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Abstract

Background: Reactive astrogliosis is a common pathologic change of various neurological disorders and
usually takes some properties of neural progenitors. This dedifferentiation response of reactive
astrocytes to injury is thought as an endogenous cellular attempt for neuronal regeneration, but the
underlying mechanism remains largely unclear.

Methods: A focal cerebral ischemic model was adopted to assess the dedifferentiation of reactive
astrocytes. Topgal mice (a Wnt signaling reporting mouse line) and Caspase-37- mice were used to
evaluate the change and roles of Wnt signaling and apoptosis in this process. Virus mediated Wnt2, 8-
catenin, dnTCF4 and DAP5 manipulation was used to reveal the molecular mechanism of
dedifferentiation. Ischemic cortical samples and Wnt2-5UTR sequences of macaca mulatta and human
were analyzed to explore if the apoptosis-induced Wnt2 up-regulation was conserved.

Results: Focal ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons in mice,
primates and human, and activation of canonical Wnt signaling in reactive astrocytes. Local delivery of
Wnt2 shRNA abolished the dedifferentiation response of astrocytes while over-expressing Wnt2 promoted
progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and
dedifferentiation of astrocytes was compromised in ischemic caspase-37" cortex. Over-expressing
stabilized B-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic
caspase-37" mice. Apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-
mediated translation. Knocking down death associated protein 5 (DAPS5), a key protein in IRES-mediated
protein translation, significantly diminished both Wnt activation and astrocyte dedifferentiation.

Conclusions: Our data demonstrated a novel apoptosis-initiated Wnt-activating mechanism which
triggers the dedifferentiation of reactive astrocytes and facilitates neurogenesis in adult cortex, revealing
a “S0OS” mechanism for inducing astrocyte dedifferentiation and indicating Wnt2/B-catenin signaling as
a potential therapeutic target for ischemic stroke.

Introduction

Reactive astrogliosis is a hallmark pathologic change of cerebral ischemia and various neurological
diseases. Upon ischemia, astrocytes start to proliferate and become morphologically hypertropic. It has
now been accepted that reactive astrocytes are heterogeneous and play diverse roles after injury [1].
Either be protective and reparative, or be neurotoxic and axon growth inhibiting, depending on the
dynamics of different sub-populations of reactive astrocytes [2].

One outstanding feature of reactive astrocytes is that some reactive astrocytes up-regulate many genes
associated with neural progenitors and can form neurospheres in vitro [3, 4], indicating certain degree of
dedifferentiation. Considering that adult neural stem cells (NSCs) also share some properties of
astrocytes and the lineage relationship between NSCs and astrocytes, it has been hypothesized that
reactive astrocytes may undergo some degree of dedifferentiation [5, 6]. Elucidating how reactive
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astrocytes acquire stem cell property, although partially acquired, is important for understanding how
central nerve system (CNS) responds to injury and would shed light on facilitating repair/regeneration of
CNS.

Several studies have attempted to disclose the mechanisms relating to the neurogenic potential of
reactive astrocytes. In the striatum, Notch signaling which normally maintains the quiescence of adult
NSCs is diminished after ischemia[7]. This liberates the neurogenic potential of local astrocytes [7]. In the
cerebral cortex, Shh signaling has been demonstrated to be required for the in vitro neurosphere
formation of reactive astrocytes [8]. Over-expressing Sox2 and NeuroD1 in ischemic cortex can directly
reprogram astrocytes into neuroblasts and neurons, respectively [9, 10]. However, under ischemia, which
local factor triggers the appearance of progenitor properties of reactive astrocytes, particularly in vivo,
remains still unclear.

In the present study, we focused on Wnt/B-catenin signaling, a key niche signaling in maintaining the
active status of adult NSCs and supports neurogenesis in the subventricular zone (SVZ) and
hippocampus [11, 12], and explored the response of Wnt/B-catenin signaling to ischemia and its roles in
the dedifferentiation of astrocytes and neurogenesis in cerebral cortex. Our data supprisingly revealed
that apoptotic neurons up-regulates Wnt2 protein via internal ribosome entry site (IRES) mediated protein
translation, which induces the dedifferentiation response of reactive astrocytes, and supports cortical
neurogenesis.

Materials And Methods

Mice and reagents

The TOPgal mice (DasGupta and Fuchs, 1999) and caspase-3-/- mice (Kuida et al., 1996) mice were
obtained from Jackson lab. All animal experiments were carried out under protocols approved by the
Animal Care and Use Committees of Fourth Military Medical University.

Lentiviral vectors of stabilized B-catenin (EbC) and dominant-negative form of TCF-4 (dnTCF-4, also
called EATC) were kindly gifted by Dr. Fuerer Christophe and Dr. Roel Nusse (Stanford University).
Retrovirus expressing GFP, lentivirus expressing Wnt2 shRNA, Wnt2, and DAPS shRNA were purchased
from Obio Biotech, Shanghai. Pan-caspase inhibitor v-ZAD was purchased from R & D System.

Mice ischemia model

Focal photochemic ischemia as described (Lee et al., 2007). Rose bengal (Sigma) was injected via tail
vein at 25 mg/kg. A skull window ranging from 0.8 to 2 mm posterior to the Bregma, and 2 mm right to
the midline was carefully made. For the behavior tests, the skull widow was made from 0.3-2.3 mm
anterior to the Bregma, and 0.5-3.0 mm right to the midline. Brains were illuminated for 10-12 minutes
using a cold light source (Zeiss FL1500 LCD). For neuroblasts detection, BrdU (100 mg/kg; Sigma)
injection was started 12 h after ischemia, once a day for 6 days. Mice were sacrificed at 7 or 14 days post

Page 4/31



ischemia (dpi). For BrdU/NeuN staining, BrdU injection was initiated at 12 h after the ischemia, once a
day for 14 d, and mice were sacrificed at 21 dpi.

Mice treatment

Lentivirus expressing control shRNA, Wnt2 shRNA, DAP5 shRNA or dnTCF-4 (EdTC) was injected into the
cortex 9 days before ischemia. Wnt2 shRNA sequences and DAP5 shRNA sequences are provided in the
supplementary information.

For Wnt2 and B-catenin over-expression, lenti-virus expressing Wnt2, EbC or control virus expressing
luciferase was injected into the cortex 7 days before ischemia. For DCX/BrdU-staining, BrdU was injected
once per day from 3 to 10 dpi, and mice were sacrificed at 14 dpi. For NeuN/BrdU-staining, BrdU was
injected once per day from 3 to 17 dpi, and mice were sacrificed at 28 dpi.

