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Abstract

Due to the fast growth of data that are measured on a continuous scale, func-
tional data analysis has undergone many developments in recent years. Regression
models with a functional response involving functional covariates, also called
”function-on-function”, are thus becoming very common. Studying this type of
model in the presence of heterogeneous data can be particularly useful in various
practical situations. We mainly develop in this work a Function-on-Function Mix-
ture of Experts (FFMoE) regression model. Like most of the inference approach
for models on functional data, we use basis expansion (B-splines) both for
covariates and parameters. A regularized inference approach is also proposed,
it accurately smoothes functional parameters in order to provide interpretable
estimators. Numerical studies on simulated data illustrate the good performance
of FFMoE as compared with competitors. Usefullness of the proposed model is
illustrated on two data sets: the reference Canadian weather data set, in which
the precipitations are modeled according to the temperature, and a Cycling data
set, in which the developed power is explained by the speed, the cyclist heart
rate and the slope of the road.

Keywords: Mixture of Experts, Functional regression, EM algorithm, Ridge
regularized estimation.
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1 Introduction

During the past few decades, functional data have become a very popular type of

measurement in a constantly growing number of industrial, societal and medical appli-

cations. A branch of statistics, Functional Data Analysis (FDA), was developed as a

specific discipline for analysing such data. FDA’s flexibility in handling complex, high-

dimensional, and structured data makes it applicable to a broad range of scientific

and practical problems, providing insights that traditional data analysis methods may

not be able to unveil. Broadly speaking, this new paradigm concerns the statistical

analysis of data where at least one of the variables of interest is treated as a curve,

surface or volume (also called function for simplicity) observed over a domain set.

Most notable recent applications encompass, in particular, Healthcare and Medicine

(monitoring patient health over time, FMRI data), Environmental Science (tempera-

ture or precipitation trends over time), Economics and Finance (evolution of stocks

or commodities, modelling consumer behaviour over time), Sports Science (Analyz-

ing athletes’ performance data over time or during an event to optimize training and

performance), Meteorology (analyzing weather patterns and trends to improve fore-

casting models), Chemometrics (analyzing spectroscopy data to identify and quantify

chemical substances), Genomics and Bioinformatics (analyzing gene expression data

over time), Traffic Analysis and Urban Planning.

Our main focus in the present work is the extension of linear regression to the

functional data setting, a model which has naturally become a major area of research

in the field of FDA. Standard references for FDA are [1–4]. A broad overview of func-

tional linear regression is given in [5] and [6]. Using the convention that first term

denotes the type of the response and second term denotes the type of the covari-

ate three different setups have been analyzed in the literature: Function-on-Scalar,

Scalar-on-Function and Function-on-Function. In the present work, we will focus on

the most challenging setup from both statistical and computational perspectives, i.e.
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Function-on-Function regression problems. Function-on-Function regression problems

have indeed been much less studied than the two other types of functional regres-

sion despite their relevance in many important applications. Recently, [7] proposed to

estimate a Function-on-Function regression model using a penalized mixed model. A

signal compression approach was also recently devised in [8], based on preprocessing

the functional covariates using their wavelet transform and on proposing a method to

estimate the functional parameter by characterizing them as solutions to a generalized

functional eigenvalue problem. In a vast majority of current works in this area, one

of the main issues is how to accurately select the most statistically relevant number

of basis functions, and the location of the knots for spline models [9]. Another impor-

tant issue is the interpretability of the obtained estimators [10]. In [11] proposed a

Ridge-type penalization on second derivative of parameters using B-splines expansions

for both functional covariates and parameters which is a first attempt at resolv-

ing the interpretability and model selection problems using convex sparsity-enforcing

penalties.

Often in practice, the available data carry some heterogeneity, and the assump-

tion that a unique relationship between the response variable and covariates holds for

the full data set may not be valid. To circumvent this problem, a mixture of regres-

sion model can be proposed [12, 13]. As we know (see [14] and [15]), mixture models

are very powerful at capturing subpopulation behaviour, a crucial capability in most

applications. Mixture models have been studied in many different setups and specific

algorithms, such as EM-type unpenalized and penalized models have been devised for

the estimation of its parameters [16, 17]. Accelerated versions using space alternat-

ing schemes [18] and proximal interpretations [19, 20]. Sparsity-enforcing penalized

versions were studied in [21].

Unfortunately, standard mixture models do not permit to parameterize the indi-

vidual probability of each data to belong to a specific cluster. As this usually hampers
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the predictive capabilities of mixture models, the framework of Mixture of Experts

(MoE) models was first suggested in [22] as a powerful supervised learning proce-

dure that can efficiently handle the potential heterogeneity often present in the data.

The MoE model is based on a divide-and-conquer principle, which can be simply

understood by realizing that each expert can specialize in smaller problems, and their

predictive power can be combined together via a gating function in order to solve the

full problem. The MoE model can also be viewed as a version of a multilayer super-

vised network in the sense that it is composed of K separate networks, each of which

learning on a subset of the whole data data, as illustrated by Figure 1. From a more

statistical learning perspective, the MoE model consists in a mixture model where

both the mixture weights, a.k.a. Gating Functions, and component densities, a.k.a.

Experts, depend on each data’s covariate. The mixture model and its extension to

MoE model has been investigated in the contexts of regression, clustering and discrim-

inant analysis. A useful overview was proposed in [23], in which provides conditions

for consistency and asymptotically normal properties are studied. Nevertheless, most

MoE models only handle the scalar case. In the functional case, it would be relevant to

implement efficient extensions of MoE model as well. This problem has already been

tackled in [24], but for scalar response. Our contribution is to extend the MoE model

to the Function-on-Function setup and provide an efficient inference algorithm.

The paper is organised as follows: Section 2 briefly presents the framework and

the inference of Function-on-Function linear regression models. Section 3 presents the

Function-on-Function MoE model we proposed and its inference. Section 4 describes

how to implement a penalized version of the estimation scheme. Section 5 proposes

extensive simulation experiments that explore the various aspects of the performance

of the method. Section 6 finally presents an illustration of the method on two real-

world data sets and shows the advantage, in terms of predictive quality, of considering

MoE as compared with non-mixture-based approaches.
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Expert 1 Expert 2 Expert K

Inputs

Linear
Combination

p1 p2 pK

Output

(a)

Expert 1 Expert 2 Expert K

Inputs

Stochastic 
Decision

p1 p2 pK

p1

Output

(b)

Fig. 1: System of Experts and gating networks: The case of weighted linear combina-
tion (a) and the case of stochastic decision (b) to produce output.

2 The concurrent model

2.1 The functional model

The problem under study consists in modelling the relationship between functional

covariates X1(t), . . . ,Xp(t) and a functional response Y(t) based on a n-sample

{Yi(t),X
1
i (t), . . . ,X

p
i (t), t ∈ [0,T]}, i = 1, . . . , n. The functional response and covari-

ates are assumed to belong to the separable Hilbert space L2([0; T]) endowed with the

Lebesgue measure. In the present work, we focus on the concurrent model [1] which

assumes a linear relationship between the response and covariates, where the value of

the response at a particular time stamp is modelled as a linear combination of the

covariates at that specific time stamp, and the coefficients of the functional covariates
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are univariate smooth functions of time:

Yi(t) = β0(t) +

p∑

ℓ=1

βℓ(t)X
ℓ
i(t) + εi(t) = Xi(t)

⊤β(t) + εi(t), (1)

with Xi(t) = (1 X1
i (t) · · · Xp

i (t))
⊤ and β(t) = (β0(t) β1(t) · · · βp(t))

⊤.

