

Until now, the impact of SARS-CoV-2 infection on the gut microbiota has been scarcely studied. Here, we
assessed on a cohort of 39 patients the gastrointestinal SARS-CoV-2 viral load and correlated it with their
full-range microbiota, including Bacteria, Archaea, Fungi and Moulds, accessible through
metaproteomics. Our data shows three key results that could be of major importance in the battle against
COVID-19: i) faecal SARS-CoV-2 viral load is not correlated to symptoms, ii) an important change in the
microbial structure is observed for patients with high faecal SARS-CoV-2 viral load, and iii) a list of
microbiome and human markers can be drawn from this study as possible candidates for diagnostic.
These results should be incentive for an extensive multi-centric metaproteomics analysis of the gut
microbiota of COVID-19 patients.

Methods

Ethics approval, consent to participate, and study
population
This research has been performed in accordance with the Declaration of Helsinki. This retrospective
study was approved by the local Institutional Review Board (IRB number: 20.05.01), “Comité d'éthique du
CHU de Nîmes”. An informed letter was sent to patients to describe the study. Participants (all volunteers)
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did not have to provide written informed consent to take part in the study. Stool samples received in the
Department of Microbiology from the Department of Infectious Diseases (University Hospital Nîmes,
France) from March 17, 2020 to May 11, 2020 were included. During this period, a nationwide lockdown
was applied with an emergency state due to the context of the COVID-19 health crisis. The hospital
admitted exclusively patients with acute health problems.

The flowchart of the study is presented in Fig. 1A. Among the 41 stools received during the indicated
period, two were excluded from the analysis due to the low quantity. Data including demographics,
laboratory results and imaging results were extracted from the electronic medical records of the
University Hospital management system (Clinicom®, Intersystems SAS, France).

Collecting and processing faecal specimens
All the faecal samples received in the Department of Microbiology were routinely conserved at -80°C,
according to the French microbiology standard 47. The selected stools were transported in dry ice to the
analytical facility following international guidelines (number UN3373, B category). Nucleic acid extraction
and sample lysis performed on live SARS-CoV-2 samples prior protein extraction were conducted in a
level 3 biosafety facility.

Quantification of viral RNA by RT-qPCR in faecal samples
SARS-CoV-2 RNA from stool samples was isolated using the NucleoSpin RNA Virus Mini kit (Macherey-
Nagel SAS, Hoerdt, France). Stools (200 mg) was suspended at 10% (v/w) in PBS, homogenized
vigorously with a vortex and then centrifuged for 3 min at 500 x g to remove large particles. Proteinase K
(20 µL at 20 mg/mL) was added to the resulting supernatant (200 µL), incubated for 5 min at room
temperature. Lysis and nucleic acid extraction were performed as recommend in the manufacturer’s
protocol. Viral RNA was eluted in 50 µL RNase-free H2O preheated to 70°C. RNA was quantified by RT-
qPCR using the SuperScript III Platinum One-Step RT-qPCR Kit (Thermo Fisher, Waltham, USA) and a
CFX96 Touch Real-Time PCR Detection System Thermal Cycler (Bio-Rad, Marnes La Coquette, France).
Primers targeting IP2 and IP4 (RdRp gene), 0.4 µM per reaction, were those recommended by Grenga et al.
48: nCoV_IP2-12669Fw (ATGAGCTTAGTCCTGTTG), nCoV_IP2-12759Rv (CTCCCTTTGTTGTGTTGT),
nCoV_IP2-12696bProbe(+) (AGATGTCTTGTGCTGCCGGTA [5’]Hex [3’]BHQ-1), nCoV_IP4-14059Fw
(GGTAACTGGTATGATTTCG), nCoV_IP4-14146Rv (CTGGTCAAGGTTAATATAGG) and nCoV_IP4-
14084Probe(+) (TCATACAAACCACGCCAGG[5’]Fam [3’]BHQ-1). Primers targeting E gene were:
E_Sarbeco_Fw (ACAGGTACGTTAATAGTTAATAGCGT), E_Sarbeco_Rv (ATATTGCAGCAGTACGCACACA),
and E_Sarbeco_Probe(+) (ACACTAGCCATCCTTACTGCGCTTCG[5’]Fam [3’]BHQ-1). Standard curves were
created using in vitro-transcribed RNA derived from the BetaCoV_Wuhan_WIV04_2019 strain
(EPI_ISL_402124), which contains the amplification regions of the RdRp and E gene as positive strand.
Standard samples were prepared with 1011 copies of target sequences diluted in yeast tRNAs to facilitate
recovery, and lyophilized.

