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Abstract: To address the escalating demand for wireless spectrum, the Cognitive Radio (CR) 

technology offers a solution for efficiently utilizing the scarce radio frequency (RF) spectrum. 

Spectrum utilization efficiency of a CR network majorly rely on spectrum sensing. Despite the 

effectiveness of cooperative spectrum sensing, achieving maximum throughput still poses many 

challenges. The present research investigates a cooperative spectrum-sensing model involving 

mobile CRs. We have adopted a non-cooperative game-theoretic model to optimize the sensing 

strategy to improve the overall throughput. Through evaluating the influence of node mobility on 

key sensing parameters like false alarm probability and detection probability, valuable insights 

are acquired regarding the design of efficient spectrum sensing strategies for mobile cognitive 

radio networks. The key contributions of the research include the impact of node mobility on the 

sensing strategies of CRs within a cooperative network, for an extensive variety of network 

conditions. This study illuminates the design of efficient and adaptive spectrum sensing 

strategies for future mobile cognitive radio networks. 

Keywords: Spectrum Sensing, Evolutionary Game Theory, Throughput Optimization, Node 

mobility 

1. Introduction 

Cognitive Radio (CR) [1] [2] is an innovative and adaptive transceiver equipped with intelligent 

networking capabilities, allowing it to automatically detect available channels in a wireless 

spectrum. By continuously monitoring the environment, CR can dynamically adjust its 

transmission parameters, enhancing radio operating behavior and facilitating concurrent 
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communications [3]. This adaptive behavior leads to a more efficient utilization of the radio 

frequency spectrum without causing interference to licensed users or primary users (PUs). 

The core cognitive capability of CR lies in its ability to sense and gather crucial information 

from the surrounding environment, such as transmission frequency, bandwidth, power, and 

modulation details. This spectrum sensing capability empowers secondary users (SUs) or CRs to 

identify and utilize the best available spectrum, significantly improving overall spectrum 

efficiency. 

However, practical implementation of spectrum sensing faces challenges due to issues like 

multipath fading, shadowing, and receiver uncertainties, which can compromise detection 

performance. To address these challenges effectively, cooperative spectrum sensing [4] appears 

as an appreciated solution. In a cooperative spectrum sensing scenario, CRs within a network 

collaborate and jointly contribute to spectrum sensing. By pooling their sensing results, the 

collective decision-making process becomes more robust and reliable, mitigating the impact of 

environmental challenges. 

Participating in cooperative spectrum sensing verifies to be a sensible approach for CRs in a 

network, as it enhances the accuracy of spectrum detection and enables better decision-making 

regarding spectrum utilization. This collective effort ultimately optimizes the efficient usage of 

available spectrum resources and promotes seamless coexistence with licensed users. 

Cooperative spectrum sensing plays a crucial role in identifying available bandwidth and 

efficiently allocating channels to SUs based on their demand and requirements. However, a 

significant issue arises as SUs tend to act selfishly by refraining from participating in spectrum 

sensing. Instead, they opt to overhear on other SUs' sensing activities and opportunistically 

transmit, thus secure time and energy without contributing to information acquisition. 

Consequently, this self-centered strategy results in low throughput for all SUs due to minimal or 

no participation in spectrum sensing, over the time. 

To tackle this challenge, a promising solution is the adoption of an evolutionary game strategy, 

which has been proposed and evaluated in previous research [5]. The evolutionary game 

approach enables secondary users to adapt and modify their strategies after learning from other 

CRs within the network. This adaptability fosters a more cooperative behavior among SUs, 

leading to enhanced spectrum sensing and information sharing. 



However, it is worth noting that the existing research work is limited to static CRs only and does 

not encompass the involvement of mobile CRs. Incorporating mobility into the analysis would be 

beneficial as it reflects real-world scenarios and introduces additional dynamics and complexities 

to the cooperative spectrum sensing problem. 

Utilizing an evolutionary game strategy promotes cooperation among SUs and thus improves 

spectrum sensing efficiency. Therefore, this research should extend the investigation to 

encompass mobile CRs to provide a comprehensive understanding and practical application of 

cooperative spectrum sensing in dynamic wireless environments. 

Node Mobility  

Node mobility indeed plays a critical role in the widespread adoption and appeal of wireless 

communication. The dynamic movement of wireless nodes has a significant impact on various 

communication parameters, including capacity, connectivity, routing, convergence, and more. 