Monkey ischemia model

Before ischemia, a healthy male macaca mulatta of 19 years old was anaesthesized by ketamine for
anaesthesia induction and pentobarbital sodium for anaesthesia maintenance. Then, T1 and T2 MRI
scanning were performed on both left and right motor cortex. According to the localization of MRI
scanning, endothelin (E7764, Sigma, 5ug/ul) was injected into 3 points of one side motor cortex with
intervals of 5 mm (5 pl per point, 4mm in depth) to induce ischemia. At 24h post ischemia, the monkey
was perfused through heart by 4% PFA. The brain tissue was dissected immediately after perfusion and
post-fixed by 4% PFA for about 2h. All the procedure and protocol of monkey experiments were performed
under the approval of the Animal Care and Use Committees of Kunming Institute of Zoology, Chinese
Academy of Sciences (animal ethic review number: IACUC19009).

Human brain samples

The study protocol involving human brain samples was reviewed and approved by the Ethics Committee
of Xijing hospital (KY20202003). Ischemic cortical samples were obtained from the poststroke areas in
two patients who met the following criteria: (1) requiring both decompressive craniectomy and partial
lobectomy for diffuse cerebral infarction at 18-26 h post-ischemia; (2) > 20 years of age; and (3) willing to
provide written informed consent. Control cortical biopsy samples from a patient with sever traumatic
brain injury who underwent a decompressive craniectomy for his injury was resected from the
pericontusional area of the temporal cortex. The diagnosis of cerebral infarction and trauma was made
by neurosurgeons in the department of neurosurgery of Xijing hospital according to physical examination
and neuroimaging (CT and MRI). Excluding criteria were set as: (1) presence of a malignant tumor, (2)
presence and history of major infectious diseases, and (3) patients judged as unsuitable by the attending
doctor.

Western-blotting
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For the Western-blotting of cortical tissue, cortical samples including lesion center and 3-5 mm
surrounding tissues were dissected out. Each sample was homogenized in RIPA buffer for about 20 min
and incubated for another 40 min on ice, then centrifuged at 12 000 g at 4 °C. For the Western-blotting of
primary cells, cells were rinsed by PBS, collected, and then lysised with RIPA buffer. Protein sample was
boiled before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The proteins were
electrotransferred to polyvinylidene difluoride membrane and reacted with primary antibodies ( as
described in Supplementary materals) overnight at 4 °C, then with corresponding secondary anti-mouse,
anti-rabbit, anti-goat, or anti-rat IgGperoxidase (1:5000) at room temperature for 50 min. The bands were
visualized by an ECL kit (Millipore). For tissues and cells, B-actin was used as internal control. For the
conditioned medium, BSA was used internal control.

Real-time RT-PCR

For real-time RT-PCR, total RNA was extracted using Trizol agent. The RNA samples were treated with
DNasel to exclude the contamination of genomic DNA. After reverse transcription, semiquantitative PCR
was carried out. The levels of target mMRNA were normalized to the mRNA levels of the housekeeping gene
Gapdh to allow comparisons using the ACt method. The primer information was listed in supplementary
materials.

Behavioral tests

Glass sliding and footfault tests were used to assess the asymmetry in forelimb-use as described [13, 14].
The animals were videotaped in a transparent glass cylinder for 10 min. The numbers of contacts, and
the numbers of sliding movements of each forelimb at the wall of the cylinder for every spontaneous
stand-up were scored. Percentage of sliding was calculated by the following formula: the number of
sliding/(number of contact + number of sliding) x100. The asymmetry index was derived by subtracting
the percentageof ipsilateral sliding from the % of contralateral sliding.

For footfault tests, animals were allowed 10 minutes to walk on a horizontally placed ladder (1.5 cm
width between rungs). A step was considered a footfault if it was not providing support or a slip/miss
occurred. Foot-faults for each limb were counted and compared to the overall step number taken by that
limb. The observer was blind to experimental design and mouse genotypes. Thus, percentage of foot-
faults was calculated by: the number of foot-faults/(number of steps + number of foot-faults) x100. The
asymmetry difference was derived by subtracting the percentage of ipsilateral foot-faults from the
percentage of contralateral foot-faults.

Electrophysiological recording

Retrovirus expressing GFP (Retro-GFP) was injected in caspase-3-/- cortex with overexpression of EbC at
5-7 dpi and patch-clamp was performed at 21-24 dpi. Neurons in injured cortex expressing GFP were
selected for recording. The electrode was filled with potassium based intrapipette solution with a
resistance of about 7- 9 MQ. Cells with series resistance more than 30 MQ at any time during the
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recordings were discarded. Pipette offset current was zeroed immediately prior to contacting the cell
membrane. The data were sampled at 20 kHz for current-clamp recordings and 10 KHz for voltage-clamp
recording with pCLAMP 9 software and digidata 1322 (Axon Instruments). Action potentials were
recorded in the presence or absence of T uyM TTX.

Immunohistochemistry

For immunohistochemistry, serial coronal sections were prepared on a cryostat. Primary antibodies were
incubated at room temperature overnight (detailed information is included in Supplementary
information). Before adding primary antibodies, antigen retrieval was performed for Wnt2
immunostaining, and HCI treatment (2N HCI, 30-35 min at 37°C) was performed for BrdU staining.
Corresponding secondary antibodies conjugated with Alexa Fluor 594 (donkey anti-mouse, anti-rabbit,
anti-goat or anti-guinea pig IgG, 1:800, Jackson ImmunoResearch), Alexa Fluor 488 (donkey anti-mouse,
anti-rabbit, or anti-goat IgG, 1:800, Jackson ImmunoResearch), Alexa Fluor 647 (donkey anti-rabbit IgG,
1:800, Jackson ImmunoResearch) were incubated with sections for 4 h at room temperature in dark.

TUNEL staining was performed according to the manual of DeadENDTM TUNEL system (Promega). For
combination of TUNEL staining with immunohistochemistry, TUNEL staining was performed first,
followed by individual immunostaining.