Proteome extraction and digestion
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Following sample homogenization, three 50 mg aliquots of each faecal sample were transferred to fresh
tubes to create three technical replicates for each sample. Aliquots were lysed in 100 µL LDS 1X (Lithium
dodecyl sulfate) sample buffer (Invitrogen™, Thermo Fisher) supplemented with 5% beta-
mercaptoethanol (vol/vol). Samples were sonicated for 5 min in an ultrasonic water bath (VWR ultrasonic
cleaner) and incubated at 99°C for 5 min before transfer to 2-mL Screw Cap microtubes (Sarstedt,
Marnay, France) containing 200 mg ceramic beads, as previously described 49. Cell disruption was
performed on a Precellys Evolution instrument (Bertin Technologies, Aix en Provence, France) operated at
10,000 rpm for ten 30-s cycles, with 30 s rest between cycles. After lysis, samples were centrifuged at
16,000 × g for 3 min. For each sample, the resulting supernatant (25 µL) was loaded onto a NuPAGE 4–
12% Bis-Tris gel, and proteins were subjected to short (5-min) SDS-PAGE migration. Proteins were stained
for 5 min with Coomassie SimplyBlue SafeStain (Thermo Fisher) prior to in-gel trypsin proteolysis with
Trypsin Gold (Promega) using 0.011% ProteaseMAX surfactant (Promega, Madison, WI, USA), as
described in Hartmann et al. 50.

Preliminary quantitation of peptides extracted from faecal
samples by high-resolution mass spectrometry survey
For each faecal sample, 1 µL of the extracted peptide mixture was injected for analysis on an LTQ-
Orbitrap XL (Thermo Fisher Scientific, Waltham, USA) tandem mass spectrometer coupled to an Ultimate
3000 nano LC system (Thermo Fisher Scientific). The proteolyzed products were desalted online on a
reverse-phase PepMap 100 C18 µ-precolumn (5 µm, 100 Å, 300 µm id × 5 mm, ThermoFisher) and
resolved on a nanoscale PepMap 100 C18 nanoLC column (3 µm, 100 Å, 75 µm id × 50 cm, Thermo
Fisher) at a flow rate of 0.3 µL/min prior to injection into the mass spectrometer. A linear
chromatographic gradient of mobile phase A (0.1% HCOOH/100% H2O) and phase B (0.1% HCOOH/80%
CH3CN) was applied from 5 to 40% B in 30 min. Full-scan mass spectra were measured from m/z 350 to
1500 in data-dependent mode using a Top5 strategy. Briefly, a scan cycle was initiated by a full high
mass-accuracy scan in the Orbitrap analyser, operated at 30,000 resolution, followed by MS/MS scans in
the linear ion trap on the five most abundant precursor ions. A 10-s dynamic-exclusion window was
applied to previously selected ions. Precursor ions were isolated using a 3-m/z isolation window and
activated with 35% normalized collision energy.

NanoLC-MS/MS characterization of peptides extracted
from faecal samples
To normalize the peptide amount injected for each faecal sample, the total ion current (TIC)
chromatogram obtained with the LTQ-Orbitrap XL instrument was used to calculate the exact volume (µL)
to be injected on a Q-Exactive HF mass spectrometer (Thermo) by dividing 16.1E7 (the target optimal TIC
previously established) by the TIC value obtained with the LTQ-Orbitrap XL. The high-field Orbitrap
instrument was used in combination with an UltiMate 3000 LC system (Dionex-LC) and operated in data-
dependent mode, as previously described 51. The appropriate volumes of peptides were injected for each
aliquot (technical triplicate for each faecal sample), desalted on an Acclaim PepMap100 C18 precolumn
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(5 µm, 100 Å, 300 µm id × 5 mm), and then resolved on a nanoscale Acclaim PepMap 100 C18 column (3
µm, 100 Å, 75 µm id × 50 cm) with a 120-min gradient at a flow rate of 0.2 µL/min. The gradient was
developed from 4 to 25% of [CH3CN, 0.1% formic acid] over 100 min, and then from 25 to 40% over 20
min. Peptides were analysed during scan cycles initiated by a full scan of peptide ions in the ultra-high-
field Orbitrap analyser, followed by high-energy collisional dissociation and MS/MS scans on the 20 most
abundant precursor ions (Top20 method). Full-scan mass spectra were acquired from m/z 350 to 1500 at
a resolution of 60,000 with internal calibration activated on the m/z 445.12002 signal. During ion
selection for MS/MS fragmentation and measurement, a 10-s dynamic-exclusion window was applied
with an intensity threshold of 1.7 × 104. Only ions with positive charges 2 + and 3 + were considered.

