Aguilar-Rodea, P., Zúñiga, G., Rodríguez-Espino, B. A., Cervantes, A. L. O., Arroyo, A. E. G., Moreno-Espinosa, S., … Velázquez-Guadarrama, N. (2017). Identification of extensive drug resistant Pseudomonas aeruginosa strains: New clone ST1725 and high-risk clone ST233. PLoS ONE, 12(3), 2007–2013. https://doi.org/10.1371/journal.pone.0172882
Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12(1), 402. https://doi.org/10.1186/1471-2164-12-402
Borgianni, L., Prandi, S., Salden, L., Santella, G., Hanson, N. D., Rossolini, G. M., & Docquier, J.-D. (2011). Genetic Context and Biochemical Characterization of the IMP-18 Metallo-β-Lactamase Identified in a Pseudomonas aeruginosa Isolate from the United States. Antimicrobial Agents and Chemotherapy, 55(1), 140–145. https://doi.org/10.1128/AAC.00858-10
Brazas, M. D., Brazas, M. D., Hancock, R. E. W., & Hancock, R. E. W. (2005). Ciprofloxacin Induction of a Susceptibility Determinant in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49(8), 3222–3227. https://doi.org/10.1128/AAC.49.8.3222
Cabot, G., Zamorano, L., Moyà, B., Juan, C., Navas, A., Blázquez, J., & Oliver, A. (2016). Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrobial Agents and Chemotherapy, 60(3), 1767–1778. https://doi.org/10.1128/AAC.02676-15.Address
Castanheira, M., Deshpande, L. M., Costello, A., Davies, T. A., & Jones, R. N. (2014). Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. Journal of Antimicrobial Chemotherapy, 69(7), 1804–1814. https://doi.org/10.1093/jac/dku048
Chowdhury, P. R., Scott, M., Worden, P., Huntington, P., Hudson, B., Karagiannis, T., … Djordjevic, S. P. (2016). Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biology, 6(3). https://doi.org/10.1098/rsob.150175
Farajzadeh Sheikh, A., Shahin, M., Shokoohizadeh, L., Halaji, M., Shahcheraghi, F., & Ghanbari, F. (2019). Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iranian Journal of Basic Medical Sciences, 22(1), 38–42. https://doi.org/10.22038/ijbms.2018.29264.7096
Fernández, M., Corral-Lugo, A., & Krell, T. (2018). The plant compound rosmarinic acid induces a broad quorum-sensing response in Pseudomonas aeruginosa PAO1. Environmental Microbiology, 20(12), 4230–4244. https://doi.org/10.1111/1462-2920.14301
Freschi, L., Vincent, A. T., Jeukens, J., Emond-Rheault, J. G., Kukavica-Ibrulj, I., Dupont, M. J., … Levesque, R. C. (2019). The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biology and Evolution, 11(1), 109–120. https://doi.org/10.1093/gbe/evy259
Garza-Ramos, U., Tinoco, P., Silva-Sanchez, J., Morfin-Otero, R., Rodriguez-Noriega, E., Leon-Garnica, G., … Jones, R. N. (2008). Metallo-β-lactamase IMP-18 is located in a class 1 integron (In96) in a clinical isolate of Pseudomonas aeruginosa from Mexico. International Journal of Antimicrobial Agents, 31(1), 78–80. https://doi.org/10.1016/j.ijantimicag.2007.08.003
Ghaly, T. M., Chow, L., Asher, A. J., Waldron, L. S., & Gillings, M. R. (2017). Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE, 12(6), 1–11. https://doi.org/10.1371/journal.pone.0179169
Gillings, M. R. (2017). Class 1 integrons as invasive species. Current Opinion in Microbiology, 38, 10–15. https://doi.org/10.1016/j.mib.2017.03.002
Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.-G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6), 1269–1279. https://doi.org/10.1038/ismej.2014.226
Gomila, M., Peña, A., Mulet, M., Lalucat, J., & García-Valdés, E. (2015). Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology, 6(MAR), 1–13. https://doi.org/10.3389/fmicb.2015.00214
Hanson, N, Hossain, A., Buck, L., Moland, E., & Thomson, K. (2004). IMP-18. Presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, 64. Washington, USA.