Culture of cortical neurons and astrocytes, induction and inhibition of apoptosis, and collection of
conditioned medium

Cortical neurons were isolated from mouse embryos at embryonic days 15.5-16.5. For culturing caspase-
3-/- neurons and their WT controls, neurons were isolated from PO pups. Astrocytes were primary isolated
from P2-4 pups, and purified by shaking the flask at 260 rpm overnight at 37°C. Primary neurons were
treated by oxygen-glucose deprivation (OGD) for 24 h to induce apoptosis. For inhibition of apoptosis,
25uM z-VAD was added into the culture 2 h before irradiation. Conditioned medium from normal cultured
neurons (NNCM), apoptotic neurons (ANCM) and apoptosis-inhibited neurons (AICM) was collected at 18-
20h after irradiation, centrifuged at 2000 rpm for 10min. Supernatants were stored in -70°C until use.

In situ hybridization

Antisense digoxigenin-labeled RNA probes for Wnt2, Wnt7a, Wn9a and Wnt10a were synthesized and in
situ hybridization was performed as described previously (Wang et al., 2011b). All the probes were made
by RT-PCR based in vitro transcription. The primer information is as the following: Wnt2:
TGTACTCTGAGGACATGCTGGCT, CTTATGTGCAGCAGGTGGTTC; Wnt7a:
TCAGCCTGGGCATAGTCTACCTCC, TTCTCCTCCAGGATCTTCCGACCC; Wn9a:
CAAGTTTGTCAAGGAGTTCCTGG, TGTTGTTTGTAACCCTGTGCC; Wnt10a:
CTGTTCTTCCTACTGCTGCTGGCTGC, ATGTTCTCCATCACCGCCTGCC. After hybridization and incubation
with anti- digoxigenin antibody, color was development with HRP mediated reaction.

Luciferase assay of Wnt-SUTR IRES activity.
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MCEF-7 cells were routinely maintained. Wnt2-5UTR was PCR amplified from genome DNA of mice liver
and cloned into plasmid pR-F. Mutations within the conserved stem-loop region of Wnt2-5UTR were
introduced by overlap extension stitch PCR. The resulting mutation was confirmed by Sanger sequencing.
Twenty-four hours after plasmids transfection, OGD was performed and lasted for 24h. Luciferase assay
was conducted using the luciferase reporting kit (Promega) after 8h’s reoxygenation using GloMax. The
ratio of LucF/LucR was used to indicate the activity of IRES.

Statistical analysis

For in vivo proliferation and neurogenesis, the numbers of immuno-double labeled cells were counted
from every eighth section of ischemic region and at least three mice included for each comparison. Cell
counting was performed by an investigator who was blind to experimental design and mouse genotypes.
Data are presented as mean + standard error. Statistical comparisons were made using the Student t test
or analysis of variance (ANOVA) with Student Newman-Keuls post hoc analysis. P values less than 0.05
were considered as statistically significant.

Results

Focal ischemia induces Wnt signaling activation and dedifferentiation of reactive astrocytes

To probe the local signals that trigger the phenotype change of astrocytes, we adopted a
photothrombosis focal ischemia model. Neural progenitor markers, Nestin and Sox2 were quickly up-
regulated in the injury site from one day post ischemia (Fig. 1a). Both Nestin and Sox2 were mainly
expressed by GFAP-positive astrocytes (Fig. 1b-d). BrdU-labeling showed that most of the Nestin- and
Sox2-positive cells in the lesion area were proliferative (Suppl. Fig. 1a, 1b). These data showed that that
reactive astrocytes undergo certain degree of dedifferentiation upon ischemic injury.

To directly readout if canonical Wnt signaling were re-activated in reactive astrocytes, we adopted a
widely-used Wnt signaling reporter mouse line, Topgal mouse [15]. There was no or very low expression
of Wnt signaling reporter B-gal and Wnt signaling target gene Axin2 in intact cortex. After injury, B-gal and
Axin2 was up-regulated from one day post injury (dpi) (Fig.1e), similar to the time course of Nestin and
Sox2 up-regulation. To examine whether Wnt signaling were induced in reactive astrocytes, we performed
triple-immunostaining of B-gal/GFAP/Nestin and B-gal/GFAP/Sox2. There were almost no triple-positive
cells in control side of cortex, while a lot of triple-positive cells in ischemic cortex. Most of the B-gal-
positive cells in ischemic cortex were Nestin/GFAP- or Sox2/GFAP-positive (Fig. 1f). These data
suggested that canonical Wnt signaling is activated mainly in reactive astrocytes and in coincidence with
the expression of progenitor markers.

Apoptotic neurons up-regulate Wnt2 protein which activates Wnt signaling

To probe the mechanism of Wnt activation, we first examined the expression of Wnt ligands in the cortex
by real time RT-PCR. Among the 18 Wnts, Wnt2, Wnt4, Wnt7a, Wnt9a, and Wnt10a showed a relatively
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high expression level in the intact cortex, as compared with house-keeping gene GAPDH in the same
tissue (Suppl.Fig. 2a). Because Wnt4 acts as a non-canonical Wnt ligand in the CNS [16, 17], we
performed in situ hybridization of Wnt2, Wnt7a, Wnt9a and Wnt70a. Among these, Wnt2 mRNA was
expressed by more cells (Suppl. Fig. 2b). To identify the cell type which expresses Wnt2, we performed
immunohistochemistry and Western-blotting using a Wnt2 antibody. Double staining of Wnt2 with NeuN
or GFAP showed that Wnt2 is mainly expressed by neurons (Suppl. Fig. 2c). Western-blotting of cortical
tissue showed a higher molecular weight of Wnt2 than predicted, possibly due to posttranslational
modification. To test the specificity of Wnt2 antibody used, we injected cortex with lentivirus expressing
Wnt2 shRNA, which significantly reduced the level of Wnt2 mRNA (Suppl. Fig. 2d) as well as Wnt2 protein
(Suppl. Fig. 2e).

After ischemia, the levels of Wnt2 protein increased quickly in comparison with that in intact cortex(Fig.
2a, 2b). Interestingly, most of the cells with high level of Wnt2 immunoreactivity (Wnt2") in the injury site
were TUNEL positive (Fig. 2c). To confirm whether apoptotic neurons up-regulated Wnt2, we cultured
primary neurons and treated neurons by oxygen-glucose deprivation (OGD) to mimic ischemia. Starting
from 2 h post OGD treatment, the levels of Wnt2 and cleaved caspase-3 (CC3) increased simultaneously
in cultured neurons (Suppl. Fig. 3a). Adding pan-caspase inhibitor z-VAD effectively blocked the up-
regulation of Wnt2 in apoptotic neurons, as compared with control cells (Suppl. Fig. 3a). To investigate
whether Wnt2 was released from apoptotic neurons, we analyzed the levels of Wnt2 protein in
conditioned medium (CM) from normally-cultured neurons (NNCM), apoptotic neurons (ANCM) prepared
with OGD treatment, and apoptotic neurons treated with Wnt2 shRNA (shRNA ANCM). Western-blotting
showed that OGD induced notable large amount of Wnt2 (ANCM) in wild type (WT) neurons, but not in
Capase-3 deficient neurons (Fig. 2d). This induction of Wnt2 protein could be effectively blocked by
pretreating neurons with Wnt2 shRNA (shRNA ANCM) (Fig. 2d). These data indicated that apoptotic
neurons up-regulate and release Wnt2.

