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Abstract
Background: Adenocarcinoma is characterized by high in�ltration and negative growth, which is easy to
invade the walls of blood vessels and lymphatic vessels. The function of the stem cell population is to
control and maintain cell regeneration. Therefore, it is necessary to study the prognostic value of stem
cells in LUAD.

Methods: Stem cells signature construction relies on the univariate, least absolute shrinkage operator
(LASSO) and multivariate Cox regression analysis. Risk plot, Kaplan-Meier analysis and the area under
ROC (AUC) are veri�ed the accuracy of the signature in GEO (GSE20319 and GSE42127) and TCGA
cohort respectively. What's more, to further improve persuasiveness, we conducted nomogram, drug
e�cacy analysis, immune in�ltration analysis, and compared the relationship between mRNA stem cell
index (mRNAsi) and signature.

Result: The patients were divided into two groups via the cutoff of risk score; it can be seen that the low-
risk group has better survival. The robust signature that contains ten stem cells is independent prognostic
factors for LUAD (C6orf62, DNER, NELL2, LATS2, LGR5, PTPRO, LRIG1, PABPC1, NT5E and SET). The
nomogram showed that 1-year (0.805), 3-year (0.773), and 5-year (0.765) survival rates of the signature
we constructed were all greater than 0.7, indicating that our signature was very feasible.

Conclusion: The signature can be used as a reliable and convenient tool for lung adenocarcinoma.

1. Background
Lung adenocarcinoma refers to a malignant tumor originating from lung epithelial tissue, which is a type
of non-small cell lung cancer. In recent years, the incidence rate has gradually increased. In addition, due
to the limitations of diagnosis and treatment, the mortality rate of LUAD ranks �rst in malignant tumors
[1]. Tumor stem cells refer to cells that have self-renewal ability and can produce heterogeneous tumor
cells, which play a signi�cant role in tumor survival, proliferation, metastasis and recurrence [2, 3]. The
ability of tumor stem cells to move and migrate makes tumor cells migration possible, at the same time,
cancer stem cells can stay dormant for a long time and have a variety of drug-resistant molecules, but are
not sensitive to external physical and chemical factors that kill tumor cells, which leads to the result that
tumors often relapse after conventional cancer treatment eliminates most common tumor cells [4, 5].

The development of LUAD treatment plan and survival period are affected by many factors, but the TNM
stage of tissue cells may be one of signi�cant factor in determining treatment plan and estimating
prognosis. TNM stage is based on anatomy and is a description of the cumulative range of tumors.
However, it should be emphasized that the TNM stage also has shortcomings including the uneven
source of case data and the relatively complicated stage of N. With the gradual development of diagnosis
and treatment technology, we found that molecular markers have a greater prognosis for patients.
Studying the genetic functions and pathways of LUAD could contribute to establish prognostic markers
and therapeutic targets, which could accurately and comprehensively predict the prognosis of LUAD [6].
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Therefore, the ideal of using cancer stem cell therapy provides a new direction for the diagnosis and
treatment of LUAD and the regulatory mechanism of stem cells at the molecule level requires further
digging.

In this research, we constructed a stem cell signature of 10 genes as a prognostic target for lung
adenocarcinoma. Meanwhile, we analyzed the types of immune cells in LUAD to understand the
connection between stem cells and the immune microenvironment.

2. Materials And Methods

2.1 Data Acquisition and Selection
The RNA-sequencing and clinical traits information of LUAD were obtained from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov) and Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.gov/geo/) that were served as training cohort and validation cohort, respectively.
After classi�cation and regularization, there were 54 normal samples and 497 tumor samples. At the
same time, when merging clinical information, missing and incomplete samples were deleted. Besides,
166 tumor stem cells were downloaded from the cancerSEA database [7] to prepare for further signature
construction. GSE30219 [8] was conducted by GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array).
GSE42127 [9] was conducted by GPL6884 (Illumina HumanWG-6 v3.0 expression bead chip).

2.2 Signature Construction and Veri�cation
It was worth emphasizing that the R package was an indispensable key tool for us to construct and verify
a signature next. The signature was established by a two-step method, the �rst step was LASSO COX
regression, and the second step was multivariate COX regression. Patients were divided into low-risk and
high-risk groups based on the cutoff of risk score, which was calculated by formula as follows: HR 1 × 
gene 1 expression + HR 2 × gene 2 expression … + HR n × gene n expression [10]. In the TCGA and GEO
cohorts, the risk curve was drawn to describe further the relationship between the patients' risk value and
survival states and protein expression, the Kaplan-Meier curve and ROC curve were used to verify the
reliability of the signature [11]. What's more, to further clarify the relationship and comparison between
clinical factors and signature, subgroup analysis and nomogram analysis were conducted.