Capacity [6]: Node mobility affects the available channel capacity, as the changing positions of 

nodes can lead to variations in signal strengths and interference patterns. Dynamic channel 

capacity is a critical consideration in wireless networks to ensure efficient data transmission. 

Connectivity [7]: The mobility of nodes directly influences network connectivity. As nodes 

move, link quality fluctuates, affecting the establishment and maintenance of connections 

between nodes. Mobility management becomes essential to maintain continuous connectivity. 

Routing [8]: Mobility poses challenges to routing algorithms as nodes frequently change their 

locations. Dynamic routing protocols need to be employed to adapt to the changing network 

topology and ensure efficient data delivery. Convergence [9]: The convergence of 

communication in a mobile environment becomes more complex due to nodes' mobility. 

Convergence refers to the synchronization and coordination of multiple nodes in the network, 

and mobility adds additional complexity for achieving convergence effectively. Moreover, node 

mobility can offer considerable benefits in terms of spatio-temporal diversity during sensing. As 

sensors move, they experience different signal strengths from the PU’s transmissions. This 

spatio-temporal diversity allows for more comprehensive and accurate information gathering, 

contributing to improved sensing capabilities and facilitating better utilization of the spectrum. 



Despite the inherent mobility feature of CR networks, it is often overlooked by many 

researchers. The mobility of wireless nodes in the context of CR networks presents both 

opportunities and challenges that require careful consideration. 

Allowing node mobility in CR networks can bring various benefits: 

Enhanced Spectrum Utilization: Mobile CR nodes can dynamically explore different parts of the 

spectrum, improving the chances of finding unused or underutilized channels, leading to more 

efficient spectrum utilization. 

Increased Coverage and Connectivity: Mobility can help extend the coverage area of CR 

networks and improve connectivity between nodes, especially in scenarios where fixed 

infrastructure is limited. 

Spatio-Temporal Diversity: As mentioned earlier, mobility introduces spatio-temporal diversity, 

which can enhance spectrum sensing accuracy and lead to better decision-making regarding 

spectrum usage. 

However, incorporating node mobility into CR networks also poses significant challenges: 

Spectrum Sensing Mechanism: The spectrum sensing mechanism needs to adapt to the dynamic 

nature of the network. Frequent spectrum sensing and decision-making become crucial to 

accommodate node movements and changes in available channels. 

Interference Management: Mobility can introduce varying interference patterns due to nodes 

moving in and out of each other's transmission range. Effective interference management 

techniques are essential to maintain quality-of-service and minimize harmful interference. 

Routing and Networking Protocols: Mobility complicates routing protocols and network 

management, as nodes change their positions frequently. Robust and adaptive routing algorithms 

are required to ensure reliable data delivery and optimal paths. 

Handover and Mobility Management: Handover procedures become critical to maintain 

connections as nodes move, especially in heterogeneous networks with multiple access points. 

Addressing these challenges requires innovative research and the development of novel solutions 

to optimize the performance of CR networks in mobile scenarios. By considering node mobility 



as an integral part of CR network design, researchers can unlock the full potential of dynamic 

spectrum access and leverage the benefits of cognitive radio technology in various applications. 

The present work aims to achieve the following objectives: 

 Analyze the impact of sensor mobility on spectrum-sensing parameters by conducting an 

extensive background review and literature survey. 

 Determine the overall throughput of SUs based on the mobility parameters of sensors 

using a proposed system model of cooperative spectrum sensing. 

 Analytically identify the optimal sensing strategy to maximize the throughput of SUs 

through a non-cooperative game theoretical model. 

 Validate the performance of the proposed spectrum-sensing model for determining the 

optimal spectrum sensing strategy for mobile CRs under diverse network conditions. 

Section 2 of the paper provides a thorough survey on contextual work. The investigation into the 

influence of sensor mobility on sensing parameters is detailed in Section 3. Section 4 discusses 

the proposed methodology, which encompasses the foundation and principles of the game-

theoretic model of spectrum sensing, along with the presentation of experimental results. Lastly, 

Section 4 concludes the research findings and outlines potential avenues for future research. 

