
OpenMP o�oad at the Exascale using Intel® GPU
Max 1550: evaluation of STREAmS compressible
solver
Francesco Salvadore

CINECA
Giacomo Rossi

Intel Corporation Italia S.p.A

Srikanth Sathyanarayana
Max Planck Computing and Data Facility

Matteo Bernardini
Sapienza University of Rome

Research Article

Keywords: CFD, GPU, OpenMP, Compressible Flows, Ponte Vecchio

Posted Date: April 2nd, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4180620/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4180620/v1
https://doi.org/10.21203/rs.3.rs-4180620/v1
https://creativecommons.org/licenses/by/4.0/

OpenMP offload at the Exascale

using Intel® GPU Max 1550:

evaluation of STREAmS compressible solver

Francesco Salvadore1, Giacomo Rossi2*,
Srikanth Sathyanarayana3, Matteo Bernardini4

1HPC Department, CINECA, via dei Tizii 6/B, Rome, 00185, Italy.
2*Intel Corporation Italia S.p.A.,

Via Santa Maria Valle 3, Milan, 20123, Italy.
3Max Planck Computing and Data Facility, Gießenbachstraße 2,

Garching, 85748, Germany.
4Department of Mechanical and Aerospace Engineering, Sapienza

University of Rome, via Eudossiana 18, Rome, 00184, Italy.

*Corresponding author(s). E-mail(s): giacomo.rossi@intel.com;
Contributing authors: f.salvadore@cineca.it; srcs@mpcdf.mpg.de;

matteo.bernardini@uniroma1.it;

Abstract

Nearly 20 years after the birth of general purpose GPU computing, the HPC
landscape is now dominated by GPUs. After years of undisputed dominance by
NVIDIA, new players have entered the arena in a convincing manner, namely
AMD and more recently Intel, whose devices currently power the first two clusters
in the Top500 ranking. Unfortunately, code porting is still a major problem,
even more so with the presence of different vendors, but at the same time the
emergence of simplified standard paradigms suggests an encouraging prospect
for developers.
In this work, we analyze the porting and performance of STREAmS, a community
code for compressible fluid dynamics, on Intel® Data Center GPU Max 1550
(formerly called Ponte Vecchio or PVC) based architectures. First, we discuss
the porting, based on the offload functionality of the OpenMP 5.x paradigm,
and in particular using a hybrid directives/APIs approach that fits smoothly into
the multi-backend software ecosystem of STREAmS-2. Second, we analyze the
performance of the code on two benchmark clusters powered by PVC, including
the exascale Aurora cluster. The performance is evaluated at the different levels

1

of parallelism involved, i.e., the intrinsic parallelism of the PVC tile, the inter-tile
parallelism within the GPU configuration, between the GPUs within the node,
and between the nodes within the cluster. The analysis shows that although the
implementation complexity of the OpenMP porting is limited, it is necessary to
follow some important guidelines to achieve satisfactory performance. The PVC
GPU shows about 40% higher performance than the NVIDIA A100 or AMD
MI250X GPUs, which however were released about 3 years earlier. Both intra-
node and inter-node scalability show good results. Overall, the introduction of
PVC into the GPU computing HPC landscape represents a positive step forward
for diversification and competitiveness in the sector.

Keywords: CFD, GPU, OpenMP, Compressible Flows, Ponte Vecchio

1 Introduction

High Performance Computing (HPC) has made incredible advances over the last two
decades, enabling ground-breaking research in simulation, data analysis and artificial
intelligence. With the advent of exascale computing in the current decade, Graphical
Processing Units (GPUs) have been at the center of much of this progress. For the
most part, NVIDIA has dominated the GPU market, but in recent years AMD has
emerged as a worthy challenger with its flagship Instinct accelerator series. This is
evidenced by the choice of GPU architectures in some of the world’s fastest supercom-
puters [1]. Frontier, currently the fastest supercomputer at Oak Ridge Laboratory,
uses AMD GPUs. The two fastest pre-exascale supercomputers in the EU [2], LUMI
[3] and Leonardo [4], are powered by AMD and NVIDIA GPUs, respectively. With
the introduction of the Ponte Vecchio (PVC) GPU based on the Xe microarchitecture,
Intel has also become a serious contender to potentially deliver similar performance to
NVIDIA and AMD GPUs. This is evidenced by the establishment of LLNL’s Aurora
supercomputer, which is the second fastest in the world at the time of this writing,
but is expected to be the fastest supercomputer at full capacity, capable of a peak
performance of 2 exaFLOPS.