2.3 Gene Set Enrichment Analysis
GSEA is a method used to evaluate the distribution trend of genes in the gene list sorted by phenotype
correlation and to understand gene positioning, function and biological signi�cance. The molecular tag
database is constructed, which contains multiple functional gene sets. By analyzing the gene expression
data, it is obtained whether the expression is signi�cantly enriched in a certain function. We presented the
GO term and the KEGG pathway of the stem cell signature to analyze further it's possible biological
functions [12]. The number of permutations was set to 1000, and our selection criteria are closely related
to a nominal P-value (P < 0.05).
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2.4 Therapeutic E�cacy and Signature
Some patients from TCGA recorded the results of the evaluation of the e�cacy after the �rst treatment of
the radiotherapy and chemotherapy, which also provided a direction for us to verify the reliability of the
signature in term of e�cacy. According to Response Evaluation Criteria in Solid Tumors (RECIST) and risk
score, this part of patients was classi�ed to compare whether there were differences between different
therapeutic effect [13].

2.5 mRNAsi and Signature
In recent years, literature has proposed the concept of stemness indices (mRNAsi), which was calculated
by a predictive model with an OCLR algorithm based on pluripotent stem cell samples from the
Progenitor Cell Biology Consortium dataset (https://bioinformaticfmrp.github.io/PanCanStem_Web/).
Speci�cally, the Spearman correlation algorithm (RNA expression data) contributed to the stem index
model to score LUAD samples in the TCGA dataset. The stem indices were then mapped to the [0, 1]
range by using a linear transformation that subtracted the minimum and divide by the maximum. The
index is closer to 1, which indicated that the cell differentiation was worse, and the characteristic of stem
cells was stronger. We merged mRNAsi into our signature to compare whether there was a difference
between low- and high- risk groups [14].

2.6 Immune In�ltration Analysis
TIMER database, providing six types of immune cell in�ltration and using RNA-Seq expression pro�ling
data to detect immune cell in�ltration in tumor tissue, was used to appraise potential links between risk
grouping and tumor-in�ltrating immune cells (TIICs). Deconvolution is a newly released statistical
method that allows TIMER to infer the incidence of TICC from gene expression pro�les. CIBERSORT
(http://cistrome.shinyappes), a deconvolution algorithm, can estimate the cell composition of complex
tissues based on standardized gene expression data, and the method can be used to energize speci�c
cell types. With CIBERSORT, we can visualize the composition of immune cells in tumor samples of LUAD,
and standard annotation �les established gene expression datasets. P-value (P < 0.05) was a signi�cant
criterion to determine the type of immune cells affected by grouping [15].

3. Result

3.1 Construction of Signature
All cancer stem cells were downloaded from CancerSEA
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp), which involved 14 functional states of 41900 single
cancer cells from 25 cancer types. Twenty-eight CSCs associated with OS (P < 0.05) was measured as
predictive CSCs for LASSO analysis (Fig. 1A-B). Through multivariate COX regression, we select ten CSCs
to construct a robust signature for LUAD (Table 1). The calculation formula of the risk score is as follows:
risk score = 0.578 × expression C6orf62 + 1.24 × expression DNER + 0.737 × expression NELL2 + 1.404 × 
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expression LATS2 + 1.202 × expression LGR5 + 0.676 × expression PTPRO + 0.718 × expression LRIG1 + 
1.306 × expression PABPC1 + 1.126 × expression NT5E + 1.458 × expression SET. According to the cutoff
of risk scores, patients in TCGA were divided into low-risk group and high-risk group [16]. The area under
the ROC curve for 1, 3, 5-year were 0.771, 0.734, 0.687 (Fig. 1C). The survival analysis suggested that the
overall survival rate of the low-risk group was higher than that of the high-risk group (P < 0.001). The 5-
year survival rate of the low-risk group was close to 50%, while the 5-year survival rate of the high-risk
group was only 20% (Fig. 1D). The box plot displayed the stem cell contained in the signature in the
normal tissues and tumor tissues. (Fig. 1E). The risk curve can clearly show the relationship between
survival status, survival time and expression of CSCs and risk score (Fig. 1F) [17].