βℓ(t) are the unknown functional parameters, assumed to be square integrable. The

residuals εi(t) are centered random variables with variance σ2
i , specific to the ith

individual ([1], Chapter 13). Finally, εi(t) and Xℓ
i(t) are assumed to be uncorrelated.

The noise functions εi(t) can also be rigorously defined using white noise theory as

presented in [25]. In the framework of the present project, we will only use the property

that when sampled at various times from a finite time set T , the vector (εi(t))t∈T

can be expressed as a sum of a vector with independent and identically distributed

(i.i.d.) components and a vector with prescribed covariance matrix, which can be a

prescribed to a vector with constant components in the simplest case. Considering

the concurrent model is of great interest because, as mentioned in [26], any functional

linear model can be reduced to this form.

2.2 From functional to multivariate models

The parameters βℓ(t) of Model (1) can be estimated using the method discussed in

[11], where the functional problem is rewritten as a classical multivariate regression

problem by expanding the functional covariates and parameters into B-spline series,

i.e.:

Xℓ
i(t) =

q
xℓ∑

j=1

xℓ
ij B

ℓ
j(t) = Bℓ(t)⊤xℓ

i and βℓ(t) =

q
βℓ∑

j=1

bℓj ϕ
ℓ
j(t) = ϕℓ(t)⊤bℓ, (2)

where Bℓ(t) = (B1
j (t), . . . , B

q
xℓ

j (t))⊤ is the qxℓ -dimensional vector of basis functions

for the covariate Xℓ(t) and xℓ
i = (xℓ

i1, . . . , x
ℓ
iq

xℓ
) the corresponding basis expansion
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coefficients. Analogously, {ϕℓ(t), bℓ} are the basis functions and basis coefficients for

βℓ(t). Then, using the following notations :

• Φ(t) = (ϕ0(t)⊤ ϕ1(t)⊤ · · · ϕp(t)⊤), a vector of length
∑

ℓ qβℓ ,

• b = (b0
⊤

b1
⊤

· · · bp
⊤

)⊤, a vector of length
∑

ℓ qβℓ ,

• B(t) = (1 B1(t)⊤ · · · Bp(t)⊤), a vector of length
∑

ℓ qXℓ ,

• xi = (x0
i (t)

⊤ x1
i (t)

⊤ · · · x
p
i (t)

⊤)⊤, a vector of length
∑

ℓ qXℓ ,

Model (1) can be written:

Yi(t) = x⊤
i B(t)

⊤Φ(t) b+ εi(t) = Ri(t)
⊤b+ εi(t). (3)

From this viewpoint, the concurrent model can be recast as a classical linear regres-

sion model with design matrix Ri(t) = Φ(t)⊤B(t)xi and regression parameters b.

When restricted to the observation grid consisting of the m successive timestamps

{t1, . . . , tm}, the problem reduces to:

Yi(tj) = Ri(tj)
⊤b+ εi(tj) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. (4)

There is nevertheless one peculiarity with this approach to underline. Indeed, in Model

(4) the random variables εi(t1), . . . , εi(tm) representing the noise can not be assumed

independent. In order to circumvent this issue, one possible approach is to use a linear

mixed model (LMM) as advocated in [27]. For this purpose, we will assume that the

model error can be decomposed as εi(tj) = Ui + ηij , with ηij a Gaussian white noise

and Ui a random variable which takes into account the random effect in each individual

i ∈ {1, . . . , n}. In this framework, the estimation procedure proposed in [11] consists

in maximizing the ridge-type penalised likelihood, with an ℓ2-squared penalty on the

second derivatives of βℓ(t). Such a penalty is recommended when smooth estimates
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are sought for and provides sufficient flexibility that can still capture a substantial

variety of complex shapes.

3 Mixture of experts of linear models for functional

response with functional covariates

Mixture Regression (MR) models form a subset of the broad class of statistical models

known as finite mixture models [13], which are designed to account for the statistical

heterogeneity in a population through a finite set of empirical latent classes. MR

models focus on identifying systematic differences between underlying latent groups

in the population by the effect of covariates on the response. These models have to be

distinguished from other mixture models that estimate the differences in levels and

variance of the response variable between the groups (see [12]). MR models assumes

that there are K ∈ N
⋆ mixture components in the population. Component membership

is indicated by a latent categorical variable (one-hot encoding as) Z = (z1, . . . , zK)

where zk takes the value 1 if the observation belongs to the component k and 0

otherwise. The MR model can written

MR(Y|X) =

K∑

k=1

πkEk[Y|X, zk = 1] (5)

where πk is the mixture proportion of group k associated with the k-th expert Ek[Y|X].

In the present functional case, this expert is defined by

Ek[Y(t)|X(t), zk = 1] = X(t)⊤βk(t) (6)

where βk(t) = (βk,0(t), βk,1(t), . . . , βk,p(t)) the functional parameters of the kth expert.

Within the proposed model, there are two possible options for designing the prob-

abilities πk, k = 1, . . . ,K. The first one assumes that the covariates X are not related
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to latent classes Z: πk = P(zk = 1). The second, and more general, assumes that Z

depends on X: πk = πk(X) = P(zk = 1 | X).

The conditional density of Y(t) according to the Function-on-Function Mixture of

Expert (FFMoE) model is

f(Y(t)|X(t),Ψ(t)) =

K∑

k=1

πk(X(t), αk(t))Φ(Y(t); X(t)βk(t), σ
2
k), (7)

with

• πk(X(t), αk(t)) the mixture proportion of group k, also called the kth gated network

function;

• Ψk(t) = (βk(t), αk(t)) are the functional parameters;

• Φ(Y(t); Xi(t)βk(t), σ
2
k) is the Gaussian density probability function of mean

X(t)βk(t) and variance σ2
k.

3.1 Modelling the gated network function

The MoE model can be seen as a submodel of the Latent class model proposed by

[28] named concomitant-variable latent class model. Various models for gated network

have been proposed in the past ”non-functional” related literature. One instance is

the version of [22] where a multinomial logistic model is introduced. Another approach

presented in [29] considers non parametric models. Turning to the functional setup,

various authors have proposed extensions of the logistic regression model of [22]. Most

of them assume in particular that the functional terms all belong to the space of real

square integrable functions L2([0, 1]). See for instance [30] for an overview. In [31], it is

shown that the functional nature of covariates raises important technical issues, some

of them inherited from the non-functional setup but with higher complexities. Some of

the more noticeable issues include the non-existence of maximum likelihood estimators
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under general conditions, a remedy being working in a tailored Reproducing Kernel

Hilbert Space (RKHS).

In the present work, under the realisation xi(t) of X(t), we consider the following

gating softmax function:

πk(xi(t), αk(t)) =
exp(hk(xi(t), αk(t)))

1 +
∑K−1

k′=1 exp(hk′(xi(t), αk′(t)))
, (8)

where

hk(xi(t), αk(t)) =

∫

T

α⊤
k (s)xi(s)ds (9)

with αk(t) = (αk,0(t), αk,1(t), . . . , αk,p(t))
⊤. Notice that, in this model, the mixture

proportion is constant over time.