To investigate whether this Wnt2 was sufficient to activate Wnt/B-catenin signaling, we stimulated
primary astrocytes with NNCM, ANCM, shRNA ANCM or CM from apoptosis-inhibited neurons (AICM).
The results showed that ANCM significantly increased the amount of B-catenin in the cell nucleus in
relative to NNCM, AICM, and shRNA ANCM (Fig. 2e), suggesting that Wnt2 released by apoptotic neurons
was able to activate Wnt/B-catenin signaling in astrocytes in vitro. Further, we injected lentivirus-
expressing Wnt2 shRNA into the cerebral cortex 9 days before ischemia and examined Wnt activation at 5
dpi. Lenti-virus expressing GFP was used to verify the cell types infected. Approximately 39.7% of lenti-
GFP-labeled cells were GFAP-positive, 30.2% NeuN-positive, 7.8% NG2-positive, and 5.8% Iba-1-positive
(Suppl. Fig. 3b). Both immunohistochemistry and Western-blotting revealed that the induction of Wnt
reporter B-gal was remarkably attenuated in Wnt2 shRNA pre-treated cortex (Fig. 2f, 2g). These data
indicated that ischemic injury-induced Wnt2, particularly from apoptotic neurons, activates Wnt signaling
in the reactive astrocytes.

Wnt2 is required for astrocyte dedifferentiation and facilitates neurogenesis
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To test whether Wnt2 was involved in the acquisition of stem cell properties of reactive astrocytes in vivo,
we made focal ischemia in bilateral cortices, injected lenti-virus expressing Wnt2 shRNA in the right cortex
and lenti-virus expressing control shRNA in the left cortex. Immunohistochemistry showed that Wnt2
shRNA dramatically down-regulated the expression of Nestin in the injured cortex without affecting the
up-regulation of GFAP in the ischemic cortex (Fig. 3a). Western-blotting confirmed the reduction of Nestin
and Sox2 in injured cortex pretreated by Wnt2 shRNA (Fig. 3b), suggesting the requirement of Wnt2 for
the acquirement of NSC property of reactive astrocytes. Previous studies have reported the migration of
new-born neuroblasts, although very weak, from the SVZ to the cortex after ischemia [18, 19]. Considering
that astrocytes in the SVZ play important roles for maintaining the neurognic niche [20], we hypothesized
that these Nestin-positive reactive astrocytes might provide supporting signals for neurogenesis in
ischemic cortex. We then investigated the effects of Wnt2 knockdown on the post-ischemic cortical
neurogenesis. Immunohistochemistry showed that, at 7 dpi, DCX/BrdU-double positive cells were
significantly reduced in Wnt2 shRNA-treated cortex (Fig. 3c). To assess roles of the downstream signals
of Wnt2 in this process, lentivirus expressing dominant-negative TCF-4 (dnTCF-4) was injected to cortex 9
days before ischemia. DnTCF-4 inhibits the activity of Wnt signaling by competing the interaction
between B-catenin and TCF [21]. The efficacy of Wnt inhibition was confirmed by the down-regulation of
B-gal (Fig. 3d). Similar to Wnt2 shRNA, dnTCF-4 significantly reduced the expression of Nestin and the
number of BrdU/DCX-double positive cells in ischemic cortex at 7 dpi (Fig. 3d, 3e).

We next assessed the effects of Wnt2 over-expression by injecting lentivirus expressing Wnt2 (Lenti-
Wnt2) into ischemic cortex. Increase of Wnt2-expression was confirmed by Western-blotting (Fig. 4a). At
14 dpi when progenitor markers have declined in control virus-treated cortex, Lenti-Wnt2 sustained the
high level expression of Nestin and Sox2 (Fig. 4b 4c). Further analysis showed that there was a
significant increase of BrdU/DCX-positive cells in Lenti-Wnt2-infected ischemic cortex (Fig. 4d). Notably,
BrdU/NeuN-positive cells which could hardly be detected in the ischemic cortex under normal condition
[22], were found in Wnt2-overexpressing cortex with the frequency of approximately one BrdU/NeuN-
positive cell in one section on average at 4 weeks after ischemia (Fig. 4e). These data indicated that
Wnt2/B-catenin signaling may serve as a local signal for triggering the dedifferentiation of reactive
astrocytes and supporting neurogenesis in ischemic cortex.

Caspase-3 mutation abolishes both Wnt activation and astrocytes dedifferentiation in vivo

Since apoptotic neurons up-regulate Wnt2, we further asked whether caspase-3 ablation could affect the

ischemia-induced Wnt signaling activation. Wnt2 expression in intact caspase-3” cortices was at a
similar level to that in the intact cortex of WT mice (Fig. 5a), indicating that caspase-3 mutation had no
significant effects on the basal expression of Wnt2. Interestingly, caspase-3 ablation significantly
abolished the up-regulation of Wnt2 by ischemia (Fig. 5a). Consistently, the up-regulation of Axin2 (Wnt

target gene) by the ischemia was also compromised in the injured caspase-3” cortex (Suppl. Fig. 4a).
Furthermore, the expression of Wnt signaling reporter B-gal in the ischemic cortex of TOPgal:caspase-3”-
mice was significantly attenuated as compared to that in the lesion cortex of TOPgal:caspase-3**mice
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(Fig.5b). These results indicate that caspase-3 is required for the up-regulation of Wnt2 and activation of
Whnt signaling in the ischemic cortex.