2. Literature Survey 

In Cognitive Radio Networks (CRN), unlicensed SUs take advantage of shared spectrum 

reusability, subject to strict protection of PU transmissions. To ensure compliance with 

regulations set by bodies like FCC, efficient spectrum sensing techniques are required for 

secondary users. Distributed sensing is considered a viable approach to enhance individual user 

sensing without escalating the collective sensing overhead. Acknowledging the critical 

sensitivity requirements imposed on individual users within the radio network during deep fade 

conditions, S.M Mishra et al. (2006) [10] investigated the impact of fading environments on the 

detection performance of unlicensed users' sensing. Addressing challenges such as licensed 

users' activity, large-scale bandwidth variation based on spectrum availability, and channel 

switching processes faced by network users, K.R Chowdhury et al. (2006) [11] examined the 

influence of applying the TCP rate-controlled algorithm and a window-based transport protocol 

for Ad-Hoc Networks in CRN. Thoroughly researching the trade-offs in performance related to 



spectrum sensing, Y.C Liang et al. (2008) [12] made significant contributions in this area. In 

their study, Ghasemi et al. (2007) [13] emphasized significant performance gains achieved with 

an infinite number of correlated sensors, albeit constrained by the level of correlation. They 

derived a lower bound on the probability of missing opportunities for unlicensed access, 

highlighting the impact of correlated shadowing on collaborative sensing performance 

degradation. 

To minimize both false alarm and misdetection probabilities, Visotsky et al. (2005) [14] 

proposed increasing the number of independent and identically distributed (i.i.d) shadow fading. 

The proposed model was originally designed to identify the availability of TV channels, but its 

applicability extends to broader spectrum sharing scenarios. The study reinforced the concept 

that collaboration among individual nodes enhances spectrum usage efficiency. However, 

random sensor selection did not effectively mitigate the impact of shadow fading. Consequently, 

Selen et al. (2008) [15] introduced and evaluated three distinct algorithms for sensor selection. 

An important observation was that shadow fading exhibited a strong correlation with closely 

spaced sensors, thus emphasizing the benefits of selecting spatially sparse sensors. In addition to 

sensor locations, Alexander et al. (2009) [16] highlighted the significance of sense scheduling as 

an alternative to cooperative sensing in the spatial domain. However, they observed limited 

performance gains due to the static nature of sensors. Fixed geographical locations led to a lack 

of diversity in received signal strengths, thus diminishing the potential benefits. 

Furthermore, in the context of a cognitive vehicular network, [17] investigated the combined 

impact of SU’s motion and PU’s activities. In a mobile CR network, S Jana et al. (2013) [18] 

introduced two trust parameters - location reliability and malicious intentions - to enhance the 

detection of both malicious users and Primary Users (PU). To analyze the accessibility of the 

spectrum, S Bagchi et al. (2018) [19] presented a Bayesian approach with appropriate prior 

distributions. DasMahapatra et al. (2019) [20] proposed two prediction-based sensing models 

and conducted a performance comparison between them. In the context of fading environments, 

Kumar et al. (2020) [21] investigated the effects of cooperative spectrum sensing and threshold 

selection on the performance of CR networks. Furthermore, DasMahapatra et al. (2020) [22] 

focused on minimizing interference with PU by optimizing the sensing period. The game-

theoretical approach has gained popularity for resolving resource allocation problems and 



devising optimal strategies. Z. Xiao et al. (2018) [23] employed a non-cooperative game-

theoretical model for spectrum sharing among moving vehicles with Cognitive Radios (CR) in 

heterogeneous vehicular networks. S Ghosh et al. (2019) [24] utilized an auction-based game-

theoretical model to optimize energy and spectrum utilization. In the context of a wireless body 

area network, D Mohsin et al. (2022) [25] proposed a game theory-based protocol aimed at 

reducing bit error rate, power consumption, and duty cycle. For relay selection in Cognitive 

Radio Networks (CRN), J S Banerjee et al. (2022) [26] employed the Stackelberg game-theoretic 

model. 

Based on a comprehensive survey of relevant and recent research, we identified a crucial gap in 

the field concerning the optimization of sensing strategies for mobile Cognitive Radios (CRs) in 

a cooperative CR network. While some previous works [5] [27] have addressed strategic 

optimization for spectrum sensing, they focused solely on stationary sensors. However, in 

wireless communication devices, considering the mobility of sensors becomes essential. 