As for the other functional parameters, αk(t) is assumed to have an expansion into

a basis of functions of the form:

αk,ℓ(t) =

L
αℓ∑

j=1

aℓk,jϱ
ℓ
j(t) = ϱℓ(t)⊤aℓk.

Similarly as for β(t) in (2.2), we can write αk(t) = ϱ(t)ak and Equation ((9)) becomes:

hk(xi(t), αk(t)) =

∫

T

a⊤k ϱ(s)
⊤B(s) xids = a⊤k

∫

T

ϱ(s)⊤B(s)dtxi

︸ ︷︷ ︸
ri

= a⊤k ri,

Thus Model (8) can be written:

πk(xi(t), αk(t)) =
exp(a⊤k ri)

1 +
∑K−1

k′=1 exp(a
⊤
k′ri)

. (10)
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To guarantee the identifiability of αk(t) ∈ L2(Rp+1), k = 1, . . . ,K, αK(t) is set to the

null function (and hence aK is set to null vector) [32].

3.2 Estimation of the functional MoE via the EM algorithm

In practice, as expected, we only have access to a set of (noisy) observations at the

timestamps in the set {t1, . . . , tm}. For an observation i belonging to component k,

the kth expert model is given by

yi(tj) = βk,0(tj) +

p∑

ℓ=1

βk,ℓ(t)x
ℓ
i(tj) + εi(tj) = βk(tj)

⊤xi(tj) + εi(tj), (11)

where βk(t) = (β0,k(t), β1,k(t), . . . , βp,k(t))
⊤ for k = 1 . . .K, are the unknown

functional experts parameters and are assumed to be square integrable.

As in the simple regression case, the successive observed values of a realisation i

can not be assumed statistically independent. The mixed model approach of [27] can

again be put to work after decomposing the observation error as εi(tj) = Ui+ηij , with

ηij a Gaussian white noise and Ui a random variable which accounts for the random

effect in each individual observation i = 1, . . . , n. To sum up, model (11) consists of a

LMM with fixed effects bk and random effect Ui. In matrix form, this yields:

Y = R⊤bk +WU+ η, (12)

where Y = (y1(t1), . . . , y1(tm), y2(t1), . . . , yn(tm))⊤, R = (Ri(tj))i,j the design matrix

of dimension q
β
× nm with q

β
=
∑

ℓ qβℓ
, U = (U1,U2, · · · ,Un)

⊤ ∼ N (0,Γ), η =
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(ηij)i,j ∼ N (0, σ2
Inm) and

W =




1m×1 0m×1 . . . 0m×1

0m×1 1m×1 . . . 0m×1

...
...

. . .
...

0m×1 0m×1 . . . 1m×1




︸ ︷︷ ︸
(nm×n) - matrix

.

We will make use of the notations 0k×l (resp. 1k×l) of size k × l for the matrices of

zeros (resp. ones) and the notation 0 for the null vector. We will also denote by Γ the

unknown covariance matrix of the random effects. Inm refers to the nm×nm identity

matrix.

The conditional density of Y, given the observations is a mixture of K Gaussian

distributions of mean b⊤k R and variance Vk = WΓW⊤ + σ2
kInm. So we have:

f(Y|X,Ψ) =

K∑

k=1

πk(xi(t), αk(t))Φnm(Y; b⊤k R,Vk), (13)

where X is defined in the same way as Y. Φℓ(x;µ,Σ) denotes the probability density

function of the L-dimensional Gaussian distribution with mean vector µ and covariance

matrix Σ. Ψ = ((a1, b1, σ
2
1), . . . , (aK, bK, σ

2
K),U,Γ) are the vector of parameters of the

model to be estimated.

Inference of finite mixture model has been studied by various authors in the litera-

ture. We can mention for e.g. [22, 33] that compute Maximum Likelihood Estimators

(MLE) via EM algorithm; Bayesian approaches have also been proposed as for instance

in [34]; [29] present a parameter estimation approach in a semiparametric setting.
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Now the FFMoE model can be defined using finite representation of functional

terms. In this setting, we can easily write the observed data log-likelihood given by:

L(Ψ; {yi(tj), xi(tj)}i,j) =

n∑

i=1

log(

K∑

k=1

πk(xi(t), αk(t))Φm(yi; b
⊤
k Ri,Vk,i)) (14)

where yi is the vector of size m that contains all the measurements for observation

i, Ri and Vk,i are respectively the design matrix and block covariance matrix of Vk

associated with i. Then, the log-likelihood of Equation (14) becomes:

n∑

i=1

log(

K∑

k=1

exp(a⊤k ri)

1 +
∑K−1

u=1 exp(a⊤u ri)
.

1√
(2π)m|Vk,i|

exp(−
1

2
(yi − b⊤k Ri)

⊤V-1
k,i(yi − b⊤k Ri))).

As is well known in Finite Mixture Models, the log-likelihood maximisation prob-

lem is cumbersome to address without introducing clever intermediate steps that form

the philosophy of EM-type algorithms, as extensively discussed in the landmark paper

[16]. A basic requirement for the method is to complete the data by imputing latent

group membership variables zi for each observation i = 1 . . . n. These latent vari-

ables are represented by K binary variables (zi1, zi2, . . . , ziK). This model is called a

complete model and leads to the complete data log-likelihood given by:

Lc(Ψ; {yi(tj), xi(tj)}i,j) =

n∑

i=1

K∑

k=1

zik log(
exp(a⊤k ri)

1 +
∑K−1

u=1 exp(a⊤u ri)
.

1√
(2π)m|Vk,i|

exp(−
1

2
(yi − b⊤k Ri)

⊤V-1
k,i(yi − b⊤k Ri))). (15)

Let Ψ(0) = ((a
(0)
1 , b

(0)
1 , σ2(0)

1 ), . . . , (a
(0)
K , b

(0)
K , σ2(0)

K ),U(0),Γ(0)) be an initial estimate

of Ψ. The EM algorithm is a generic process consisting of repeating two steps to

updates parameters such that the log-likelihood value monotonically increases:
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• E-step: At this step, we compute the conditional expectation of the log-likelihood

given the observed data and the current parameter (at iteration l) estimation Ψ(l).

So we define the Q function for the EM algorithm defined by:

Q(Ψ(l+1)|Ψ(l)) = E(Lc(Ψ
(l+1); {yi(tj), xi(tj)}i,j)|{yi(tj), xi(tj)}i,j ; Ψ(l)). (16)

This consists of computing the posterior probabilities p
(l)
ik that the curves i-th sample

(yi(t), xi(t)) belongs to the kth component of the mixture under the current model:

p
(l)
ik = E(zik|{yi(tj), xi(tj)}i,j ; Ψ

(l)) = P(zik = 1|{yi(tj), xi(tj)}i,j ; Ψ
(l)).