We next examined the expression of Nestin and cell proliferation in ischemic caspase-3”" cortex.
Immunohistochemistry showed that both the expression of Nestin and the number of BrdU-positive cells
was obviously reduced in the ischemic cortex of caspase-3”mice, as compared to that of WT mice (Fig.
5c). Western-blotting confirmed the compromised induction of Nestin in injured caspase-3”"cortex (Fig.
5c). Further analysis showed that BrdU/DCX-positive cells in caspase-3-deficient cortices were also
dramatically decreased (Fig. 5d). On the other hand, no differences of Ki67/Nestin-double positive cells
were found in the SVZ between intact WT and caspase-37~ mice at 7 dpi (Suppl Fig. 4b), suggesting that
the effects of Caspase-3 mutation on cell proliferation in cortex is lesion dependent. These data indicated
that caspase-3 might be involved in the ischemia-induced astrocyte dedifferentiation through activating
Whnt signaling.

Over-expressing p-catenin restores stem cell properties of reactive astrocytes and promotes neurogenesis
in Caspase-37" cortex.

We next examined whether enhancing Wnt signaling could restore astrocytic response and neurogenesis
in caspase-3”" cortex by injecting lentivirus expressing stabilized B-catenin (EbC) [21]. EbC infection
resulted in higher levels of Nestin and Sox2 by astrocytes in caspase-37" cortex, in comparison with
control virus (Fig. 6a, 6b). The number of BrdU/DCX-double positive cells was also increased in the EbC
infected caspase-3” cortex (Fig. 6¢, 6d). Similar as Wnt2 overexpression, BrdU/NeuN-double positive
cells, which could not be detected in control ischemic cortex, were found in the lesion area of EbC-infected
caspase-3’ cortex (Fig. 6e, 6f).

We then examined whether the new-born neurons could have neuronal properties. Retro-virus expressing
GFP was injected into EbC-treated cortex at 5 dpi. Whole cell patch-clamp recording of Retro-GFP positive
cells was performed at 26-29 dpi (Fig. 7a). Biocytin was injected to make sure the cell recorded were
Retro-GFP labeled neurons (Fig. 7a,). Among the 23 successfully patched cells, action potentials were
recorded from 9 cells which had an average input resistance of 415.4+87.3 MQ and resting membrane
potential of -56.842.5 mV (Fig. 7b). Three Retro-GFP-labeled cells showed spontaneous excitatory post-
synaptic currents (SEPSCs) (Fig. 7b). To test whether EbC could enhance functional recovery in Caspase-
37~ mice, we performed focal ischemia in the forelimb sensorimotor cortex and evaluated the locomotion
recovery by foot-fault test and spontaneous forelimb activity. The results showed that stabilized B-catenin
significantly improved the spontaneous activity of contralateral (to the injured cortex) forelimb and
reduced the foot-miss of forelimbs on a horizontally placed ladder from 3 weeks after injury (Fig. 7c, 7d).
These results indicated that activating Wnt/B-catenin signaling not only restores astrocyte
dedifferentiation but also promotes neurogenesis and functional recovery in the ischemic caspase-3-
deficient mice.

Apoptotic neurons up-regulate Wnt2 protein via IRES-mediated alternative translation.
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Above data demonstrated that apoptosis-activated Wnt2 triggered astrocyte response. We then asked
whether this apoptosis-induced Wnt2 expression could occur in other species. We analyzed the cortex
sample of macaca mulatta and human patient at 24h after ischemia. Wnt2 was expressed by neurons in
normal macaca mulatta and human cortex (Fig. 8a-d, left pannels). Obvious up-regulation of Wnt2 was
detected in apoptotic neurons in both ischemic macaca mulatta and human cortex as showed by double-
immunostaining of Wnt2 with cleaved caspase-3 (CC3) or NeuN (Fig. 8a-d, right pannels), suggesting that
this apoptosis-induced Wnt2 up-regulation is a conserved phenomenon.

We next probed how apoptotic neurons up-regulated Wnt2. gPCR revealed no changes of Wnt2 mRNA
under apoptotic conditions both in vitro and in vivo (Fig. 9a, Suppl. Fig.5a), suggesting that post-
transcription mechanism may account for the up-regulation of Wnt2 protein. Intriguingly, 26S proteasome
activator PD169316 did not reduce the level of Wnt2 protein (Fig. 9b), while protein translation inhibitor
CHX significantly attenuated the OGD-induced Wnt2 up-regulation (Fig. 9¢), indicating that apoptotic
neurons may up-regulate Wnt2 at the level of protein translation.

In apoptotic cells, the translation of most proteins is suppressed except for few proteins which are crucial
for cell survival or apoptosis, such as insulin-like growth factor (IGF) and X-linked inhibitor of apoptosis
(XIAP) [23, 24]. The “escaped” protein translation is achieved mainly by cap-independent translation, and
in most cases, through the internal ribosome entry site (IRES) sequence in the 5-untranslated region
(5UTR) of the mRNA [25]. Sequence analysis showed that the Wnt2-5UTR of mouse, macaca mulatta and
human shared highly conserved sequence (Fig. 9d) which could form IRES-like secondary structure (Fig.
9e). To test the function of Wnt2-5UTR, we inserted the Wnt2-5UTR into a bicistronic reporter vector and
examined the activity of Wnt2-5UTR in MCF-7 cells(which normally express Wnt2) (Fig. 9f). OGD
treatment induced dramatic expression of luciferase downstream of Wnt2-5UTR as positive control XIAP-
5UTR did (Fig. 9g). Mutation of conserved sequence in Wnt2-5UTR significantly abolished this apoptosis
induced reporter expression (Fig. 9d, 9e, and 9g). These data indicated that apoptotic neurons may up-
regulate Wnt2 protein through IRES-mediated protein translation.

Death-associated protein 5 mediates Wnt2 up-regulation and astrocyte de-differentiation.

In apoptotic cells, death associate protein 5 (DAP5) is one of the key protein which recruits ribosome to
the IRES sequence of target mRNA and facilitates translation [26, 27]. We then tested whether this
mechanism were involved in the apoptosis-induced Wnt2 up-regulation. Western-blotting showed that
DAPS5 was up-regulated in ischemic cortex (Fig. 10a). Pretreating primary neurons with lentivirus
expressing DAP5 shRNA significantly attenuated the translation initiating activity of Wnt2-5UTR under
OGD (Fig. 10b, Suppl. Fig. 5b). Local injecting lentivirus expressing DAP5 shRNA to cortex or cultured
neurons significantly attenuated the ischemia/apoptosis-induced Wnt2 up-regulation both in vivo and in
vitro (Fig. 10c, Suppl. Fig. 5¢). Accordingly, the ischemia-induced expression of Wnt reporter B-gal in
astrocytes was significantly reduced in the cortex of Topgal mice infected by lentivirus expressing DAP5
shRNA (Fig. 10d).