Hanson, Nancy., Hossain, A., Buck, L., Moland, E. S., & Thomson, K. S. (2006). First Occurrence of a Pseudomonas aeruginosa Isolate in the United States Producing an IMP Metallo-β-Lactamase, IMP-18. Antimicrobial Agents and Chemotherapy, 50(6), 2272. https://doi.org/10.1128/AAC.01440-05
He, S., Chandler, M., Varani, A. M., Hickman, A. B., Dekker, J. P., & Dyda, F. (2016). Mechanisms of evolution in high-consequence drug resistance plasmids. MBio, 7(6), 1987–2003. https://doi.org/10.1128/mBio.01987-16
Hilker, R., Munder, A., Klockgether, J., Losada, P. M., Chouvarine, P., Cramer, N., … Tümmler, B. (2015). Interclonal gradient of virulence in the P seudomonas aeruginosa pangenome from disease and environment. Environmental Microbiology, 17(1), 29–46. https://doi.org/10.1111/1462-2920.12606
Hocquet, D., Llanes, C., Thouverez, M., Kulasekara, H. D., Bertrand, X., Plésiat, P., … Miller, S. I. (2012). Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathogens, 8(6). https://doi.org/10.1371/journal.ppat.1002778
Holmes, A., Dallman, T. J., Shabaan, S., Hanson, M., & Allison, L. (2018). Validation of whole-genome sequencing for identification and characterization of Shiga toxin-producing Escherichia coli to produce standardized data to enable data sharing. Journal of Clinical Microbiology, 56(3). https://doi.org/10.1128/JCM.01388-17
Hong, D. J., Bae, I. K., Jang, I. H., Jeong, S. H., Kang, H. K., & Lee, K. (2015). Epidemiology and characteristics of metallo-ß-lactamase-producing Pseudomonas aeruginosa. Infection and Chemotherapy, 47(2), 81–97. https://doi.org/10.3947/ic.2015.47.2.81
Jones-Dias, D., Manageiro, V., Ferreira, E., Barreiro, P., Vieira, L., Moura, I. B., & Caniça, M. (2016). Architecture of class 1, 2, and 3 integrons from gram negative bacteria recovered among fruits and vegetables. Frontiers in Microbiology, 7(SEP), 1–13. https://doi.org/10.3389/fmicb.2016.01400
Kim, S.-M., Kim, E.-C., & Choi, S.-Y. (2003). Typing by Pulsed Field Gel Electrophoresis and Detection of Metallo-β-lactamase Gene Against Acinetobacter baumannii from Clinical Specimens. Korean J Clin Lab Sci, 35(2), 90–98. Retrieved from http://www.kjcls.org/journal/view.html?spage=90&volume=35&number=2
Klockgether, J., Munder, A., Neugebauer, J., Davenport, C. F., Stanke, F., Larbig, K. D., … Tümmler, B. (2010). Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. Journal of Bacteriology, 192(4), 1113–1121. https://doi.org/10.1128/JB.01515-09
Kluytmans–van den Bergh, M. F., Huizinga, P., Bonten, M. J., Bos, M., De Bruyne, K., Friedrich, A. W., … Kluytmans, J. A. (2016). Presence of mcr-1 -positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Eurosurveillance, 21(9), 30149. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30149
Larsen, M. V, Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., … Lund, O. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. Journal of Clinical Microbiology, 50(4), 1355–1361. https://doi.org/10.1128/JCM.06094-11
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239
Liebert, C. A., Hall, R. M., & Summers, A. O. (1999). Transposon Tn21, Flagship of the Floating Genome. Microbiology and Molecular Biology Reviews, 63(3), 507–522. https://doi.org/10.1128/mmbr.63.3.507-522.1999
López-García, A., Rocha-Gracia, R. del C., Bello-López, E., Juárez-Zelocualtecalt, C., Sáenz, Y., Castañeda-Lucio, M., … Lozano-Zarain, P. (2018). Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infection and Drug Resistance, 11, 1523. https://doi.org/10.2147/IDR.S173455
Lu, P., Wang, Y., Zhang, Y., Hu, Y., Thompson, K. M., & Chen, S. (2016). RpoS-dependent sRNA RgsA regulates Fis and AcpP in Pseudomonas aeruginosa. Molecular Microbiology, 102(2), 244–259. https://doi.org/10.1111/mmi.13458
Martínez, T., Vazquez, G. J., Aquino, E. E., Goering, R. V, & Robledo, I. E. (2012). Two novel class I integron arrays containing IMP-18 metallo-β-lactamase gene in Pseudomonas aeruginosa clinical isolates from Puerto Rico. Antimicrobial Agents and Chemotherapy, 56(4), 2119–2121. https://doi.org/10.1128/AAC.05758-11