Using Bayes’ theorem, this conditional probability p
(l)
ik can be expressed as:

p
(l)
ik =

πk(xi(t), α
(l)
k (t))Φm(yi; b

⊤(l)
k Ri,V

(l)
k,i, t ∈ T)

K∑

u=1

πu(xi(t), α(l)
u (t))Φm(yi; b

⊤(l)
u Ri,V

(l)
u,i)

. (17)

• M-step: Given the previous conditional probability and the observed data, this step

updates the current parameters Ψ(l) by maximizing the conditional expectation of

the complete data log-likelihood, that is Ψ(l+1):

Q(Ψ(l+1)|Ψ(l)) = E(Lc(Ψ
(l+1); {yi(tj), xi(tj)}i,j)|{yi(tj), xi(tj)}i,j ; Ψ(l))

= Q1(a
(l+1)
k |Ψ(l)) + Q2(b

(l+1)
k , V

(l+1)
k |Ψ(l)). (18)

The EM algorithm was shown to be a particular case of the celebrated Proximal

Point algorithm in [19, 20] using a Kullbak-Leibler type divergence for the proximity

term. Another interesting interpretation in terms of alternating minimisation in

given in [35]. Space alternating version of the EM algorithms where proposed in
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[18, 36] and [21] for the nonsmoothly penalised case. In this paper, the maximisation

of (Q) will be performed using a modified version of theR package [37]: in particular,

the function initFlexmix which allows repeating the EM algorithm with different

starting values and choosing the solution with the highest value of the likelihood

while allowing concomitant variables, as developed in [38]. The global maximisation

problem is split onto two separate maximisation problems (see Appendix A for

details):

– the updating of gated network parameters via the maximisation of the function

Q1(a
(l+1)
k |Ψ(l)) and

– the updating of the expert’s parameters via the maximisation of the function

Q2(b
(l+1)
k , V

(l+1)
k |Ψ(l)).

One will easily recognise in each of these two expressions, the likelihood of the

multinomial logistic model Q1(.) and of the linear Gaussian model Q2(.) for which we

know how to compute (at least numerically using e.g. Newton-Raphson iterations)

the MLEs.

• The E and M steps are alternated repeatedly until numerical convergence i.e. the dif-

ference L(Ψ(l+1); {yi(tj), xi(tj)}i,j)− L(Ψ(l); {yi(tj); xi(tj)}i,j) changes by no more

than an arbitrarily small value.

Stability and convergence properties of the method are established in the literature

(see [17] for an overview and [20] for the proximal viewpoint).

With the estimates of gated network and experts parameters obtained, a hard-

clustering of the link between X(t) and Y(t) is reach using Bayes’ rule so that

ẑik =





1 if k = Arg max
1≤k≤K

pik,

0 otherwise,

i = 1 . . . n.

15



where pik is the value of Equation (17) at convergence.

3.3 Model selection

One important challenge in statistical estimation with potentially several possible

models depending on hyperparameters is the selection of the most statistically relevant

one. In the present model, choosing the correct number of components K is one crucial

step of the estimation problem. In the regression setting, the selection can be done

using information criteria such as AIC [39] or BIC [40], or using cross validation

methods. The latter being time-consuming, we will use information criterion based

approaches and more specifically the BIC criterion usually defined using log-likelihood

(14) as:

BIC = -2L(Ψ; {yi(tj), xi(tj)}i,j)− d log(n) (19)

where d = K × (1 +
∑p

ℓ=0 Lβℓ +
∑p

ℓ=1 Lαℓ) is the number of free parameters of the

model and n the number of observations.

3.4 Prediction

As we have already mentioned, one of the major limitations of simple mixture models

is predictive modelling. Since for a new individual, its prediction will be given by

the weighted sum of the predictions of each class. This is so far not ideal as this

prediction is entirely driven by the prediction of the most probably class and these

class probabilities will not change whatever the characteristics of the new individual.

With the MoE model, we have seen that we can make this latent class probability

depending on the covariates (concomitant variables). In this case, the prediction is

given by expert prediction of the most probable class. To build such predictions we

first need the conditional probabilities that any individual i belongs to a component

16



k given by:

πk(Xi(t), α̂k) =
exp(â⊤k ri)

1 +

K−1∑

v=1

exp(â⊤v ri)

where âk for 1 ≤ k ≤ K− 1 are the gated parameters estimators.

We deduce, where component km is the most probable class for the i curve, the

predictive curve by:

Ŷi(t) = b⊤km
Ri(t).

As a result, estimating the group membership from covariates is essential to predict

the response well.

4 Regularizing the Function-on-Function mixture of

experts regression

In the FFMoE model (7) presented in Section 3, it is assumed that the functional

covariates and parameters can be decomposed into a finite dimensional functional

basis. This assumption allows to get the finite representation (13). The numbers of

basis functions of each parameters and covariates should be correctly selected in order

to avoid over- or under-fitting. Nevertheless, precise adjustment of these values often

induces a high computational effort. In the case of the B-spline basis, even more

parameters have to be properly tuned such as the choice of the spline order and the

location of the knots. In order to reduce the expected cost of such a computationally

demanding procedure, we made the choice of choosing a sufficiently large a priori value

for L
β
(or Lα) and then apply a penalty. This approach brings the benefit of tuning

a single hyperparameter, which is the number of basis functions and improving the

smoothness and then interpretability of the estimated functional coefficients. This last

point is very interesting in the case of the linear model because as we already know,
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the interpretation of the predictors-response relationship becomes more difficult as the

shape of the functional parameter β(t) (or α(t)) does not have any simple structure.

Various approaches to regularize the parameter shape have been proposed in the lit-

erature. In our setting of interest, the main goal is to enhance the shape of parameters

and then interpretability. [41] are among the first to explore the functional penaliza-

tion and show that the obtained estimator are less sensitive to the rather subjective

choice of the number of basis functions. [10] proposed a method called Functional

Linear Regression That is Interpretable (FLiRTI) which address the issue of choos-

ing relevant penalties. Based on variable selection ideas such as the Lasso penalty,

FLiRTI produces accurate, flexible and highly interpretable estimates of the functional

parameters. The main idea of FLiRTI method is, instead of enforcing sparsity on the

function themselves, to enforce sparsity of the derivatives. Using the notation β(l)(t)

for the lth derivative of β(t), we may deduce that β(0)(t) = 0 guarantees X(t) has no

effect on Y(t) at t; β(1)(t) = 0 implies that β(t) is constant at t; β(2)(t) = 0 means

that β(t) is linear at t and so on.

4.1 Ridge-type penalty on second derivatives

Instead of the Lasso penalty, we proposed to estimated the functional MoE model

(13) by maximizing a Ridge-type penalized log-likelihood. The penalty is based on the

second derivative of the functional parameters (both gated and experts). This choice

is mainly motivated by the desire to obtain a possibly locally constant relationship if

needed. Moreover, the use the ridge penalty is motivated by the lack of exact sparsity

observed in real problems and the clear benefits of getting a closed form formula for

the estimators.
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The corresponding penalized (data) log-likelihood function for the observed data

is defined using (14) by:

Lpen(Ψ; {yi(tj), xi(tj)}i,j) = L(Ψ; {yi(tj), xi(tj)}i,j) + Pen(Ψ), (20)

in which the Ridge regularization term is given by

Pen(Ψ) =

K∑

k=1

p∑

ℓ=0

λk,ℓ

∫
β

′′

k,ℓ(t)
2dt+

K−1∑

k=1

p∑

ℓ=1

γk,ℓ

∫
α

′′

k,ℓ(t)
2dt

where

∫
β

′′

k,ℓ(t)
2dt =

∫ [ L
βℓ∑

j=1

bℓk,jφ
ℓ”

j (t)

]2
dt =

L
βℓ∑

s,u=1

bℓk,sb
ℓ
k,uΓ

ℓ
su

with Γℓ
su =

∫
φℓ”

s (t)φℓ”

u (t)dt, and

∫
α

′′

k,ℓ(t)
2dt =

∫ [ L
αℓ∑

j=1

aℓk,jϱ
ℓ”

j (t)

]2
dt =

L
βℓ∑

s,u=1

aℓk,sa
ℓ
k,uΥ

ℓ
su

with Υℓ
su =

∫
ϱℓ

”

s (t)ϱℓ
”

u (t)dt.