Assigning peptides and analysing metaproteomics data
The Mascot Daemon 2.6.1 search engine (Matrix Science) was used to match MS/MS spectra to
peptides in a multi-round search process. The search parameters were as follows: full trypsin specificity,
maximum of two missed cleavages, mass tolerances of 5 ppm on the parent ion and 0.02 Da on the
MS/MS, carbamidomethylated cysteine (+ 57.0215) as fixed modification, and oxidized methionine (+ 
15.9949) and deamidation of asparagine and glutamine (+ 0.9848) as variable modifications. The NCBInr
database (National Center for Biotechnology Information, NIH, Bethesda) was downloaded as
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz (55 GB, downloaded on 2nd January, 2020). Protein
accession numbers were mapped to taxids using files from ftp://ftp.ncbi.nlm.nih.gov (downloaded in
January 2020). Files included: assembly_summary_refseq.txt and assembly_summary_genbank.txt
downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/ to map taxids to RefSeq
(GCF) and GenBank assemblies (GCA), GCF/GCA *_assembly_report.txt files downloaded from
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/ to map GCF/GCA to nucleotides and the GCF/GCA
*_genomic.gff.gz files downloaded from the same directory to map GCF/GCA to protein accessions.
Python SQLite databases were created to perform fast protein-to-taxid matching. The file
prot.accession2taxid.gz, downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/
was used to supplement databases, especially for Eukaryota. Files containing the NCBI taxonomy,
names.dmp and nodes.dmp, were downloaded as ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdmp.zip
to directly assign Peptide-spectrum matches (PSMs) to the “canonical” taxonomical levels (species,
genus, family, order, class, phylum, and superkingdom) of the NCBI taxonomic tree.

A first-round Mascot search was performed on a reduced NCBInr-based database, termed NCBInrS,
containing 45,925 selected taxa. This database comprises 76,112,114 sequences and a total of
31,417,968,972 amino acids. This first round was performed with a selection of the 50,000 best MS/MS
spectra, as determined using the open-source algorithm ScanRanker. DirectTag version 1.4.66 52 was
used with the following parameters to apply the algorithm: PrecursorMzTolerance 0.1,
FragmentMzTolerance 0.5, StaticMods "C 57.0215", UseChargeStateFromMS true, NumChargeStates 4.
Molecular ion peak lists were extracted with Proteome Discoverer daemon v1.4 software (Thermo
scientific), applying the following parameters: 400 (minimum mass), 5000 (maximum mass), 0 (grouping
tolerance), 0 (intermediate scans), and 1000 (threshold). Peptide-to-MS/MS spectrum assignments
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complied with the following constraints: full trypsin specificity, maximum of one missed cleavage, 2 + or
3 + peptide charges, mass tolerances on the parent ion of 3 ppm, and 0.02 Da on the MS/MS, static
modification of carboxyamidomethylated cysteine (+ 57.0215), and oxidized methionine (+ 15.9949) as
dynamic modification.

The Python version of Matrix Science’s msparser (version 2.6.1) was used to parse the Mascot dat file,
applying the ms_peptidesummary function. PSMs were validated when they had a Mascot expectation
value below 0.3 according to their Mascot homology threshold (MHT); multiple PSMs were allowed per
MS/MS spectrum. Each PSM associated with peptide sequences by Mascot was mapped to taxa using
in-house SQLite databases built from NCBI data, as described in Pible et al. 53.

The phylopeptidomics procedure 53 was applied to identify taxonomies. The raw PSMs for each taxon
(hereafter TSMs, for Taxon-Spectrum Matches), the numbers of matching peptide sequences, specific
peptide sequences, and corresponding specific PSMs were determined for the species, genus, family,
order, class, phylum, and superkingdom “canonical” taxonomical levels. Acceptance criteria for genera
selection were adjusted for each individual dataset. Genera validated in the first-round search, and all
their descendants, were extracted from the full NCBInr database for a second Mascot search. All acquired
spectra were used at this stage, and the Mascot settings were the same as for the first-round search,
except that the maximum number of missed cleavages was set to 2, and 5 ppm mass tolerance was
allowed on the parent ion. Proteins validated with a Mascot p-value of 0.05 during the second-round
search were extracted from NCBInr, and added to a selection of proteins specific to SARS-CoV-2, as
detailed below, for a third-round search. SARS-CoV-2 viral genomic sequences were downloaded
(2020/05/11) from the GISAID database 54, and proteins were extracted after genome synchronization
against the reference genome from the corresponding GFF file
GCA_009858895.3_ASM985889v3_genomic.gff. Both these resources were downloaded from
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/009/858/895/GCA_009858895.3_ASM985889v3/. The 186
non-redundant sequences from the N protein were added to the FASTA file used for the third-round
search. This final Mascot search was performed using the same spectra and settings as those used in
the second-round search. Peptides and proteins were identified with an FDR of 0.01 calculated from the
relevant decoy database search. PSM validated with a Mascot p-value of 0.05 during the second-round
search were filtered using an FDR < 1% and subsequently used to infer peptide and protein identifications.
Proteins were grouped if they shared at least one peptide. Label-free quantification was performed based
on PSM counts for each protein, applying the principle of parsimony. For each phylum, spectral counts
for all the proteins in a group were summed to assign abundance values to each protein group. Proteins
were KEGG-annotated using the GhostKoala web service (https://www.kegg.jp/ghostkoala/) to match
proteins to KEGG Orthology (KO) and KEGG pathway maps. The spectrum count values for peptides
mapped to a KEGG through protein mapping were summed to attribute an abundance value to each
functional term. Peptide-to-taxon mapping was also performed to allow taxon-resolved functional
quantification.