Mathee, K., Narasimhan, G., Valdes, C., Qiu, X., Matewish, J. M., Koehrsen, M., … Lory, S. (2008). Dynamics of Pseudomonas aeruginosa genome evolution. Proceedings of the National Academy of Sciences, 105(8), 3100–3105. https://doi.org/10.1073/PNAS.0711982105
Mendes, R. E., Kiyota, K. A., Monteiro, J., Castanheira, M., Andrade, S. S., Gales, A. C., … Tufik, S. (2007). Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. Journal of Clinical Microbiology, 45(2), 544–547. https://doi.org/10.1128/JCM.01728-06
Molina-Mora, J.-A., Campos-Sánchez, R., Rodríguez, C., Shi, L., & García, F. (2020). High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers. Scientific Reports, 10(1), 1392. https://doi.org/10.1038/s41598-020-58319-6
Molina-Mora, J. A., Chinchilla, D., Chavarría, M., Ulloa, A., Campos-Sanchez, R., Mora-Rodríguez, R. A., … García, F. (2020). Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach. Scientific Reports, 10, 1–23. https://doi.org/10.1038/s41598-020-70581-2
Molina-Mora, J., Montero-Manso, P., Batán, R. G., Sánchez, R. C., Fernández, J. V., & García, F. (2020). A first Pseudomonas aeruginosa perturbome: Identification of core genes related to multiple perturbations by a machine learning approach. BioRxiv, 2020.05.05.078477. https://doi.org/10.1101/2020.05.05.078477
Mosquera-Rendón, J., Rada-Bravo, A. M., Cárdenas-Brito, S., Corredor, M., Restrepo-Pineda, E., & Benítez-Páez, A. (2016). Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics, 17(1), 1–14. https://doi.org/10.1186/s12864-016-2364-4
Mulet, X., Cabot, G., Ocampo-Sosa, A. A., Dominguez, M. A., Zamorano, L., Juan, C., … Spanish Network for Research in Infectious Diseases (REIPI). (2013). Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones. Antimicrobial Agents and Chemotherapy, 57(11), 5527–5535. https://doi.org/10.1128/AAC.01481-13
Mulet, Xavier, Cabot, G., Ocampo-Sosa, A. A., Dominguez, M. A., Zamorano, L., Juan, C., … Oliver, A. (2013). Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrobial Agents and Chemotherapy, 57(11), 5527–5535. https://doi.org/10.1128/AAC.01481-13
Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates, 21–22, 41–59. https://doi.org/10.1016/j.drup.2015.08.002
Ozer, E. A., Allen, J. P., & Hauser, A. R. (2014). Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics, 15(1), 737. https://doi.org/10.1186/1471-2164-15-737
Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., … Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/bioinformatics/btv421
Peter, S., Bosio, M., Gross, C., Bezdan, D., Gutierrez, J., Oberhettinger, P., … Ossowski, S. (2019). Tracking of antibiotic resistance transfer and rapid plasmid evolution in a hospital setting by Nanopore sequencing. BioRxiv, 639609. https://doi.org/10.1101/639609
Petitjean, M., Martak, D., Silvant, A., Bertrand, X., Valot, B., & Hocquet, D. (2017). Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395. Microbial Genomics, 3(10), e000129. https://doi.org/10.1099/mgen.0.000129
Poirel, L., Lambert, T., Turkoglu, S., Ronco, E., Gaillard, J., & Nordmann, P. (2001). Characterization of Class 1 Integrons from Pseudomonas aeruginosa That Contain the blaVIM-2 Carbapenem-Hydrolyzing -Lactamase Gene and of Two Novel Aminoglycoside Resistance Gene Cassettes. Antimicrobial Agents and Chemotherapy, 45(2), 546–552. https://doi.org/10.1128/AAC.45.2.546-552.2001
Poulsen, B. E., Yang, R., Clatworthy, A. E., White, T., Osmulski, S. J., Li, L., … Hung, D. T. (2019). Defining the core essential genome of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 116(20), 10072–10080. https://doi.org/10.1073/pnas.1900570116
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033
Reinhart, A. A., Nguyen, A. T., Brewer, L. K., Bevere, J., Jones, J. W., Kane, M. A., … Oglesby-Sherrouse, A. G. (2017). The Pseudomonas aeruginosa PrrF Small Acute Murine Lung Infection. Infection and Immunity, 85(5), 1–15. https://doi.org/10.1128/IAI.00764-16
Reinhart, A. A., Powell, D. A., Nguyen, A. T., O’Neill, M., Djapgne, L., Wilks, A., … Oglesby-Sherrouse, A. G. (2015). The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa. Infection and Immunity, 83(3), 863–875. https://doi.org/10.1128/IAI.02707-14