Considering this, our current research aims to explore the impact of sensor mobility on spectrum 

sensing parameters and, consequently, how these parameters influence the determination of an 

optimal sensing strategy. Specifically, we investigate the effects of mobile sensors compared to 

impractically fixed ones. Through simulations, we seek to uncover the trade-off between 

cooperation and scheduling resulting from sensor mobility. This study addresses an important 

aspect of the field and contributes to a more realistic and effective approach to spectrum sensing 

in mobile CR networks. 

3. Mobility Effects on Spectrum Sensing Parameters 

Figure-1 illustrates a basic Cognitive Radio (CR) network featuring mobile Secondary Users 

(SUs). The assumption is made that these mobile CRs exhibit independent movement, devoid of 

any correlation among them. Within suburban environments, it is established that the 

decorrelation distance falls within the 120-200 meters range [28], while maintaining a typical 

cell radius of 33 km. The mobility of CRs is constrained within the cell, and any movement 

beyond the cell boundaries results in a loss of connectivity to the network. 



 

Figure-1: A CR Network architecture with mobile nodes  

The mobile CRs employ the energy detection method for spectrum availability identification. 

The energy detector's response is characterized by the received signal power and the noise 

power, represented by the test statistics denoted as T. The test statistics for the nth mobile CR 

can be approximated as a Gaussian distribution, as per references [29]. 

    { (         )                                      )   )                        (1) 

In this context,    denotes the received PU signal strength,    represents the noise power, and     is the count of sensing samples taken during the sensing period    ) within a frame. The 

expression for    can be articulated as follows:                       (2) 

where     is the initial received signal strength. The path loss element is presumed to be nearly 

constant for each CR since the distance from the PU to the CRs within the cell is significantly 

large compared to the cell radius.     represents the channel gain between the n
th

 CR and the PU 

transmitter, considering log-normal shadowing where   follows a normal distribution         ). The impact of multipath fading is disregarded by assuming a wideband PU 

channel, as discussed in reference [29]. 



3.1. Test Statistics and Covariance Matrix 

To illustrate the temporal correlation of the test statistics for an individual mobile CR, we 

examine the sensing of the n
th

 CR over M consecutive frames at intervals of ∆t, employing the 

energy detection technique. The output of the energy detector is denoted as:                                 (3) 

Following equation (1), where the test statistics   exhibits Gaussian distribution,    becomes an  

M- variate Gaussian distribution [30]: 

    {         )                               )                          (4) 

Here,           )     and           )    ,     and    are representing the average 

received signals power from PU by the test CR within the cell under     and     respectively. 

Additionally,               . 

The observed    exhibits correlation due to varying geo-locations during different sensing 

events, a consequence of the test CR's velocity. This correlation is attributed to the correlated 

shadowing     ). Analyzing the covariance matrix    in equation (4) allows for the examination 

of the temporal correlation of   . A common covariance matrix is assumed under both the 

hypothesis, due to the absence of a closed-form expression for detection probabilities [31]. In 

scenarios with very low received Signal-to-Noise Ratio (SNR) (approximately -20dB), where,      , the variance of test statistics   can be estimated as, [16] 

      )                           (5) 

The Gudmundson’s exponential decaying model is used for estimation of the covariance matrix   , [30] [32]  

                    [   
                                   ]   

 
     (6) 

Here,                                       (7) 



      denotes the decorrelation distance of shadow fading, and     is the Euclidean distance 

between the two successive sensing events. 

We considered that CR is moving in a fixed velocity of   m/s and it does not change its direction 

between two consecutive sensing events.    is 1s or less. 

Now, to extend this hypothesis testing problem with multiple mobile CRs, let’s denote     

matrix                   , which is the received signal strength measurement matrix 

collected from   mobile CRs and each CR senses M times before deciding about the hypothesis. 

{   (    )           (    )                 (8) 

Then the common covariance matrix Ʃ is expressed as, [30] 

  [                   ]     
        (9) 

Due to large cell radius, the correlation between the sensing samples collected from different 

CRs is small enough, therefore       . 