Statistical analyses
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Count values from both taxonomic (number of TSMs) and functional data (spectrum counts) were scaled
relative to their sum total in the sample. The categorical and continuous variables were compared among
the patients using the Fisher exact test and the Kruskal–Wallis test, respectively. Principal component
analysis was performed as previously described 55. The R package metacoder 56 was used to represent
taxonomic abundance as a differential heat tree. Univariate differential analysis of taxon and KO
abundances between conditions was performed by applying non-parametric Wilcoxon tests corrected for
multiple comparisons (Benjamini–Hochberg adjustment). Pairwise alpha-diversity indices were
calculated using the vegdist function from the vegan package in R.
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Figures

Figure 1
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Microbiota profiling of SARS-CoV-2 infected patients. 1A) Flowchart of the study. 1B) Schematic
representation of the experimental analytical workflow. Stool samples were analysed in parallel by RT-
qPCR to detect the presence of SARS-CoV-2 RNA in the gut, and by shotgun tandem mass spectrometry
to investigate the taxonomical and functional composition of the microbiota.

Figure 2

Presence of SARS-CoV-2 in the gut. Circos plot showing RT-qPCR results for stool samples by RT-qPCR
and nasopharyngeal swab tests. The size of each arc section reflects the number of samples falling into
each group. Red and orange indicate positive samples with high and low levels of SARS-COV-2,
respectively; green indicates negative samples.
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Figure 3

Metaproteomic profiling of gut microbiota. 3A) Distribution of the assigned TSMs as a function of their
origin, microbial (blue), host (orange) or food-related (grey). Samples are grouped based on their SARS-
CoV-2 RNA content. 3B) Relative biomass contributions of the phyla identified for each sample. Each
sample was analysed in three replicates, bars represent average relative abundances for each analysis.
3C) PCA plot of the microbiota profiles. Red and orange indicate positive samples with high and low level
of SARS-COV-2, respectively; green indicates negative samples. Each point corresponds to one sample,
represented as the sum of the contribution of its three corresponding replicates. 3D) Box plots showing
variation in alpha diversity across age-matched samples from different groups based on the Inverse
Simpson and Shannon indices. Red bars indicate positive samples with high levels of SARS-COV-2, green
bars indicate negative samples. a, b: significant difference between groups (Tukey’s Honest Significant
Difference (HSD) test). 3E) Differential heat tree for Eukaryota. 3F) Differential heat tree for Archaea. 3G)
Differential heat tree for Bacteria. The trees show comparisons of microbiota compositions between
samples containing high levels of SARS-CoV-2 RNA and negative samples. Phyla and genera are
indicated. Taxa coloured red are more abundant in positive samples, green taxa are more abundant in
negative samples.
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Figure 4

Comparative analysis of the functional composition of the metaproteome. 4A) PCA analysis of
functional microbiota profiles from aged-matched samples containing high levels of SARS-CoV-2-RNA, or
negative for viral RNA. 4B) Violin plots showing the relative abundance of the Ascomycota-related KOs
increased in SARS-CoV-2-positive samples (red) or negative samples (green). Asterisks denote KOs that
were also significantly increased when compared to levels detected in age-matched samples containing
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lower levels of SARS-CoV-2 RNA. 4C) Violin plots showing the relative abundance of the bacterial-related
KOs increased in SARS-CoV-2-positive samples (red) or negative samples (green). Asterisks denote KOs
that were also significantly increased when compared to levels detected in age-matched samples
containing lower levels of SARS-CoV-2 RNA. 4D) Violin plots showing the relative abundance of host-
related KOs increased in SARS-CoV-2-positive samples (red) compared to negative samples (green).
Asterisks denote KOs that were also significantly increased when compared to levels detected in age-
matched samples containing lower levels of SARS-CoV-2 RNA.
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