Page 12/31



We next asked whether DAP5 knockdown affected the dedifferentiation of astrocytes and neurogenesis
post cerebral ischemia. Double-immunostaining showed that, similar as Wnt2 shRNA pre-treatment, the
expression of Nestin and Sox2 was significantly reduced in DAP5 shRNA pre-treated cortex while the
expression of GFAP remain not changed (Fig. 10e, Suppl. Fig. 5d). The number of BrdU/DCX-positive cells
was significantly reduced in DAP5 shRNA pre-treated cortex (Fig. 10f). These data suggested that DAP5
shRNA can partially phenocopy the effects of Wnt2 knockdown in terms of astrocytes dedifferentiation
and cortical neurogenesis.

Discussion

In the present study, by using a Wnt signaling reporting mouse line Topgal, we first demonstrated the
activation of canonical Wnt signaling in reactive astrocytes. By lentivirus-mediated Wnt2 silencing and
Wnt2 over-expression, we demonstrated a key role of Wnt2 in the dedifferentiation response of astrocytes
and post-ischemic neurogenesis. The data from caspase-3 deficient mice revealed the requirement of
caspase-3 for the ischemia-induced Wnt2 up-regulation and astrocyte dedifferentiation. In the end, we
demonstrated that the up-regulation of Wnt2 was mediated by IRES-mediated protein translation.

The present study focused on the in vivo dedifferentiation response of reactive astrocytes and
neurogenesis in cortex after ischemia. The up-regulation of neural progenitor markers by reactive
astrocytes has been reported [3]. Because reactive astrocytes can form neurospheres which can
differentiate into neurons in vitro, it has been proposed that reactive astrocytes may be neurogenic. Two
recent studies revealed that the neural sphere-forming reactive astrocytes in cerebral cortex were mainly
derived from SVZ progenitors [28, 29]. How the local reactive astrocytes up-regulate progenitor markers
remained to be explored. The fact that local delivery of Wnt2 shRNA in ischemic cortex effectively
reduces Nestin expression in reactive astrocytes suggested a role of Wnt2 in the local response of
astrocytes, because the migrating SVZ reactive astrocytes have already expressed Nestin. The reduction
of DCX-positive neuroblasts and increase of BrdU-labeled NeuN-positive mature neurons by Wnt2
manipulation indicated that the local dedifferentiation of Wnt-activated astrocytes may be neurogenic, or
alternatively, provide niche signals for the supporting SVZ neurogenesis.

It is very interesting that neuronal Wnt2 up-regulation and astrocyte dedifferentiation is caspase-3
dependent. Injury induced-Wnt activation has been documented in multiple tissues [30], while how injury
activates Wnt signaling remains unclear. In low animals, for example, in hydra, apoptosis-induced Wnt
activation is crucial for initiating head regeneration [31]. In mammalian, two studies have reported that in
mammalian skin and tumor tissues, apoptotic cells induce wound healing [32] and tumor cell
repopulation [33] by releasing PGE,, a potential Wnt signaling activator [34]. In adult corte, it is still a
controversial topic concerning whether apoptosis could induce cortical neurogenesis [35, 36]. Recently, a
study reported that the proliferation of microglia is apoptosis-coupled [37]. Our data revealed that Wnt2
may act as an endogenous reparative signal released by dying neurons. As conventional Casapse-3
knockout mice and lenti-virus expressing Wnt2 shRNA/Wnt2 were used in this study, the involvement of
caspase-3 and Wnt2 in other cell types is not excluded.
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This IRES-mediated Wnt2 translation is intriguing. Cap-dependent translation is inhibited during
apoptosis and only a few proteins essential for cell survival or apoptosis can be translated through a cap-
independent mechanism [23]. DAP5 plays a key role in the protein translation of apoptotic cells which
requires the IRES structure in the SUTR of target protein to recruit ribosome [26, 38]. Our data
demonstrated that the translation of Wnt2 during apoptosis was dependent on DAPS5, and the mutation
of the IRES sequence in the SUTR of Wnt2 abolished the translation of Wnt2. The high homology of Wnt2
SUTR among mouse, macaca mulatta and human suggested that this apoptosis-induced Wnt2 up-
regulation may be a conserved mechanism. The functional recovery by over-expressing B-catenin
suggested that amplifying this apoptosis-activated Wnt signaling may be utilized for treating cerebral
ischemia.

Conclusion

In cerebral cortex, apoptotic neurons up-regulate and release Wnt2 protein, which activates Wnt/B-catenin
signaling and induces dedifferentiation in reactive astrocytes. Over-expressing Wnt2 or B-catenin can
enhance the dedifferentiation response of astrocytes and promote neurogenesis. The up-regulation Wnt2
protein by apoptotic neurons is achieved by IRES-mediated protein translation. Our data revealed a novel
“S0OS” mechanism for astrocyte dedifferentiation and indicated that Wnt/B-catenin signaling might be
targeted for treating ischemic stroke in the future.
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Figure 1

Dedifferentiation and activation of Wnt/B-catenin signaling in reactive astrocytes after cerebral ischemia
(a) Western-blotting and quantification of Nestin and Sox2 in ischemic cortex at different time points.
*PNestin-1dpi=0.031, *PNestin-3dpi=0.033, **PNestin-7dpi=0.0026, *PSox2-1dpi=0.029, **PSox2-
3dpi=0.0031, *PSox2-7dpi=0.028, one-way ANOVA followed by Bonferroni’s post hoc comparisons tests,
n = 3 mice per time points. (b,c) Triple-immunostaining of Nestin/Sox2/GFAP in contralateral (contra) and
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ipsilateral (ipsi) side of ischemic cortex at 5 dpi. (d) Quantification of Nestin/GFAP- and Sox2/GFAP-
positive cells in the zone expanded 200 um from lesion center. (e) Western-blotting of Axin2 and B-gal in
ischemic cortex at different time points post injury. Notice the up-regulation of Axin2 and B-gal from one
day after ischemia. *PAxin2-1dpi=0.019, **PAxin2-3dpi=0.0024, *PAxin2-7dpi=0.012, *PAxin2-
14dpi=0.035, *PBgal-1dpi=0.017, *PBgal-3dpi=0.021, *PBgal-7dpi=0.018, *PBgal-14dpi=0.027, one-way
ANOVA followed by Bonferroni’s post hoc comparisons tests, n = 3 mice per time points. (f)
Representative images of triplesimmunostaining of GFAP/Nestin/B-gal and GFAP/Sox2/B-gal in Topgal
mice at 5 dpi. Bar = 10 pm. Notice the induction of B-gal in Nestin- and Sox2-positive astrocytes in the
injured cortex (arrowheads).
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Figure 2