From a hardware perspective, GPUs have come a long way in a short period of
time, with newer designs combining CPU and GPU in a unified memory architec-
ture, which is bound to increase overall bandwidth. Unfortunately, programmability
and portability are still major issues, with vendor-specific paradigms – particularly
NVIDIA CUDA [5] – still dominating the panorama. This is particularly true in the
context of Computational Fluid Dynamics (CFD), both for basic research codes [6]
and for applications closer to realistic cases [7].

However, portable approaches are beginning to gain significant traction, both as
performance portability libraries (e.g., kokkos [8], Raja [9], and alpaka [10]) and as
standard paradigms such as OpenMP [11], OpenACC [12], SYCL [13], or the C++
Parallel Standard Template Library [14]. The standard paradigms offer the optimal
solution in perspective, but currently their implementation in the various compil-
ers is limited/optimized only for some devices, making portability effective only on

2

paper. Nevertheless, several studies already demonstrate the potential effectiveness
of standard approaches in different fields: for example, SYCL used for biological
sequence alignment [15], PSTL for astrophysical applications [16], or OpenACC for
CFD applications [17].

From a programming language perspective, Fortran and C/C++ remain the HPC
reference languages, and Fortran in particular is widely used in the CFD context for
historical reasons, but also for its ability to address the needs of new users to effi-
ciently implement the typical algorithms involved in CFD. However, Fortran’s support
for heterogeneous computing paradigms is limited in several cases. For example, the
performance portability libraries are C++ oriented, and HIP [18], the basic paradigm
for programming AMD GPUs, also provides limited support for the Fortran world.

Over the years, several popular Fortran codes have taken different approaches to
the portability problem. Neko [19], a spectral element based code, uses multi-level
abstractions through the Fortran abstract type with extending implementations for
the architecture of choice. GENE [20], a plasma microturbulence simulation code,
uses a similar approach with the GPU implementations abstracted using the Gtensor
library (developed in C++), which is designed to handle the multi-dimensional arrays
similar to Fortran. Quantum ESPRESSO, a suite of codes for electronic-structure
calculations and materials modelling, initially started with a CUDA Fortran imple-
mentation to target NVIDIA GPUs, but in recent years has moved more towards
an OpenACC/OpenMP standard implementation to achieve performance portability
[21, 22]. FUN3D, a CFD solver developed at NASA Langley, uses FLUDA, a thin
abstraction layer, to target NVIDIA and AMD GPUs. Recently, FLUDA has been
extended to handle Intel GPUs via the Intel oneAPI SYCL [23]. Alya, a popular CFD
code, has been extended to improve algorithmic scalability using the PSCToolkit [24]
and potentially address the exascale scenario.

STREAmS-2 [25, 26] is a state-of-the-art in-house Direct Numerical Simulation
(DNS) solver designed to simulate canonical compressible wall-bounded flows (see e.g.,
[27–29]). It is written in modern object-oriented Fortran and is able to target CPU and
GPU architectures, in particular NVIDIA and AMD. Over the years, STREAmS-2 has
closely followed and responded to the evolution of GPU technology. The last version
of STREAmS-2 supporting NVIDIA and AMD GPUs showed an impressive weak
scalability for the EU’s top two supercomputers, LUMI and Leonardo [30]. However,
with the inevitable arrival of powerful Intel GPUs, an implementation targeting them
has been lacking. For Fortran simulation codes like STREAmS-2, OpenMP offloading
is a convenient way to efficiently support Intel GPUs. OpenMP has long been the
gold standard for thread-based parallel programming models. Since version 4.5, the
OpenMP standard has specified support for heterogeneous systems. The key feature
of OpenMP is its robust, easy-to-implement benefits, coupled with the continued
evolution of the standard. This is promising for codes written in Fortran, as it could
potentially be the de facto programming model for targeting all GPUs, helping to
achieve true performance portability.