So,

Pen(Ψ) =

K∑

k=1

p∑

ℓ=0

λk,ℓ

L
βℓ∑

s,u=1

bℓk,sb
ℓ
k,uΓ

ℓ
su +

K−1∑

k=1

p∑

ℓ=1

γk,ℓ

L
βℓ∑

s,u=1

aℓk,sa
ℓ
k,uΥ

ℓ
su (21)

where λk,ℓ and γk,ℓ are the usual tuning regularization parameters which control the

importance we want to place on the smoothness of estimators. As we know, selecting

a good value of λk = (λk,ℓ)ℓ (resp. γk = (γk,ℓ)ℓ) is very important to reduce the noise

that less influential covariates create.
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By using matrix terms, we get:

Lpen(Ψ; {yi(tj), xi(tj)}i,j) = L(Ψ; {yi(tj), xi(tj)}i,j)−
K∑

k=1

b⊤k (λkP) bk −
K−1∑

k=1

a⊤k (γkQ) ak

where (λkP) ∈ R
L
β
×L

β is given by:

(λkP) =




λk,0Γ
0 0L

β0
×L

β1
. . . 0L

β0
×L

βp

0L
β1

×L
β0

λk,1Γ
1 . . . 0L

β1
×L

βp

...
...

. . .
...

0L
βp ×L

β0
0L

βp ×L
β1

. . . λk,pΓ
p




with Γℓ =




Γℓ
11 Γℓ

12 . . . Γℓ
1L

βℓ

Γℓ
21 Γℓ

22 . . . Γℓ
2L

βℓ

...
...

. . .
...

Γℓ
L
βℓ1

Γℓ
L
βℓ2

. . . Γℓ
L
βℓLβℓ




;

and (γkQ) ∈ R
Lα×Lα by:

(γkQ) =




γk,0Υ
0 0L

α0×L
α1 . . . 0L

α0×Lαp

0L
α1×L

α0 γk,1Υ
1 . . . 0L

α1×Lαp

...
...

. . .
...

0Lαp×L
α0 0Lαp×L

α1 . . . γk,pΥ
p




with Υℓ =




Υℓ
11 Υℓ

12 . . . Υℓ
1q

αℓ

Υℓ
21 Υℓ

22 . . . Υℓ
2L

αℓ

...
...

. . .
...

Υℓ
L
αℓ1

Υℓ
L
αℓ2

. . . Υℓ
L
αℓLαℓ



.

Here, 0L1×L2
is the standard notation for the null matrix of size L1 ×L2. As Γℓ (resp.

Υℓ) is a symmetric positive-definite matrix for any 0 ≤ ℓ ≤ p, we can easily find its

Cholesky decomposition, which can be efficiently leveraged in the implementation.

And for the penalized complete (data) log-likelihood, we made the same process

and by using (15) we get:

Lc
pen(Ψ; {yi(tj), xi(tj)}i,j) = Lc(Ψ; {yi(tj), xi(tj)}i,j)−

K∑

k=1

b⊤k (λkP) bk −
K−1∑

k=1

a⊤k (γkQ) ak. (22)
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4.2 Maximum Likelihood estimation via the EM algorithm

The EM algorithm for the regularized FFMoE is developed for maximizing the penal-

ized (data) log-likelihood (22). The algorithm is simply the same as in non penalized

version with small changes. The E-step is exactly the same and the M-step is done by

splitting the problem into two maximize problems as (see Appendix B for details):

Qpen(Ψ
(l+1)|Ψ(l)) = E(Lc

pen(Ψ
(l+1))|y(t), x(t); Ψ(l))

= Q1,pen(a
(l+1)
k |Ψ(l)) + Q2,pen(b

(l+1)
k , σ

2 (l+1)
k |Ψ(l)). (23)

5 Simulation study of mixture of experts functional

models

The goal of this section if to evaluate, on the basis of simulated data, the proposed

model in the case of Function-on-Function regression model. The data simulation

process if derived from [24].

5.1 Data simulation process

100 data sets are simulated according to the FFMoE model with K = 3 components

and p = 1 covariate, on a time domain [0, 1]. The covariate is simulated with Xi(t) =

x⊤
i B(t), where xi = W.vi with W a 10 × 10−matrix of U(0, 1), vi a 10−vector of

N (0, 10) and B(t) is a 10-dimensional B-splines basis. The functional parameters are

β1,0(t) = −5t, β2,0(t) = 0 and β3,0(t) = 5t, β2,1(t) = −β1,1(t), β3,1(t) = 100(t−0.5)2−
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Scenarios number of sampling points: m number of observations: n
S1 20 300
S2 20 800
S3 100 300
S4 100 800

Table 1: The four scenarios of the simulation study
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Fig. 2: Discrete observations (left) and cubic B-splines smoothing (right) of the func-
tional covariate. Color depends on the component membership.

10 and

β1,1(t) =





−50(t− 0.5)2 + 2 if 0 ≤ t < 0.3

0 if 0.3 ≤ t < 0.7

50(t− 0.5)2 − 2 if 0.7 ≤ t < 1

The functional parameters of the gated network are α1,0 = α2,0 = −10, α3,0 = 0,

α1,1(t) = 80(t − 0.5)2 − 8, α2,1(t) = −α1,1(t) and α3,1(t) = 0. Finally, the residuals

are simulated with εi(t) ∼ N (0, 4).

The number n of observations and the number m of sampling points are given in

Table 1, defining thus four scenarios S1, S2, S3, S4.

Figure 2 plots the discrete covariate observations (left panel) and their correspond-

ing B-splines smoothing (right panel) for Scenario S3. Figure 3 displays the discrete
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Fig. 3: Discrete observations of the functional output (left) and proportions of obser-
vations of each component on the mixture (right).

time sampled observations of the response Y (t) (left) for Scenario S3, and the propor-

tions of observations of each component on the mixture (right) for the four scenarios.

5.2 Assessment criteria of goodness of fit

The assessment of the proposed FFMoE model is performed using two specific indi-

cators: first the estimation quality and second, the prediction quality. In addition, the

efficiency of BIC for selecting the number of components is also investigated.

The quality of parameter estimation is evaluated with the Mean Square Error

(MSE)

MSE(βℓ(.)) =

[
1

m

m∑

j=1

(βℓ(tj)− β̂ℓ(tj))
2

]1/2
. (24)

Knowing that the label-switching problem sometimes occurs, we will take care of re-

labelling the clusters using the estimated confusion matrix, a strategy which is relevant

when the true number of mixture components has been guessed.
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The quality of prediction is assessed using the Mean Relative Prediction Error

(MRPE) on a generate test sample of length ntest = 2000 for each scenario:

MRPE =
1

m

m∑

j=1

(∑ntest

i=1 (Yi(tj)− Ŷi(tj))
2

∑ntest

i=1 Yi(tj)2

)
. (25)

Notice that this criterion can be highly irrelevant if the observation is associated with

the wrong expert. Subsequently, two additional criteria will be defined: MRPE.good,

computed only of the observations associated with the correct expert, and MRPE.bad

for those associated with a wrong expert.