Up-regulation Wnt2 by apoptotic neurons ant its involvement in Wnt//B-catenin signaling activation. (a,
b)Western-blotting of Wnt2 at different time point in ischemic cortex. Notice that Wnt2 protein increases
quickly after ischemia. *P=0.026(1h), 0.028 (2h), 0.024 (4h), 0.048(8h), 0.043(12h). P values were
calculated using Student’s t test comparing the ischemic groups with the normal control. N = 4 per group.
(c) Combination of TUNEL staining and Wnt2 immunostaining at 24 hpi. Wnt2high immunoreactivity
overlapped well with TUNEL-staining (arrowheads). Dashed line indicates lesion border and asterisk
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indicates lesion area. Bar = 30 pm. (d) Western-blotting of Wnt2 in conditioned medium of normal
cultured (NNCM), apoptotic (ANCM), Wnt2 shRNA pretreated apoptotic (shRNA ANCM) wild type and
caspase-3-/- neurons. Apoptotic neurons increase Wnt2 release into the culture medium, and this increase
is compromised by caspase-3 ablation and Wnt2 shRNA. (e) Western-blotting of cytoplasmic and nuclear
B-catenin in astrocytes treated by NNCM, ANCM, AICM or shRNA ANCM. ANCM greatly increases the
nuclear level of B-catenin. LMNB1 was used as loading control. (f) Double-immunostaining of GFAP/B-gal
in Topgal mice pretreated with Wnt2 shRNA. (g) Western-blotting of B-gal in ischemic cortex of Topgal
mice treated with Wnt2 shRNA or control. Notice the less induction of B-gal in Wnt2 shRNA pretreated
cortex. Arrows point to representative double-positive cells. Bar = 50 ym.

a Wnt2 shRNA | /GFAP Con shRNA /GFAP

B-gal | wem— = Nestin

B-actin e e B-actin I-

Con shRNA Wnt2 shRNA &,
ConshRNA  Wnt2 shRNA Con shRNA Wnt2 shRNA C . 2 3,
© 1%
e o
So
& o““k?v‘???
L) L)
Caé\ ‘;\63
pLenti-Luci pLenti-dnTCF-4 NE O
d - :
pLenti- plLenti- pLenti- pLenti- g
Luci dnTCF-4 Luci dnTCF-4 g
2
3
8
=
E
m

Figure 3

Page 21/31



Effects of Wnt2 knockdown and Wnt signaling inhibition on astrocyte dedifferentiation and cortical
neurogenesis. (a) Representative images of Nestin/GFAP double-immunostaining in the bilateral cortice
with two ischemic injures infected by lentivirus expressing control shRNA (right) and Wnt2 shRNA (left),
respectively. Bar = 200 uym. (b) Western-blotting of Nestin and Sox2 in Wnt2 shRNA treated mice. Wnt2
shRNA dramatically suppressed the expression of Nestin and Sox2 without obviously affecting the
expression of GFAP. (c) Double-immunostaining and quantification of DCX/BrdU in ischemic cortices
treated by control shRNA and Wnt2 shRNA, respectively. Arrowheads point to double-positive cells. Arrows
point to magnified cells. Bar = 20 um. **P=0.0087, two-tailed Student’s t-test, n = 4 mice per group. (d)
Western-blotting of B-gal and Nestin in ischemic cortex of Topgal mice infected by lentivirus expressing
luciferase (pLenti-Luci as control) and dnTCF-4. Notice that dnTCF-4 reduces the expression of -gal and
Nestin in the ischemic cortex. (e) Double-immunostaining and quantification of DCX/BrdU in in ischemic
cortex of infected by pLenti-Luci and dnTCF-4. N = 3 mice per group. ***P<0.001, two-tailed Student’s t
test. Bar =50 pm.
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Figure 4

Effects of Wnt2 over-expression on astrocyte dedifferentiation and cortical neurogenesis. (a) Western-
blotting of Wnt2 in ischemic cortex infected by pLenti-Luci and Wnt2. (b) Western-blotting of Nestin and
double-immunostaining of Nestin/Sox2 in ischemic cortex infected by pLenti-Luci and Wnt2. Bar =50 pm.
(c) Representative images of Nestin/GFAP double-immunostaining in the bilateral cortice with two
ischemic injures infected by pLenti-Luci (left) and Wnt2 (right) at 14 dpi, respectively. Bar = 200 um. Bar =
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50 pm in enlarged view. (d) Double-immunostaining and quantification of DCX/BrdU in ischemic cortex
infected by pLenti-Luci and Wnt2. N = 3 mice per group. **P= 0.0075, two-tailed Student’s t-test. Bar =50
um. (e) Double-immunostaining and quantification of NeuN/BrdU in ischemic cortices infected by
lentivirus expressing luciferase (control) or Wnt2. S1 and S2 are two representative sections showing one
NeuN/BrdU-positive cell in each section. Arrows point to double-stained cells. Bar = 30 pm, and 5 pm in
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Requirement of caspase-3 for Wnt2 activation and neurogenesis in ischemic cortex. (a) Combination of
TUNEL staining and Wnt2 immunostaining (left panels), and Western-blotting of Wnt2 in the ischemic
cortex of WT and caspase-3-/- mice at 24 hpi (right panels). Expression of Wnt2 in the injured WT cortex
is significantly increased, but remains unchanged in caspase-3-/- cortex. Dashed lines indicate lesion
boarder. Bar = 30 pm. **P=0.0019, one-way ANOVA followed by Bonferroni’'s post hoc comparisons tests,
n = 3-4 mice per group. (b) Representative images of B-gal/Nestin double immunostaining (left panels),
and Western-blotting of B-gal in the ischemic cortex of Topgal mice with or without caspase-3 mutation at
5 dpi (right panels).The expression of B-gal in the ischemic cortex of Topgal:caspase-3+/+ mice is greatly
enhanced, whereas it shows no obvious changes in Topgal:caspase-3-/- mice. Bar = 30 um. **P=0.0015.
one-way ANOVA followed by Bonferroni’s post hoc comparisons tests, n = 3-4 mice per group. (c) Double
staining of BrdU with Nestin, and Western-blotting of Nestin in the ischemic WT and caspase-3-/- cortex.
Notice the lower level of Nestin in the ischemic caspase-3-/- cortex. **P=0.0012, one-way ANOVA followed
by Bonferroni’s post hoc comparisons tests, n = 3-4 mice per group. (d) Double staining and
quantification of BrdU/DCX. The numbers of BrdU/DCX-positive cells is significantly decreased in the
caspase-3-/- cortex. Arrows in A-C point to double-positive cells and in D point to magnified cells.
Arrowheads in D point to double-positive cells. Bars = 30 pm. **P=0.0072 (left panel), **P=0.0021 (right
panel), two-tailed Student’s t-test, n = 3-4 per group.
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Figure 6