In this paper we present an OpenMP implementation of STREAmS-2. As a first
step towards full performance portability, we evaluate its performance on the latest
Intel Ponte Vecchio GPUs. At the time of writing, we believe this is the first work to

3

evaluate the performance of a pure Fortran OpenMP implementation on Intel Ponte
Vecchio GPUs. In section two, we begin with a discussion of the capabilities of the
Intel Ponte Vecchio GPU, followed by the OpenMP implementation and automation of
STREAmS-2. In section three, we discuss the performance results, first on a single tile,
followed by the scalability results. Finally, in section four, we report the conclusions
of the analysis.

2 Material and methods

2.1 Intel Data Center GPU Max

Intel has a long and succesful story in HPC, with x86 CPUs, from almost three
decades: Xeon CPUs, designed for servers and high performance applications, were
introduced in June 1998 and have steadily increased the available computing power,
also thanks to the introduction of vector instructions (and dedicated hardware) such
as SSE, AVX, AVX2 and finally AVX512.

Intel Data Center GPU Max (codenamed Ponte Vecchio) is the first Intel Xe GPU
microarchitecture dedicated to High Performance Computing: this new microarchitec-
ture uses both EMIB 2.5D and Foveros packaging technologies to combine up to 128
Xe cores on a single GPU. Unlike previous Intel GPU generations, this microarchi-
tecture uses the Xe core as the compute unit: an Xe core contains vector and matrix
ALUs called vector and matrix engines.

The Xe core contains 8 vector and 8 matrix engines (XVE and XMX, respectively)
and a large 512KB L1 cache: each vector engine is 512 bit wide and supports 16 FP32
SIMD operations with fused FMAs. With 8 vector engines, the Xe core delivers 512
FP16, 256 FP32, and 128 FP64 operations per cycle. Each matrix engine is 4096 bit
wide, so with 8 matrix engines, the Xe core delivers 8192 int8 and 4096 FP16/BF16
operations per cycle; in addition, the Xe core provides 1024B load/store bandwidth
to GPU memory.

Each vector engine is a multi-threaded SIMD processor with up to 8 threads
available. When a kernel is submitted to the Compute Command Streamer (CCS)
for execution, it is divided into work groups. Each work group is divided into vector
engine threads that execute it in parallel.

Ponte Vecchio GPU is available in two different models: single tile Intel Data
Center GPU Max 1050 and two tiles Intel Data Center GPU Max 1550. In this paper,
we discuss the performance of the STREAmS-2 code on the Intel Data Center GPU
Max 1550: this PVC model, clocked at 1600 MHz, has 128 GB of HBM2e memory,
providing a total bandwidth of 3276.8 GB/s and 128 Xe cores, for a total of 1024
vector engines and 8192 hardware threads. The GPU is organized in two stacks, called
tiles, in which the available resources are shared equally; the TDP is 600W and in
figure 1 the full dual-tile stack can be observed.

The table 1 shows the peak bandwidth and peak FP64 performance for the Intel
GPU Max 1550, along with current GPUs available from Nvidia and AMD. In this
paper, we compare PVC performance with Nvidia A100 and AMD MI250X GPUs.

Programming models available for PVC are: OpenCL and Level-Zero at lower
level, SYCL/DPC++ for C++ and directive based OpenMP offload for C/C++ and

4

Fig. 1: Intel PVC Stack

Table 1: Memory bandwidth and FP64 theorethical peak performance for currently
available GPUs

PVC A100 (PCIe) H100 (PCIe) MI250X MI300X

Peak Bandwidth [GB/s] 3276.8 1935 2000 3200 5300
Peak FP64 Performance [TFlop/s] 52 9.7 26 47.9 81.7

Fortran, together with standard programming language parallelization as Fortran DO

CONCURRENT. The GPU codes must be compiled using Intel oneAPI new compilers
(icx, icpx or ifx) and can be linked with Intel oneMKL with GPU offload capability
and Intel MPI which supports GPU buffers for GPU to GPU direct communication.