5.3 Competitors

The competitors are the non-mixture penalized Function-on-Function regression

models PenFFR [11] and pffr [7].

The PenFFR estimation process uses basis expansion of functional covariates and

parameters to transform a functional model to multivariate. Estimation scheme is

achieved by maximising the penalised log-likelihood using a ridge-type penalty on

the second derivatives. Cubic B-splines basis functions were employed for both for

functional covariates and the functional parameters. The number of basis functions

was set to 10 for both the functional parameters and covariates.

The pffr estimation process uses observed values of functional covariates. An

approach that matches with densely or sparsely sampled functions. The functional

parameters is estimated using restricted maximum likelyhood (REML) in an associ-

ated mixed model. For the implementations of the method, we used default settings

of the pffr function available in the R package refund. We only set the number of

basis functions to 10 both for functional covariates and parameters.

Finally, for FFMoE and PenFFMoE, we also set the number of basis functions to

10 both for both for functional covariates and parameters.
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Fig. 4: Estimation of the regression coefficients for Scenario S3 with FFMoE. The red
curves are the actual parameters, the gray curves are the estimation.

5.4 Simulation results

Concerning the ability of BIC to select the right number of components, BIC selects

indeed the correct number K = 3 in 100% of the case for the four scenarios, and thus

for FFMoE and PenFFMoE.

5.4.1 Parameter estimation

The relevance of our model is reflected by the parameter estimation. Figure 4 for

FFMoE and Figure C1 for PenFFMoE in appendix show the estimated versus actual

parameters from Scenario S3. The estimation of the covariate effect is remarkably

accurate. This observation is also supported by the MSE values reported in boxplot

given in Figure 6 for PenFFMoE and Figure 5 for FFMoE in all scenarios.
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Fig. 5: Boxplot of MSE between actual and estimated parameters for FFMoE. Func-
tional intercept β0(t) (left) and functional effect β1(t) of X(t) (right) in each of the 3
components mixture for our 4 simulated scenarios.
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Fig. 6: Boxplot of MSE between actual and estimated parameters for PenFFMoE.
Functional intercept β0(t) (left) and functional effect β1(t) of X(t) (right) in each of
the 3 components mixture for our 4 simulated scenarios.

5.4.2 Prediction accuracy

In Table 2, we present the predictive accuracy through MRPE of the proposed method

(FFMoE and PenFFMoE) and of its competitors (PenFFR and pffr) on the test sam-

ple. The results are clearly better for FFMoE and PenFFMoE. Let’s remark that the
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Expert affectation
accuracy

MRPE.good MRPE.bad MRPE

S1

FFMoE 91.3% (0.014) 0.006 (<10-4) 2.560 (0.30) 0.230 (0.07)

PenFFMoE 92.3% (0.018) 0.006 (<10-4) 2.568 (0.29) 0.205 (0.07)

PenFFR - - - 1.213 (0.07)

pffr - - - 1.266 (0.08)

S2

FFMoE 93.0% (0.005) 0.006 (<10-4) 2.500 (0.18) 0.180 (0.02)

PenFFMoE 93.3% (0.003) 0.006 (<10-4) 2.501 (0.18) 0.174 (0.01)

PenFFR - - - 1.192 (0.04)

pffr - - - 1.252 (0.05)

S3

FFMoE 92.0% (0.026) 0.016 (<10-3) 2.715 (0.49) 0.280 (0.38)

PenFFMoE 92.8% (0.040) 0.016 (<10-3) 2.730 (0.45) 0.219 (0.16)

PenFFR - - - 1.227 (0.07)

pffr - - - 1.290 (0.09)

S4

FFMoE 93.9% (0.004) 0.015 (<10-4) 2.628 (0.21) 0.174 (0.02)

PenFFMoE 94.3% (0.003) 0.016 (<10-4) 2.614 (0.20) 0.165 (0.01)

PenFFR - - - 1.237 (0.05)

pffr - - - 1.314 (0.06)

Table 2: Expert affectation accuracy and average (standard deviation) of MRPE on a test
sample.

difference between MRPE.good and MRPE.bad show that it is important to correctly

affect the observations to the correct expert.

Finally, Figure 7 gives the prediction for four randomly chosen observations com-

pared to actual values. Figure (7a) and Figure (7b) correspond to situations where

the observations are assigned to the correct clusters; Figure (7c) corresponds to a case

where the data is assigned to the correct clusters by the penalized method but not

for the non penalized method and Figure (7d) corresponds to cases where the data is

assigned to a wrong cluster, for both methods.

6 Application to real-world data

In this section, we perform our proposed methodology FFMoE and PenFFMoE on

two real-world data sets: Canadian Weather (CW, available in the R package [42])

and Cycling (available in the R package [43]).
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Fig. 7: observed data vs Fitted response functions for four chosen individuals on the
test sample. Red and green lines match to FFMoE and PenFFMoE resp.; gold and
violet lines are the prediction pffr and PenFFR resp.; the actual data isthe blue dots.

In each of these data sets, the prediction accuracy of FFMoE and PenFFMoE

is compared with the competitors PenFFR [11] and pffr [7]. Let us remark that

PenFFR and pffr consider a single model and not a mixture as compared with FFMoE

and PenFFMoE. Comparison is done by the leave-one-out cross-validation integrated

square error (ISE):

ISEi =

∫ T

0

(Yi(t)− Ŷ
(-i)
i (t))2 dt ,

where Ŷ
(-i)
i (t) is the prediction of the ith observation given by the model trained on a

dataset of all the observations without the ith one. Computationally, this criterion is
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Fig. 8: 35 daily mean raw (a) and processed (b) temperature measurement curves.

approximated by the L2-norm between the actual and prediction values on a grid of

values t is used as a surrogate. It is given by:

ÎSEi =

m∑

j=1

(Yi(tj)− Ŷ
(-i)
i (tj))

2. (26)

6.1 Canadian Weather data

The Canadian Weather data set consists of m = 365 daily temperature measurements

(average over the year 1961 to 1994) at n = 35 weather stations in Canada, and

their corresponding daily precipitation (in log scale). Our goal is to predict the (log)

daily precipitations functions Yi(t) using its corresponding temperatures Xi(t), for

t ∈ [0, 365].

Figure 8 displays the raw temperatures and their cubic B-splines smoothing

with LX = 100 basis functions and equispaced knots. Figure 9 shows the raw log

precipitations profiles to predict.

Following the target to obtain smooth estimates of parameter curves (or surfaces)

and accurate predictions, we must correctly choose the number of basis functions

of functional parameters without forgetting that the number of parameters of the
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Fig. 9: raw log precipitations profiles of the 35 Canadian weather stations.

simple model is nearly multiplied by the number of components to get the number of

parameters of MoE models. So we set Lβ the number of basis functions to 8 both for

FFMoE and PenFFMoE. And for the non-mixture models (PenFFR and pffr), we set

Lβ to 40. The penalty parameters λ0 and λ1 for the intercept and temperature effect

are selected using cross-validation on a predefined grid of values (3 equispaced values

between 0 and 0.5). Model selection is made using the BIC criterion for each LOO

model with the number of expert components K in the set {1, 2, 3, 4, 5}. We observe in

Table 3 that both for FFMoE and the PenFFMoE, the number of experts component

the most often selected is K = 4. The same situation is observed between the two

methods due to the fact that the cross-validation procedure leads to selecting mostly

a null value of λ.