3.2. Probability of False Alarm (Pf) and Detection (Pd) 

To quantify the spectrum sensing performance of mobile CRs a spatio-temporal spectrum 

sensing is theoretically analysed in [30]. According to [30] the probability of false alarm with a 

threshold     is given by, 

    (        √    )          (10) 

Here,    )    √  ∫                   (11) 

And,            )         (12) 

From equation (10) probability of detection    is given by, [30]     (   (  )        ) √      )       (13) 



Where,         {                 }       (14) 

And,                            )  [  
                                             ]  

  
  (15) 

Then, finally, the probability of detection    ) can be represented in terms of CR speed as, 

    (   (  )        )  √             (   (             ⁄ )   ))   (16) 

The above equation characterizes the detection probability of a mobile CR with velocity   . The 

CR is a member of a cooperative CR network of   mobile CRs. The Fusion Centre (FC) of the 

network decides about PU’s transmission status after   number of sensing events. 

The impact of mobility of CRs, in spectrum sensing and in the non-cooperative spectrum sensing 

game to maximize throughput, is examined in the next section. 

4. Proposed Methodology: A Game Theoretical Framework 

In pursuit of achieving objectives 2 and 3 in this study, we have embraced a non-cooperative 

game theoretical model. Our focus is on attaining an optimal sensing strategy to enhance the 

overall throughput of individual mobile CRs. Notably, the parameters pertinent to a mobile node 

within a CR network differ from those associated with a static node. In our earlier work [5], a 

thorough examination of throughput analysis was conducted for a cooperative CR network. 

Furthermore, we achieved throughput maximization through strategic manipulation in a non-

cooperative spectrum sensing game. It is crucial to acknowledge that all the analyses conducted 

in our prior work were geared towards static CRs, and the introduction of velocity in the CR 

introduces changes in numerous parameters. 



4.1. Foundation and Principle of Spectrum Sensing Game 

The interaction during spectrum sensing and sharing the sensory data amongst the SUs in the 

network, was analysed by designing a spectrum sensing game [5]. We are continuing with the 

same sensing model for throughput maximization in the present cooperative mobile sensing node 

scenario. 

 

Figure-2: Sensing strategy of CRs with throughput as utility. 

Figure-2 illustrates the behavior and utility considerations of a CR within a cooperative sensing 

CR network. Each CR assesses its utility, defined as individual throughput, based on actions like 

cooperative sensing and non-cooperative sensing. The throughput is influenced by various 

parameters including the number of sensing CRs, individual Signal-to-Noise Ratio (SNR), node 

velocity, and the number of sensing events. CRs opt for actions that result in superior utility, 

participating in sensing only when their individual throughput is higher with a particular action. 

Analyzing the system model allows for the determination of CRs' average individual throughput. 

System Model 

The sensing model consists of one PU and k homogeneous and/or heterogeneous SUs, 

opportunistically accessing the licensed spectrum of the PU. These CRs operate in half-duplex 



mode, meaning they cannot sense and transmit simultaneously. The SUs communicate the 

sensing results through a narrowband signaling channel, as illustrated in Figure-3. 

 

Figure-3: The CR System Model 

Throughput Architecture of SUs 

Game theoretic analysis [33] of such sensing model to maximize the average throughout in terms 

of utility function is represented as below. 

The SUs      Š = {              } of the network, can have only two pure strategies, i.e. 

either to cooperate in sensing (C) or not (NC). Considering the SUs choosing pure strategy S 

forms a set,                  , then the payoff function of the contributor to sensing      , 
can be represented as, [27] [34]                 )|  | )(      )       |  |            (17) 

Here, |  | represents the number of contributors and     is the data rate of the secondary user    under hypothesis   . We also considered that sensing cost is divided equally among all 

sensing SUs. Therefore, the payoff function of all other SUs (     ), who have chosen pure 

strategy R, is given by,           (      )       |  |              (18) 



Here    is the SU that is not contributing to sensing. It expects higher throughput, relying on 

other contributor’s decisions. If no SU contributes then|  |    and PF = 1, then the payoff 

function becomes,             |  |           (19) 

Since SUs try to maximize their payoff values, contributors to sensing may have stable 

throughput but non-contributing SUs may save more time for transmission but with the risk of 

zero throughputs.  

The above equations of throughput are extended in general form applicable for large range of 

network conditions in [5] 

The expression of the utility function of the cooperating SU    is [5] [35], 

   ̅̅ ̅̅̅     )    {      )∏   
   }

     ∑ (      )∑∏         )        )∏            ))  
          

   
    

           (20) 

Here,                    is the set of cooperation probabilities of SUs, and    is the     set of 

all possible      )      combinations of   and        , that means    belongs to   but not 

belongs to            ). 