Samuelsen, Ø., Toleman, M. A., Sundsfjord, A., Rydberg, J., Leegaard, T. M., Walder, M., … Giske, C. G. (2010). Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrobial Agents and Chemotherapy, 54(1), 346–352. https://doi.org/10.1128/AAC.00824-09
Sánchez-Martinez, G., Garza-Ramos, U. J., Reyna-Flores, F. L., Gaytán-Martínez, J., Lorenzo-Bautista, I. G., & Silva-Sanchez, J. (2010). In169, A New Class 1 Integron that Encoded blaIMP-18 in a Multidrug-Resistant Pseudomonas aeruginosa Isolate from Mexico. Archives of Medical Research, 41(4), 235–239. https://doi.org/10.1016/j.arcmed.2010.05.006
Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., & Vahaboglu, H. (2003). Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. Journal of Medical Microbiology, 52(5), 403–408. https://doi.org/10.1099/jmm.0.05132-0
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
Singh, T., Singh, P. K., Das, S., Wani, S., Jawed, A., & Dar, S. A. (2019). Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40279-1
Sullivan, M. J., Petty, N. K., & Beatson, S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics, 27(7), 1009. https://doi.org/10.1093/BIOINFORMATICS/BTR039
Szuplewska, M., Czarnecki, J., & Bartosik, D. (2014). Autonomous and non-autonomous Tn 3 -family transposons and their role in the evolution of mobile genetic elements . Mobile Genetic Elements, 4(6), 1–4. https://doi.org/10.1080/2159256x.2014.998537
Toval, F., Guzmán-Marte, A., Madriz, V., Somogyi, T., Rodríguez, C., & García, F. (2015). Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica. Journal of Medical Microbiology, 64(1), 37–43. https://doi.org/10.1099/jmm.0.081802-0
Turton, J. F., Wright, L., Underwood, A., Witney, A. A., Chan, Y. T., Al-Shahib, A., … Woodford, N. (2015). High-resolution analysis by whole-genome sequencing of an international lineage (Sequence Type 111) of pseudomonas aeruginosa associated with metallo-carbapenemases in the United Kingdom. Journal of Clinical Microbiology, 53(8), 2622–2631. https://doi.org/10.1128/JCM.00505-15
Valot, B., Guyeux, C., Rolland, J. Y., Mazouzi, K., Bertrand, X., & Hocquet, D. (2015). What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLOS ONE, 10(5), e0126468. https://doi.org/10.1371/journal.pone.0126468
van der Zee, A., Kraak, W. B., Burggraaf, A., Goessens, W. H. F., Pirovano, W., Ossewaarde, J. M., & Tommassen, J. (2018). Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa. Frontiers in Microbiology, 9(SEP), 1–11. https://doi.org/10.3389/fmicb.2018.02057
Walsh, T. R. (2005). The emergence and implications of metallo-β-lactamases in Gram-negative bacteria. Clinical Microbiology and Infection, Supplement, 11(6), 2–9. https://doi.org/10.1111/j.1469-0691.2005.01264.x
Weiser, R., Green, A. E., Bull, M. J., Cunningham-Oakes, E., Jolley, K. A., Maiden, M. C. J., … Mahenthiralingam, E. (2019). Not all pseudomonas aeruginosa are equal: Strains from industrial sources possess uniquely large multireplicon genomes. Microbial Genomics, 5(7). https://doi.org/10.1099/mgen.0.000276
Wendt, M., & Heo, G.-J. (2016). Multilocus sequence typing analysis of Pseudomonas aeruginosa isolated from pet Chinese stripe-necked turtles ( Ocadia sinensis ) . Laboratory Animal Research, 32(4), 208. https://doi.org/10.5625/lar.2016.32.4.208
Witney, A. A., Gould, K. A., Pope, C. F., Bolt, F., Stoker, N. G., Cubbon, M. D., … Hinds, J. (2014). Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clinical Microbiology and Infection, 20(10), O609–O618. https://doi.org/10.1111/1469-0691.12528
Woodford, N., Turton, J. F., & Livermore, D. M. (2011). Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiology Reviews, 35(5), 736–755. https://doi.org/10.1111/j.1574-6976.2011.00268.x
World Health Organization. (2017). Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178-eng.pdf?sequence=1&ua=1
Zhao, W. H., & Hu, Z. Q. (2011). IMP-type metallo-β-lactamases in Gram-negative bacilli: Distribution, phylogeny, and association with integrons. Critical Reviews in Microbiology, 37(3), 214–226. https://doi.org/10.3109/1040841X.2011.559944