2.2 Numerical code and test case

STREAmS is a CFD code that solves the compressible Navier-Stokes equations in
Cartesian coordinates using finite difference discretization. It is capable of simulating
both calorically and thermally perfect gases.

The nonlinear terms are evaluated by exploiting a hybrid discretization that
switches between central schemes in smooth regions of the flow and shock-capturing
schemes for regions with discontinuities. Among the central schemes, skew-symmetric
schemes are available, which are cast in terms of numerical fluxes to allow easy
hybridization with the shock-capturing scheme ([31]). Skew-symmetric schemes guar-
antee the conservation of kinetic energy in the incompressible inviscid limit. The
recent KEEP-n schemes ([32]) are also available, capable of conserving (in the limit
of n which tends to infinity) also the local entropy for smooth inviscid flows. Cen-
tral schemes are available up to eighth order accuracy. Near the discontinuity, WENO

5

(weighted essentially non-oscillatory) reconstruction is used to obtain the character-
istic fluxes at the cell faces which are then projected via the eigenvectors of the Euler
equations. WENO schemes are available in 1st, 3rd, 5th and 7th order.

The switch between central discretization and WENO is controlled by a mod-
ified version of the Ducros shock sensor, which activates shock capture only near
discontinuities.

The viscous terms are discretized with central finite difference schemes up to 8th
order, or in a conservative 2nd order form where the viscous flows are evaluated first
at the faces and then combined to compute the term acting at the nodes.

The time integration is based on a low-storage Runge-Kutta scheme.
STREAmS is oriented towards the simulation of canonical compressible flows

under turbulent conditions, i.e. the biperiodic planar channel, the spatially evolving
boundary layer and the shock-boundary layer interaction. In the present work, the
tests refer to the channel, which is the simplest flow, but still involves the majority
of the computationally demanding sections of the solver. In particular, we consider a
calorically perfect gas and a discretization based on central KEEP-0 schemes at the
6th order, viscous schemes in Laplacian form at the 6th order and WENO schemes
at the 5th order.

The reference version of the code is STREAmS-2, which is a complete rewrite of
STREAmS, aiming at modularity and multibackend support. It is the latter feature
that makes the OpenMP offload adaptation described in this paper relatively easy.

2.3 OpenMP porting

Since November 2015, OpenMP specifications 4.5 introduced device constructs to
execute code on the “device”, intended as any non-CPU device (GPU, FPGA, copro-
cessor) suitable for code acceleration; support for non-CPU devices has been improved
and extended, with the latest OpenMP specifications available being version 5.2,
released in November 2021.

OpenMP provides two different approaches to device data management: automatic
data management and user-controlled data management.

Automatic data management is based on Unified Shared Memory (USM) and must
be supported by the hardware. With this approach, the GPU can read and write data
allocated in host memory (OpenMP terminology that refers to the CPU), and the
CPU can read and write data allocated in the GPU; if the CPU and GPU do not
share the same memory space, the system migrates the data, typically one page at a
time, between the different memory spaces.

User-controlled data management allows the user to fine-tune data allocation and
communication between the CPU and GPU, and OpenMP provides two different
strategies for doing this: “data mapping” and direct allocation to GPU memory.

The data mapping strategy consists of extending the CPU allocation to the device
with the OpenMP map clause that specifies the list of variables to be mapped. The
clause can be applied to OpenMP data constructs, i.e. target data or target enter

data, or to target compute regions. There is no need to duplicate variable declara-
tions because host and device buffers have the same name and are “associated” in
such a way that host-device synchronization is managed explicitly using the OpenMP

6

target update construct or simply by exiting the target compute region. Mini-
mizing CPU-GPU memory transfers is critical to achieving good performance, and
compilers may play a role in this [33].