Similarly, the equation of throughput of the non-cooperation    SUs is [5], 

   ̅̅ ̅̅̅      )    {∏     ∑ ∑∏         )        )∏            ))  
          

   
   

 
   } 

           (21) 

In the previous section, we have investigated the impact of mobility of CR on spectrum sensing 

parameters. Equation (10) and (16) are representing the false alarm    ) and detection 

probabilities    ). These parameters may be utilized to evaluate the effect of node mobility in a 

cooperative spectrum sensing game. 



4.2. Experimentation and Results 

To establish a simulation environment closely resembling reality, we considered a cooperative 

Cognitive Radio (CR) network with parameters closely aligned with IEEE802.22 standards. 

For the experiments, we adopted the following values for the network parameters. 

Table 1: Sensing Parameters and Their Experimental Values 

Parameter Name Symbol Values 

Sensing sampling frequency    6Mhz 

Noise power                            
Signal power   )                        
Frame duration Tb 20ms 

Decorrelation distance       150m 

 

  

Figure-4 a): Effect of number of sensing events on Pf and Pd 

b): Effect of SU’s speed on Pf and Pd 

The variable N represents the number of mobile CRs, and it is examined under various 

conditions. Similarly, the variable M, denoting the number of sensing events conducted before 

making a decision, is also explored across different network conditions. The frame duration is 



assumed to be 20 ms, and the sensing interval (∆t) aligns with the frame duration, assuming one 

sensing event in each frame. The velocity of each CR is treated as a variable to assess its impact 

on sensing outcomes. Furthermore, it is assumed that CRs maintain a constant velocity between 

two successive sensing events and move in a straight trajectory. The simulation encompasses 

both homogeneous and heterogeneous CRs for a comprehensive analysis. 

For five mobile CRs, all with uniform velocity 10 m/s, operating in -20dB receive SNR 

environment, the variation of false alarm    ) and detection probability    ) with the number of 

sensing events   ) is shown in figure-4 a). In the given situation, both    and    are increasing 

with the number of sensing events. These CRs are obeying the rules of collaborative sensing. 

During hypothesis    due to the combined effect    increases and during   , due to low receive 

SNR,    decreases. 

Figure-4 b) demonstrations the impact of sensing node velocity in m/s on    and    in the similar 

environment as mentioned in the previous state. Additionally, we assumed 20 sensing events for 

each five sensing CRs, which are moving with the same and constant velocity. From figure-4 b), 

it is clear that the detection probability is improved for mobile sensors in comparison to static 

one. 

  

Figure-5 a): Throughput of mobile test CR with number of sensing events. 

b): Throughput of a mobile and homogeneous test SU for cooperating and non-cooperating 

strategies with sensing probability of other SUs. 



In a cooperative CR network, each SU has a choice either to participate in sensing or not. The 

SUs choose their strategy according to the payoff function that is associated with the strategy. 

The strategical analysis is reported in detail in [5] by implementing the evolutionary game 

theory. The same game-theoretical model is adopted here to examine the impact of motion of the 

sensing nodes on throughput and then to choose the optimum sensing strategy to maximize 

throughput. 

Here it is assumed that the number of CRs (stationary and/or moving) have formed a 

collaborative sensing network. The sensing scheme they have followed is as shown in figure-3. 

As per the sensing policy adopted here, the sensing duration per frame per SU is reduced by a 

factor of the number of cooperating SUs. The reduced sensing time per frame yields more time 

for data transmission. Therefore, given the utmost sensing accuracy, the more the number of 

sensing CR, the more the throughput. On the other hand, not cooperating in sensing i.e. no time 

spend for sensing. This may produce better throughput as long as other CRs senses the spectrum 

precisely. Sensing accuracy depends on many factors including the number of sensing events. 