Restoration of astrocyte dedifferentiation and promotion of neurogenesis in caspase-3-deficient cortex by
stabilized B-catenin. (a) Westhern-blotting of of Nestin and immune-staining of Nestin/GFAP in in
ischemic caspase-3-/- cortex infected by lentivirus expressing luciferase (pLenti-Luci as control) or EbC.
(b) Immuno-staining of Nestin/Sox2 in ischemic caspase-3-/- cortex infected by pLenti-Luci or EbC. (c, d)
Representative images and quantification of DCX/BrdU double immunostaining in ischemic caspase-3-/-
cortex infected by pLenti-Luci or EbC. EbC significantly increases the number of Nesin/Sox2- and
BrdU/DCX-double positive cells. Arrowheads point to double-positive cells and arrows point to magnified
cells. Bar = 30 um. **P=0.0063, two-tailed Student’s t-test, n = 3 mice per group. (g, f) Double
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immunostaining and quantification of NeuN/BrdU-positive cells in ischemic caspase-3-deficient cortex
infected with control virus or EbC. There is approximately one BrdU/NeuN-positive cell on average per
section of EbC treated cortex. S1, section 1. S2, section 2. Bars = 30 pm in (E), 5um in (€'). Arrows point to
BrdU/NeuN-positive cells. ***P<0.001, two-tailed Student's t-test, n = 3 per group.
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Figure 7

Promotion of functional recovery of caspase-3-deficient mice by stabilized B-catenin (a) Experimental
design and triple-staining of Retro-GFP/NeuN/Biocytin in patch-clamped cells. Bar = 5 ym. (b) Typical
action potentials of recorded cells and typical EPSCs of the spike-firing cells. 9 (out of the 23) patched
Retro-GFP-positive cells fire action potentials. Notice the spontaneous synaptic activities. (c) Sliding test.
Stabilized B-catenin in Caspase-3-/- mice significantly reduces sliding incidence of the contralateral
forelimb in the glass cylinder from 3w post-injury (n=6). *P<0.05. (d) Footfault test. Stabilized B-catenin
reduces footfault incidence of the contralateral forelimb on a horizontally placed ladder from 3w post-
injury (n=6). * P <0.05.
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Figure 8

Expression of Wnt2 in ischemic cortex of macaca mulatta and human cortex. (a, b) Double-
immunostaining of Wn2/NeuN, Wnt2/CC3 in control and injured cortex of macaca mulatta 24h after
ischemia. Bar = 30 pm. (c, d) Double-immunostaining of Wn2/NeuN, Wn2/CC3 in human cortical autopsy
tissue (control and 24 hpi). Bar = 30 ym. Notice the higher Wn2-immunoreactivity in CC3-positive cells in
both macaca mulatta and human cortex. Arrows point to representative double-positive cells.
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Figure 9

IRES-mediated Wnt2 protein translation. (a) Real time RT-PCR of Wnt2 in OGD treated neurons. (b)
Western-blotting of Wnt2 in apoptotic neurons treated with PD169316. (c) Western-blotting and
quantification of Wnt2 in apoptotic neurons treated with CHX. Notice that OGD does not induce Wnt2
Mrna, and that CHX blocks OGD-induced Wnt2 protein up-regulation. *Pcon vs OGD = 0.011, *P OGD VS
OGD+CHX = 0.031, one-way ANOVA followed by Bonferroni’s post hoc comparisons tests, N = 3 batches
of cells. (d) Sequence alignment of mouse, macaca mulatta and human Wnt2-5UTR. (e) Secondary
structure of mouse Wnt2-5UTR. Blue frames in (d) and (e) show the largest stem-loop and the
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corresponding sequence. The sequence underlined by black dots (in d) was replaced by the sequence
below highlighted with yellow color to make Wnt2-5UTR mutant construct in (e). (f-d) Bistronic luciferase
reporter assay of XIAP-5UTR, Wnt2-5UTR, and Wnt2-5UTR mutant under control and OGD condition.
**PXIAP = 0.0022, **PWnt2 = 0.0019, one-way ANOVA followed by Bonferroni's post hoc comparisons
tests, N = 3 batches of cells. Notice that Wnt2-5UTR initiates translation and mutation at the largest loop

abolishes the OGD-induced translation.
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Involvement of DAPS5 in Wnt activation and astrocyte dedifferentiation. (a) Western-blotting of DAP5 in
the contralateral (Contra) and ipsilateral (Ipsi) cortex at 24h post ischemia. (b) IRES activity of Wnt2
5UTR with or without DAP5 shRNA under OGD. DAPS shRNA effectively blocked the OGD-induced IRES
activity. **P=0.0052, one-way ANOVA followed by Bonferroni’'s post hoc comparisons tests, N = 3 batches
of cells. (c) Western-blotting of Wnt2 in the contralateral and ispilateral cortex infected by lentivirus
expressing DAP5 shRNA or control shRNA. *P = 0.039, one-way ANOVA followed by Bonferroni’s post hoc
comparisons tests, N = 3 mice per group. (d) Double-immunostaining and quantification of GFAP/B-gal in
ischemic cortex treated by control shRNA and DAP5 shRNA. Notice the attenuated expression of B-gal in
DAP5 shRNA treated cortex. (€) Double-immunostaining and quantification of GFAP/Nestin in ischemic
cortex treated by control shRNA and DAP5 shRNA. Ischemia-induced Nestin was reduced in DAP5 shRNA
treated cortex. (f) Double-immunostaining of DCX/BrdU in ischemic cortex treated by control shRNA and
DAPS shRNA. Notice the decreased number of DCX/BrdU-positive cells in DAP5 shRNA treated cortex.
Arrowheads point to double-positive cells. Arrows points to magnified cells. Bar = 30 ym. **P = 0.0063,
two-tailed Student’s t-test, n = 3 mice per group.
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