Table 1
Independent factors in the signature.

id coef HR HR.95L HR.95H pvalue

C6orf62 -0.73221 0.480847 0.312891 0.738959 0.000838

DNER 0.195561 1.215993 1.073065 1.377959 0.002174

NELL2 -0.34583 0.707635 0.533484 0.938635 0.016425

LATS2 0.38125 1.464113 1.100657 1.947588 0.008826

LGR5 0.251941 1.28652 1.076618 1.537345 0.005566

PTPRO -0.44697 0.639564 0.430824 0.94944 0.026599

LRIG1 -0.26479 0.767366 0.633265 0.929864 0.006893

PABPC1 0.246554 1.279608 0.983828 1.664311 0.066004

NT5E 0.132706 1.141914 1.006795 1.295166 0.038888

SET 0.414622 1.513798 1.03377 2.216727 0.033119

3.2 Validation of the Signature in TCGA
The univariate Cox regression showed factors related to prognosis like a stage, T, M, N and risk score (P < 
0.05), while multivariate Cox regression showed that only stage and risk score were signi�cant
independent risk factor of LUAD. Compared with other clinical factors, the area under the ROC curve of
the signature in each period was the largest, which implied that compared with other clinical factors, the
predictive ability of the gene signature we constructed was optimal (Fig. 2A-B). The area under the ROC
curve (AUC). The area under the ROC curve for 1-year, 3-year and 5-year OS were 0.771, 0.734 and 0.687,
which implied that our signature had excellent predictive power (Fig. 2C-E) [18, 19]. We conducted a
hierarchical analysis to clarify the link between subgroups and risk grouping. A further conclusion was
drawn that all subgroups except N3 could identify high-risk and low-risk groups. In N3, there were only
two patients, both of which belonged to the high-risk group. And in most subgroups, high- and low-risk
groups had signi�cant differences, such as age < = 65, age > 65, female, male, stage III, T2, T3, N0, N2 and
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M0 (P < 0.05) (Fig. 3). What's more, the relationship between genes in the signature and various clinical
factors was also clearly revealed through clinical correlation analysis. P-value < 0.05 was our criterion to
judge whether it was meaningful (Fig. 4) [20]. We constructed nomogram to predict the score of the
signature and clinical factors, the correction curve showed the predicted value, and the 45-degree line
represented the actual survival result. The 45-degree lines of the calibration chart were close to 45
degrees in 1-, 3-, 5-year survival probability. The 1-year AUC was 0.805; the 3-year AUC was 0.773, the 5-
year AUC was 0.765, which indicated that our signature was very reliable (Fig. 5A) [21].

3.3 Gene Set Enrichment Analysis
The biological characteristics of the signature were con�rmed by the analysis of GO term and KEGG
pathway. In GO term annotation, �ve categories were positively associated with the low-risk group, which
were hexose catabolic process, NADH metabolic process, monosaccharide catabolic process, ATP
generation from ADP and NAD metabolic process. At the same time, �ve categories were negatively
related to the low-risk group, which were negative regulation of adaptive immune response, regulation of
tumor necrosis factor biosynthetic process, bile acid metabolic process, positive regulation of tyrosine
phosphorylation of STAT5 protein and regulation of type 2 immune response. In the KEGG pathway, there
were �ve pathways were positively associated with the low-risk group, such as ECM receptor interaction,
focal adhesion, glycosphingogolipid biosynthesis latco and neolatco series, pentose phosphate pathway
and P53 signaling pathway. While there were �ve pathways were negatively related to the low-risk group,
like JAK start signaling pathway, primary immunode�ciency, VEGF signaling pathway, B cell receptor
signaling pathway and T cell receptor signaling pathway (Fig. 5B) [22].

3.4 Validation of the Signature in GEO
In order to further verify the feasibility of the gene signature, we veri�ed through the GEO database. In
GSE20319 and GSE42127, the relationship between survival status, survival time and the expression of
the CSCs and risk score were consistent with the conclusion in TCGA. The survival analysis in GSE30219
and GSE42127 revealed that the overall survival rate of the low-risk group was signi�cantly better than
that of the high-risk group (P < 0.05). Besides, in GSE30219, the area under the ROC curve was 0.826,
0.638 and 0.599 in 1-year, 3-year and 5-year survival rates, respectively. One of the more worthwhile was
that in GSE42127, the area under the ROC curve was 0.788, 0.657 and 0.582. This series of external
veri�cation fully demonstrated the feasibility and accuracy of our signature (Fig. 6) [23].