Direct allocation relies on OpenMP device memory routines that explicitly allo-
cate, deallocate, and synchronize data, i.e., omp target alloc, omp target free,
and omp target memcpy: this approach gives the developer the most control, but
unfortunately, if the same variable is needed on both the host and the device, dupli-
cate variable declaration is required. Also, when this approach is used in Fortran
code, device data must necessarily be declared as Fortran pointer, because the
OpenMP Fortran interfaces for device memory routines (introduced in the OpenMP
5.1 specification in November 2020) only expose the type(c ptr) data type (see
Listing 1).

Listing 1 OpenMP Fortran interface for omp target alloc device memory routine

type(c_ptr) function omp_target_alloc(size, device_num) bind(c)
use, intrinsic :: iso_c_binding, only :: c_ptr, c_size_t, c_int
integer(c_size_t), value :: size
integer(c_int), value :: device_num

In STREAmS, we employ direct data allocation for the following reasons:

• Unified Shared Memory could impact performance
• Data duplication is not a concern because it has already been implemented for the

CUDA and HIP paradigms
• Fortran pointers were already used for HIP because HIP kernels must be written

in C
• Data mapping for nested Fortran-derived types is not yet well supported by modern

Fortran compilers.

The Fortran interfaces for the omp target alloc, omp target free and
omp target memcpy device memory routines have been wrapped into a module to pro-
vide a more Fortran-friendly interface and to avoid evaluating the size (in bytes) of
the device pointer(s): the interfaces are summarized in the listings 2, 3 and 4.

7

Listing 2 STREAmS wrapper for omp target alloc

subroutine omp_target_alloc_f_real_4(fptr_dev, ubounds, omp_dev, ierr, lbounds)
implicit none
real(rkind), pointer, intent(out) :: fptr_dev(:,:,:,:)
integer, intent(in) :: ubounds(4)
integer, intent(in) :: omp_dev
integer, intent(in), optional :: lbounds(4)
integer, intent(out) :: ierr
integer, pointer :: fptr(:)
type(c_ptr) :: cptr_dev
integer(ikind64) :: sizes(4), lbounds_(4)

lbounds_ = 1
if (present(lbounds)) lbounds_ = lbounds
sizes = ubounds - lbounds_ + 1
cptr_dev = omp_target_alloc(int(sizes * byte_size(1_rkind), c_size_t), int(omp_dev,

c_int))
if (c_associated(cptr_dev)) then

call c_f_pointer(cptr_dev, fptr, shape=[sizes])
fptr_dev(lbounds_(1):,lbounds_(2):,lbounds_(3):,lbounds_(4):) => fptr
ierr = 0

else
fptr_dev => null()
ierr = 1000

endif
endsubroutine omp_target_alloc_f_real_4

Listing 3 STREAmS wrapper for omp target free

subroutine omp_target_free_f_real_4(fptr_dev, omp_dev)
implicit none
real(rkind), pointer, intent(out) :: fptr_dev(:,:,:,:)
integer, intent(in) :: omp_dev
type(c_ptr) :: cptr_dev

cptr_dev = c_loc(fptr_dev)

call omp_target_free(cptr_dev, int(omp_dev, c_int))

nullify(fptr_dev)
endsubroutine omp_target_free_f_real_4

8

Listing 4 STREAmS wrapper for omp target memcpy

function omp_target_memcpy_f_real(fptr_dst, fptr_src, dst_off, src_off, &
omp_dst_dev, omp_src_dev)
implicit none
integer(rkind) :: omp_target_memcpy_f_real
real(rkind), target, intent(out) :: fptr_dst(..)
real(rkind), target, intent(in) :: fptr_src(..)
integer, intent(in) :: omp_dst_dev, omp_src_dev
integer, intent(in) :: dst_off, src_off
integer(ikind64) :: n_elements
integer(c_size_t) :: total_dim, omp_dst_offset, omp_src_offset
type(c_ptr) :: cptr_dst, cptr_src
integer(c_int) :: omp_dst_device, omp_src_device

n_elements = size(fptr_src,kind=ikind64)