Figure- 5 a) depicts the variation of throughput of a mobile CR with a uniform speed of 10 m/s 

with the number of sensing events for both cooperating and non-cooperating strategies. The 

network is assumed to be consists of five homogeneous SUs and the received SNR for all CR is -

20dB. Then, the throughput analysis is carried out for different network conditions. Figure-5 b) 

represents throughput analysis of a five homogeneous mobile SUs’ network scenario. The speed 

of all SUs is assumed to be 10 m/s, receive SNR is -20dB and 20 sensing events. The throughput 

of both the strategies of a test CR is represented with the probability of cooperation probability 

of other CRs. The through is represented in a normalized scale.  It may be observed from the 

figure that at a very low and very high cooperation probability of other CRs, cooperation strategy 

of test CR provides better throughput then not participating strategy. But with the moderate 

probability of cooperation of other CRs, the non-cooperating strategy of test CR provides better 

payoff with respect to cooperative strategy. Accordingly, SUs can choose to play an optimal 

strategy to maximize its’ throughput.  

Figure- 6 a) represents the throughput analysis of ten mobile SUs’ spectrum sensing game. The 

rest of the network conditions are the same as the previous network. Another situation, with a 

different velocity of homogeneous CRs, is assumed for simulation. 



  

Figure-6 a): Throughput of a mobile and homogeneous test SU, in a ten SU game scenario. 

b): Throughput of a mobile and homogeneous test SU, in a five SU game scenario. 

Figure-6 b) shows the throughput analysis for five homogeneous SUs with a uniform velocity of 

5m/s. Twenty sensing events are supposed, at receive SNR -20dB. 

To deploy more versatility, we extend our work for heterogeneous SUs. We considered for 

different network scenarios. Here we assumed both static and mobile sensing nodes with 

arbitrarily chosen speed. The number of participating CRs in the network and the number of 

sensing events are also varied. The throughput of the test CR with cooperating strategy is 

represented and compared (Figure-7 a)), for the below-mentioned network conditions. 

Condition_1:  A CR network of five SUs. Test CR is moving with speed 10 m/s and other CRs 

with 20 m/s. The number of sensing events is 20 and the receive SNR is -20dB. 

Condition_2:  A CR network of five SUs. Test CR is moving with speed 5 m/s and other CRs 

with 20 m/s. The number of sensing events is 20 and the receive SNR is -20dB. 

Condition_3: A CR network of five SUs. Test CR is moving with speed 20 m/s and other CRs 

with 5 m/s. The number of sensing events is 20 and the receive SNR is -20dB. 

Condition_4: A CR network of ten SUs. Test CR is moving with speed 5 m/s and other CRs 

with [10, 15, 20, 15, 10, 20, 5, 0, 0] m/s respectively. The number of sensing events is 20 and the 

receive SNR is -20dB. 



  

Figure-7 a): Throughput of a cooperating CR with sensing probability of other CRs in 

different network conditions. 

b): Throughput of a non-cooperating CR with sensing probability of other CRs in different 

network conditions. 

Figure-7 b) shows the throughput of the test CR with the non-cooperating strategy with sensing 

probability of other heterogeneous CRs, for the mentioned network conditions. 

5. Conclusion and Future Scope 

To design a reliable as well as realistic CR engine, which is intelligent and efficient enough to 

achieve the maximum possible utility function in terms of throughput, we must not ignore the 

mobility factor of the wireless node. The throughput of a CR is closely related to the efficiency 

of spectrum sensing. In this work, we briefly addressed the issues of spectrum sensing efficiency 

maximization by sensing strategy optimization for static CR in a cooperative network. The work 

is extended considering mobile CR nodes. The mobility of wireless nodes affects many 

communication parameters such as connectivity, capacity, convergence, etc.  

Initially, we examined the effects of node mobility of a cooperative CR network on spectrum 

sensing. Relations of spectrum sensing parameters like false alarm probability    and detection 

probability    with the velocity of the sensing nodes are represented. The number of sensing 

samples, number of sensing events, receive SNR, number of CRs in the network, etc. are taken 

into account when representing    and   .  



Therefore, the robustness of the system is tested through simulation through MATLAB software. 

The spectrum sensing game is re-modelled with mobile CRs. The optimum strategy to maximize 

throughput at different network conditions is tested and verified through the game-theoretic 

approach. The throughput is represented and compared for pure cooperating and non-cooperating 

strategies with varying sensing probability of other CRs of the network, at diversified network 

conditions.  

The present research work may be extended to verify the mobility impact on spectrum sensing 

through prototype experimentation. The adverse effect of mobility of sensing nodes may be 

mitigated through the Fusion Centre rule of cooperative sensing. Game theory may be deployed 

to upgrade cooperative sensing policy to maximize spectrum sensing outcomes. 
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