3.5 Therapeutic E�cacy Analysis
In the TCGA database, 126 patients recorded the results of the �rst treatment after radiotherapy and
chemotherapy. At the same time, we tracked the evaluation of e�cacy, 111 cases were complete
response (CR), only one case was the partial response (PR), eight cases were stable disease (SD), and
seven cases were progressive disease (PD). The three CSCs in the signature had signi�cant differences in
the e�cacy of the different drug (P < 0.05). And it was worth noting that our signature had a certain
meaning. P-value was 0.052, very close to 0.05 (Fig. 7A) [24, 25].
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3.6 Relationship between Signature and mRNAsi
There were already clear articles that calculated the mRNAsi of 1174 genes. We matched the known
mRNAsi with the samples and divided our patients into two groups by the median value of mRNAsi (high-
mRNAsi group and low-mRNAsi group) [26]. It was found that mRNAsi could not effectively distinguish
high- and low-mRNAsi in LUAD and the area under the ROC curve still had a certain gap compared with
our signature. However, the mRNAsi of the high-risk group in our signature was also signi�cantly higher
than that of the low-risk group. This also veri�ed that our signature was related to stem cells (Fig. 7B) [27,
28].

3.7 Tumor mutational burden and Immune In�ltration
Analysis
According to the calculated mutation burden value, we found that it had signi�cant differences in the low-
risk and high-risk groups (Fig. 8A). TIMER database, which provides six types of immune cell in�ltration,
uses RNA-Seq expression pro�ling data to detect immune cell in�ltration in tumor tissue. The signature
showed a negative correlation with the levels of B cells, CD4 T cells, CD8 T cells, Dendritic cells,
Macrophages and neutrophil cells (P < 0.05) (Fig. 8B). These situations revealed that our signature was
indeed related to immune cells. In addition, we characterize the cellular composition of the tumor-
in�ltrating immune cells through CIBERSORT method. Compared with the high-risk group, CD8 T cells,
monocytes, resting dendritic cells and resting mast cells had higher expressions (P < 0.05), while M0
macrophage had lower expression (P < 0.001) (Fig. 8C). CD4 memory activated T cells and CD8 T cells
had the highest positive correlation (r2 = 0.53), which implied that there was a mutual effect between
them. While plasma and M2 Macrophages had the highest negative correlation (r2 = -0.37) that
suggested they were antagonistic to each other (Fig. 8D) [29].

4. Discussion
Despite the dramatic progress in diagnosis and treatment, the prognosis of advanced lung
adenocarcinoma is still unsatisfactory. With the development of clinical management of lung cancer,
some prognostic factors are well characterized, such as age, grade and TNM grade. Cancer stem cells
refer to cells that have self-renewal capacity and can produce heterogeneous tumor cells, which play a
signi�cant role in tumor survival, proliferation, metastasis and recurrence. Therefore, the use of CSCs to
establish a prognostic model is conducive to the prediction and precise treatment of LUAD.

We established a signature containing ten genes(C6orf62, DNER, NELL2, LATS2, LGR5, PTPRO, LRIG1,
PABPC1, NT5E, SET)and divided patients into high and low-risk groups based on the median risk value.
The research on the mechanism of stem cells have been pervasive, but there is no experiment to build
these ten stem cells into a signature.

Cancer stem cells or tumor initiating cells are considered to be the main drivers of disease progression
and treatment resistance across various cancer types. DNER is a neuron-speci�c transmembrane protein
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with extracellular EGF-like repeat sequences, which promotes the metastasis and proliferation of cancer
cells by activating Girdin/PI3K/ATK signal transduction and progression of prostate cancer and the
growth of PC-3 cells by regulating the main genes of cancer stem cells [30–32]. NELL2s is a rich
glycoprotein that contains EGF-like domains in nerve tissues, interact with protein kinase C and has
multiple physiological functions. Hypermethylation of promoter silences NELL2 and affects the
progression of renal cell carcinoma [33–35]. LATS2, as a potential tumor suppressor, is a signi�cant
mediator of the apoptosis response pathway. LATS2-Wnt / β-catenin / DRP1 / mitochondrial division is
identi�ed as a signaling pathway that promotes cancer cells death [36, 37]. LGR5 is a promising marker
of intestinal stem cells and cancer stem cells. Intestinal stem cell marker LGR5 is a receptor for R-
spongin, and its role is to enhance Wnt signaling in hyperplastic crypts. Wnt pathway plays a signi�cant
key in ISC self-renewal by inducing RSPO receptor LGR5 expression. An abnormal increase in LGR5
expression may represent one of the most common molecular changes in some human cancers, resulting
in long-term enhancement of canonical Wnt / β-catenin signaling [38–40]. PTPRO is a tumor suppressor
and is abnormally expressed in various malignant tumors. PTPRO causes ulcerative colitis through TLR4
/ NF-KB signaling pathway and plays a role in liver �brosis by affecting PDGF signaling in HSC
activation. It is noteworthy that PTPRO is a new candidate gene for emphysema with severe obstruction
[41, 42]. LRIG1, a transmembrane protein, has a tumor suppressive effect, and its expression is down-
regulated in a variety of cancers. It can antagonize epidermal growth factor receptor signaling in
epithelial tissues and inhibit cell invasion, migration, VM (angiogenesis simulation) by regulating EGFR /
ERK-mediated EMT (epithelial-mesenchymal transition) [43, 44]. PABPC1 can combine with adenylate-rich
sequences in mRNA under the action of high a�nity, which plays an important role in post-transcriptional
regulation of genes and is also involved in many metabolic pathways of mRNA, including adenylate
polymerization/adenylation, mRNA transport, mRNA translation, microRNA degradation related regulation
[45]. NT5E is a ubiquitously expressed glycosylphatidylinositol-�xed glycoprotein, which can convert
extracellular adenosine 5'-monophosphate to adenosine, and promote tumor development by inhibiting
the anti-tumor immune response and promoting angiogenesis [46, 47].