Table 4 shows the average value of ÎSEi, the standard deviation and the median

over the n = 35 weather stations. It is important to recall that the statistics are

computed over LOO cross-validation, so on different model estimations (including the
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Number of components 1 2 3 4 5

FFMoE 0% 0% 20.00% 51.43% 28.57%

PenFFMoE 0% 0% 11.43% 65.71% 22.86%

Table 3: Proportion of number of experts per model obtained
by BIC selection.

Methods average ÎSE sd ÎSE median ÎSE
PenFFMoE 29.91 21.07 22.83
FFMoE 30.00 30.37 21.17
PenFFR 36.40 40.42 21.04

pffr 89.51 52.06 71.22

Table 4: Average, standard deviation and
median of ÎSEi for the Canadian Weather data
set. The best result is in boldface.

choice of K). We note a little enhancement in the predictive quality of the mixture

models (PenFFMoE, FFMoE) compared to the models without mixture (PenFFR,

pffr), and also a smaller inter-individual variance.

Another advantage of mixture models is the interpretation of the mixture compo-

nent belonging. For this, new estimations of PenFFMoE and FFMoE are performed

on the whole data set. The BIC criterion selects K = 3 components for FFMoE and

K = 4 for PenFFMoE. Figure 10 shows the regression coefficient β̂k(t) and gated net-

work parameters α̂k(t) for the PenFFMoE version. Note that for the gated network

parameters, we only have K − 1 curves due to the identifiability condition, which

imposes that α1(t) = 0. We also observed that PenFFMoE parameters are slightly

smoother than for FFMoE parameters (see Appendix D). This led to a better high-

lighting of all components of the impact of temperatures on precipitations at different

times of the year.

Figure 11a plots the geographical positions of the stations. We note a high cor-

relation with the four climate zones of Canada, which is confirmed by the confusion

matrices given in Table (11b). Finally, Figure 12 gives predictions for two randomly

chosen weather stations (Churchill and Edmonton) and are compared with the actual

precipitation.
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Fig. 13: Raw and functional expansion curves of speed (a,d), heart rate (b,e) and
slope (c,f) for 100 cyclists.

6.2 Cycling Data

The Cycling data set, initially studied in [44], contains the measurements of several

parameters during 216 cycling sessions of 30 minutes. The parameters are the power

developed by the cyclist (in watts), its heart rate (in beats per minute), the pedalling

cadence (in rotation per minute), the speed (in km/h), the slope (in percentage),

the outdoor temperature (in Celsius degree) the altitude (in meters). The sampling

rate is one measure per second. Our goal in this study is to predict the developed

power according to the three parameters known to have an impact [44]: speed (KPH),

heart rate (HR) and slope (SLOPE). Due to the high variability of these parameters

during a period of 30 minutes, we restrict our analysis to a small portion of the curve,

corresponding to the 20th-minute (chosen arbitrarily).

Figure 13 shows the functional expansion in cubic B-splines with LX = 50 basis

functions and equispaced knots for the three covariates. Figure 14a plots the developed

power. Due to its dispersion, a logarithmic transformation is applied (Figure 14b).

We evaluate on this data set FFMoE, PenFFMoE, PenFFR and pffr. Predictive

performances are evaluated through the ISE. The data set is split into train and

test subsets with proportions 80% and 20%. The number of components for FFMoE,

PenFFMoE is made using BIC with K in the set {1, 2, . . . , 15}. The number of basis

functions of both expert parameters Lβ and gated parameters Lα are set to 10. For the
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Fig. 14: Power developed by 100 cyclists and the corresponding logarithmic transfor-
mation.

non mixture models PenFFR and pffr, the number of basis functions for parameters

are set to 15.

We obtained K = 4 for FFMoE and K = 3 for PenFFMoE, with a better BIC for

FFMoE. Figure 15 shows the gated and expert parameters for PenFFMoE, which

allows interesting interpretation. For instance, for the green cluster, the effect of the

three features is almost constant, which means that the cyclist has a regular effort,

with regular speed, heart rate and slope. On the contrary, for the blue cluster, the

effect of KPH goes from positive to negative, whereas the effect of HR remains positive:

probably that this session corresponds to an end of a climb: during the climb, the

cyclist goes slowly whereas developing a high power and high HR, and then, after the

summit of the climb, keeping a high power allows him to go fastly with a decreasing

HR. Figure E3 in Appendix E shows the same results for FFMoE method.

Table 5 presents the average and standard deviation of ISE (over the test set)

for the different models. If we consider the ISE averaged over the individuals of the

test set, the best results are obtained with pffr. But looking at the median ISE, we

conclude that most individuals are better predicted with the PenFFMoE method. This

is in particular confirmed by Figure 16, which plots the predictions on two randomly
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Fig. 15: Functional gated (first row) and expert (second row) parameters obtained
by PenFFMoE on Cycling data. corresponding colors matched for the same cluster.

Methods BIC Nb clusters Average ISE sd ÎSE median ÎSE

PenFFMoE 26729.9 3 160.72 225.64 34.63

FFMoE 26275.2 4 155.20 202.94 47.66

PenFFR / 155.07 181.85 47.31

pffr / 154.78 181.61 46.82

Table 5: The average and standard deviation of ÎSE for Cycling data
set. The best result is in boldface.

chosen cycling sessions, on which we can see that the prediction with FFMoE and

PenFFMoE better follow the general shape of the curves.

7 Conclusion

Functional data analysis has now reached a high level of maturity and its manifold

applications span a wide range of scientific fields. In the present paper we devel-

oped a novel estimation scheme for MoE in the framework where both covariates

and response are of functional type using the concurrent linear model with Gaus-

sian error. Preliminary investigations based on plain maximum likelihood estimation,

and using functional expansions in standard bases, lead us to the observation of a
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Fig. 16: Prediction on two randomly chosen cycling sessions. Blue points are the
actual data, and red and green lines are the predictions for FFMoE and PenFFMoE
resp. The violet and gold lines are the predictions given by PenFFR and pffr resp.

lack of smoothness of the estimators in various experiments with real-world datasets.

In order to circumvent these issues, we introduced a ridge-type penalisation on the

second derivatives and obtained a more stable estimator, still capable of handling sub-

stantial variability of first-order behaviours. Numerical experiments showed that the

FFMoE (also PenFFMoE) has satisfactory behaviour in terms of parameter estimation

(interpretability) and predictive accuracy on simulated datasets.

We then illustrate this performance on two real-world datasets. On Canadian

weather dataset, PenFFMoE and FFMoE cluster the weather stations in K = 4 clus-

ters that match the various climate zones. The predictive accuracy shows a definite

advantage of mixture of experts over non-mixture based models. On Cycling data,

the predictive quality is certainly not as good as non-mixture models, but it gives

predictions that detect regime changes more easily.