omp_dst_offset = int(dst_off, c_size_t)
omp_src_offset = int(src_off, c_size_t)
omp_dst_device = int(omp_dst_dev, c_int)
omp_src_device = int(omp_src_dev, c_int)

cptr_dst = c_loc(fptr_dst)
cptr_src = c_loc(fptr_src)

total_dim = int(n_elements * byte_size(1_rkind), c_size_t)

omp_target_memcpy_f_int = int(omp_target_memcpy(cptr_dst, cptr_src, total_dim,
omp_dst_offset, omp_src_offset, &

omp_dst_device, omp_src_device), ikind)
endfunction omp_target_memcpy_f_int

Listing 5 illustrates the allocation method for the array wGP U used in the code
to store the conservative variables: while CUDA Fortran uses the standard allocate,
OpenMP uses the omp target alloc f wrapper.

Listing 5 Allocation of device arrays

CUDA Fortran

allocate(w_gpu(1-ng:nx+ng, 1-ng:ny+ng, 1-ng:nz+ng, nv))

OpenMP

call omp_target_alloc_f(fptr_dev=w_gpu,ubounds=[nx+ng,ny+ng,nz+ng,nv],&
lbounds=[1-ng,1-ng,1-ng,1],&
omp_dev=self%mydev,ierr=self%ierr)

CPU arrays are only used during initialization and finalization, and when writing
data to disk. In all of these situations, host-to-device or device-to-host data transfers
are required, as seen in listing 6. For CUDA Fortran, the data can be moved using a
simple Fortran assignment, while for OpenMP the custom omp target memcpy f must

9

be used. The two zeros refer to the source and destination pointer offsets, while the
last two dummy arguments are the destination and source device IDs, respectively.

Listing 6 CPU to GPU transfers

CUDA Fortran

w_gpu = w_cpu

OpenMP

self%ierr = omp_target_memcpy_f(w_gpu,w,0,0,mydev,myhost)

Regarding kernel implementation, it is worth noting that OpenMP does not yet
have a concept of “kernel” like CUDA Fortran. A recent paper by [34] introduced
kernel terminology and added preliminary kernel support to OpenMP, but according
to the OpenMP specifications, any loop can be executed on the device by simply
decorating it with a target construct that transfers control to the device.

To parallelize loop iterations (as has always been done on the CPU), they should be
distributed among OpenMP teams and then executed in parallel by num teams leagues
of threads, as shown in listing 7. The teams construct creates a league of teams (the
number of teams is decided by the compiler implementation), then the distribute

construct distributes loop iteration chunks among the teams, and the parallel do

activates multiple threads in each team to execute the iteration chunks assigned to
the team. In addition, loop iterations can be “collapsed” using the collapse clause
to expose more parallelism to the device. Loop order may follow the canonical CPU
loop order (for Fortran, innermost loop on contiguous data), at least in an early stage
of development; we will discuss the best OpenMP loop order in section 3.1.

10

Listing 7 STREAmS wrapper for omp target free

subroutine euler_x_hybrid_kernel(nv,nv_aux,...)
...
real(rkind), dimension(5,5) :: el, er
real(rkind), dimension(5) :: evmax, fi
real(rkind), dimension(5,8) :: gp,gm
...
!$omp target data map(alloc:el,er,evmax,fi,gp,gm)
!$omp target teams distribute parallel do collapse(3) has_device_addr(w_aux_gpu,fhat_gpu...)

private(el,er,evmax,fi,gp,gm)
do k = 1,nz

do j = 1,ny
do i = +istart_face-1+1,iend_face

...
call compute_roe_average(nx, ny, nz...)

enddo
enddo

enddo
!$omp end target data
endsubroutine euler_x_hybryd_kernel

Other OpenMP offload kernel features can be observed from the listing 7: the
has device addr clause indicates that all variables listed inside already have a device
address and can therefore be accessed directly from a device. Also, routines called
inside a target region (as compute roe average there) must be “decorated” with the
declare target attribute to generate both host and device code during compilation.
Local data, as eigenvector matrices el and er, can be manually mapped to the device
using the target data construct together with the map clause: all variables listed
inside will be allocated (due to the alloc map type) on the device for the entire extent
of the target data region, and no data will be transferred in or out.