GSEA proves that the constructed signature does involve related cancer pathway. P53 is a tumor
suppressor protein that regulates the expression of various genes, including apoptosis, growth inhibition,
differentiation, inhibition of cell cycle progression and accelerated DNA repair, genotoxicity and
senescence after cellular stress. Like all other tumor suppressors, the P53 gene normally slows or
monitors cell division. The JAK / STAT signaling pathway is involved in numerous signi�cant biological
processes such as cell differentiation, proliferation, migration, apoptosis, survival, and immune
regulation. In addition, the JAK / STAT signaling pathway also participates in drug treatment of anemia,
thrombocytopenia, neutropenia, and antiviral.

With immune in�ltration analysis, we found that the signature regulates the immunity of lung
adenocarcinoma through CD4 T cell, which can interfere the immune response of the immune system to
the tumor, participate in the immune escape of the tumor, induce the immune tolerance of the tumor, and
promote the occurrence and development of the tumor.
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5. Conclusion
In conclusion, compared with TMN stage, our robust signature of ten stem cells is a very reliable and
accurate prognostic target for LUAD. Further research should be devoted to the functional analysis of our
research results and veri�cation in clinical trials.
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Figure 1

Construction of signature. (A-B) Least absolute shrinkage operator (LASSO) analysis is a method to
construct signature. (C) Kaplan-Meier survival reveals the overall survival among different risk
strati�cation groups. (D) ROC curve illustrates the risk prediction of the signature for 1, 3 and 5 years in
the TCGA cohort. (E) Box plot shows the expressions and differences of ten stem cells in the signature in
normal tissues and cancer tissues. ** represents P ≤ 0.01, *** represents P ≤ 0.001, ns represents
meaningless. (F) The risk curve in the TCGA cohort displays the patients’ risk score, survival time and
status and stem cells expression.
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Figure 2

Validation of the signature in TCGA. (A-B) Univariate and Multivariate Cox regression analysis of clinical
factors related to overall survival in the TCGA cohort. (C-E) ROC curve demonstrates the risk prediction
compared with other clinical factors in the TCGA cohort.
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Figure 3

Survival curve analysis. Kaplan-Meier survival illustrates the overall survival of subgroups, which was
strati�ed by age ≤ 65, age > 65, gender and TNM stage.
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Figure 4

Subgroup analysis. Box plot shows the relationship between stem cells in the signature and each clinical
subgroup.



Page 18/20

Figure 5

Construction of nomogram and Gene Set Enrichment Analysis. (A) The nomogram contains age, stage,
signature containing ten stem cells. The x-axis of the calibration chart is the predicted recurrence
probability result, and the y-axis is the actual recurrence probability. ROC analysis detects the accuracy of
prediction and inspection. (B) GO term and KEGG pathway show �ve positive correlation groups and �ve
negative correlation groups, respectively.
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Figure 6

Validation of the signature in GEO. (A) Kaplan-Meier survival, ROC curve and risk plot were used to verify
the signature in the GSE30219. (B) Kaplan-Meier survival, ROC curve and risk plot were used to validate
the signature in the GSE42127.

Figure 7
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Relationship between the signature and therapeutic e�cacy and stem cell index. (A) Box plot suggests
the links between signature and stem cells in the signature and drug e�cacy. (B) Kaplan-Meier survival,
ROC curve and box plot were used demonstrate the risk prediction of signature based on stem cell index.

Figure 8

Immune in�ltration analyais. (A) Difference analysis of TMB in high-risk and low-risk groups. (B) TIMER
indicates the correlations between the six immune cells and signature. (C) Composition of 22 kinds of
immune cells in high risk and low risk groups. (D) Correlation heat map of 22 immune cells in LUAD.