Extensions of this work are potentially manifold. One possible avenue is to explore

the more general exponential family on the functional response side. A second possible

direction would be to investigate possible solutions for producing relevant prediction

bounds, using for instance conformal prediction [45] which has attracted great interest

lately in the machine learning community.
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Appendix A EM for the FFMoE

Given the complete data log-likelihood and the parameters at current iteration l, we

define the Q function for the EM algorithm defined by:

Q(Ψ(l+1) |Ψ(l)) = E(Lc(Ψ
(l+1); {yi(tj), xi(tj)}i,j) | {yi(tj), xi(tj)}i,j ; Ψ(l))

Now we are going to describe the EM algorithm for maximizing (15):

• E-step:

At this step, we compute the conditional expectation of the log-likelihood given the

observed data and the current parameter (at iteration l) estimation Ψ(l). This is

equivalent to update the posterior probabilities p
(l)
ik that the curves xi(t) belongs to

the kth component of the mixture under the current model:

p
(l)
ik = E(zik | {yi(tj), xi(tj)}i,j ; Ψ

(l)) = P(zik = 1 | {yi(tj), xi(tj)}i,j ; Ψ
(l)).

Using Bayes’ theorem, the conditional probability p
(l)
ik can be expressed as:

p
(l)
ik =

P(zik = 1)P({yi(tj), xi(tj)}i,j ; Ψ(l) | zik = 1)

P({yi(tj), xi(tj)}i,j ; Ψ(l))

=
P(zik = 1)P({yi(tj), xi(tj)}i,j ; Ψ(l) | zik = 1)

∑K
u=1 P(ziu = 1)P({yi(tj), xi(tj)}i,j ; Ψ(l) | ziu = 1)

p
(l)
ik =

πk(xi(t), α
(l)
k (t)) Φm(yi ; b

⊤(l)
k Ri,V

(l)
k,i)

K∑

u=1

πu(xi(t), α
(l)
u (t)) Φm(yi ; b

⊤(l)
u Ri,V

(l)
u,i)

(A1)

• M-step:

Given the previous posterior probability and the observed data, this step updates

the current parameters Ψ(l) by maximizing the complete (data) log-likelihood, that
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is Ψ(l+1):

Q(Ψ(l+1) |Ψ(l)) = E(Lc(Ψ
(l+1); {yi(tj), xi(tj)}i,j) | {yi(tj), xi(tj)}i,j ; Ψ(l))

= E(
n∑

i=1

K∑

k=1

zik log(
exp(a

(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

.
1√

(2π)m|V
(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri)))
∣∣∣∣ {yi(tj), xi(tj)}i,j ; Ψ(l))

=

n∑

i=1

K∑

k=1

E(zik | {yi(tj), xi(tj)}i,j ; Ψ
(l)) log(

exp(a
(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

1√
(2π)m|V

(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri))))

=
n∑

i=1

K∑

k=1

p
(l)
ik log(

exp(a
(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

)

︸ ︷︷ ︸
Q1(a

(l+1)
k

|Ψ(l))

+

n∑

i=1

K∑

k=1

p
(l)
ik log(

1√
(2π)m|V

(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri)))

︸ ︷︷ ︸
Q2(b

(l+1)
k

, V
(l+1)
k

|Ψ(l))

Q(Ψ(l+1) |Ψ(l)) = Q1(a
(l+1)
k |Ψ(l)) + Q2(b

(l+1)
k , V

(l+1)
k |Ψ(l)).

The global maximization problem is split onto two separate maximization problems:

the updating of gated network parameters via the maximization of the function

Q1(a
(l+1)
k |Ψ(l)) and the updating of experts parameters via the maximization of

the function Q2(b
(l+1)
k , σ

2 (l+1)
k |Ψ(l)). It obsvious to recognise in each of these two

expressions the likelihood of the multinomial logistic model Q1(.) and the linear
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gaussian model Q2(.) for which we know how to calculate (at least numerically

through Newton-Raphson method for e.g) MLEs.

Appendix B EM for PenFFMoE

• E-step:

Same as in non penalize case

• M-step:

Given the previous posterior probability and the observed data, this step updates the

current parameters Ψ(l) by maximizing the penalized complete (data) log-likelihood,

that is Ψ(l+1). We define:

Qpen(Ψ
(l+1) |Ψ(l)) = E(Lc

pen(Ψ
(l+1); {yi(tj), xi(tj)}i,j)

∣∣∣ {yi(tj), xi(tj)}i,j ; Ψ(l))

= E(

n∑

i=1

K∑

k=1

zik log(
exp(a

(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

.
1√

(2π)m|V
(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri))) −

K∑

k=1

b
(l+1)⊤

k (λkP) b
(l+1)
k −

K−1∑

k=1

a
(l+1)⊤

k (γkQ) a
(l+1)
k

∣∣∣∣ {yi(tj), xi(tj)}i,j ; Ψ(l))

=

n∑

i=1

K∑

k=1

E(zik | {yi(tj), xi(tj)}i,j ; Ψ
(l)) log(

exp(a
(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

1√
(2π)m|V

(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri))))

−
K∑

k=1

b
(l+1)⊤

k (λkP) b
(l+1)
k −

K−1∑

k=1

a
(l+1)⊤

k (γkQ) a
(l+1)
k
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=
n∑

i=1

K∑

k=1

p
(l)
ik log(

exp(a
(l+1)⊤

k ri)

1 +
∑K−1

u=1 exp(a
(l+1)⊤
u ri)

)

︸ ︷︷ ︸
Q1(a

(l+1)
k

|Ψ(l))

−
K−1∑

k=1

a
(l+1)⊤

k (γkQ) a
(l+1)
k −

K∑

k=1

b
(l+1)⊤

k (λkP) b
(l+1)
k +

n∑

i=1

K∑

k=1

p
(l)
ik log(

1√
(2π)m|V

(l+1)
k,i |

exp(−
1

2
(yi − b

(l+1)⊤

k Ri)
⊤V-1(l+1)

k,i (yi − b
(l+1)⊤

k Ri)))

︸ ︷︷ ︸
Q2(b

(l+1)
k

, V
(l+1)
k

|Ψ(l))

Q(Ψ(l+1) |Ψ(l)) = Q1(a
(l+1)
k |Ψ(l))−

K−1∑

k=1

a
(l+1)⊤

k (γkQ) a
(l+1)
k

︸ ︷︷ ︸
+

Q2(b
(l+1)
k , V

(l+1)
k |Ψ(l))−

K∑

k=1

b
(l+1)⊤

k (λkP) b
(l+1)
k

︸ ︷︷ ︸
= Q1, pen(a

(l+1)
k |Ψ(l)) + Q2, pen(b

(l+1)
k , σ

2 (l+1)
k |Ψ(l)).
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Appendix C Parameters in simulation study
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Fig. C1: Estimation of the regression coefficients for Scenario S3 with PenFFMoE.
The red curves are the actual parameters, the cyan curves are the estimation.

Appendix D Estimators for Canadian weather data
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Fig. D2: Functional coefficients and gated network parameters obtained by FFMoE
on Canadian Weather data. Color depends on group membership.
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Appendix E Estimators for Cycling data
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Fig. E3: Functional gated (first row) and expert (second row) parameters obtained
by FFMoE on Cycling data. corresponding colors matched for the same cluster.
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