In the STREAmS solver, Euler flux computations and MPI communication during
boundary condition imposition can be overlapped if the asynchronous algorithm is
chosen. This may be particularly useful for multinode runs where communication
overhead can be reduced. In CUDA Fortran, the computation is sent in one CUDA
stream and the MPI communication is sent in a separate stream to ensure overlap.
In OpenMP, asynchronicity can be achieved in many ways, for example, each target

region is a task that can be executed in parallel with some other tasks just by using
the nowait clause. In the STREAmS solver, we chose a simpler but very effective
approach using the OpenMP sections construct, as shown in listing 8. The euler x

and bcswap procedures are treated as two separate entities that can be executed in
parallel, depending on available resources. The execution is then synchronized at the
end of the parallel sections part, where the OpenMP runtime guarantees that all
sections must be completed.

11

Table 2: Florence and Aurora PVC
configurations

Florence Aurora

Vector Engines 512 448
TDP [W] 600 500
Firmware CHECK CHECK

Listing 8 STREAmS OpenMP asynchronous algorithm

call self%base_omp%bcswap(steps=[.true.,.false.,.false.])
!$omp parallel sections
!$omp section
call self%euler_x(lmax+1,nx-lmax,lmax,nx-lmax,do_update=.false.)
!$omp section
call self%base_omp%bcswap(steps=[.false.,.true.,.true.])
!$omp end parallel sections
call self%compute_aux(central=0, ghost=1)

2.4 PVC-powered supercomputers

For this PVC performance study, we used two different clusters: Florence and Aurora.
The first one is a small (17 nodes) internal Intel test cluster: each node, based

on Lenovo SD650-I V3 platform, is equipped with dual socket Intel Sapphire Rapids
8480+ CPU with 512 GB DDR5 RAM @4800 MHz and four Intel Data Center GPU
Max 1550; GPUs are connected using Xe links, while nodes are connected using Mel-
lanox HDR 200 Gbit/s IB fabric. Software stack available is Intel oneAPI 2024.0
(compilers, oneMKL and MPI).

The first is a small (17 nodes) internal Intel test cluster: each node, based on Lenovo
SD650-I V3 platform, is equipped with dual socket Intel Sapphire Rapids 8480+ CPU
with 512 GB DDR5 RAM @4800 MHz and four Intel Data Center GPU Max 1550;
GPUs are connected via Xe links, while nodes are connected via Mellanox HDR 200
Gbit/s IB fabric. The available software stack is Intel oneAPI 2024.0 (compilers,
oneMKL and MPI).

Aurora is one of the first US exascale supercomputers, installed at the Argonne
Leadership Computer Facility (ALCF), a Department of Energy Office of Science
User Facility at Argonne National Laboratory. Each node, based on HPE Cray EX
supercomputer platform, is equipped with dual socket Intel Sapphire Rapids 9480
with 64GB HBM2e and 512 GB DDR5 @4800 MHz each and six customized Intel
Data Center GPU Max 1550; GPUs are connected using Xe links, while nodes are
connected using HPE Slingshot 11 in Dragonfly topology. Software stack available
is HPE Cray EX plus Intel enhancements (oneAPI 2024.0 compilers and oneMKL),
together MPICH 52.2 library.

In table 2 the main characteristics of Florence and Aurora PVCs are reported:
both are Intel GPU Max 1550, but Aurora PVCs have slightly less vector engines

12

Compiler

Florence & Aurora Intel Fortran compiler ifx 2024.0.0

MPI library

Florence Intel MPI 2021.11

Aurora MPICH 52.2

Environment variables

Florence & Aurora

OMP NUM THREADS=8

OMP PROC BIND=close

OMP PLACES=cores

OMP TARGET OFFLOAD=MANDATORY

LIBOMPTARGET LEVEL ZERO COMPILATION OPTIONS=“-ze-opt-large-register-file”

Florence

I MPI OFFLOAD=1

I MPI OFFLOAD TOPOLIB=none

I MPI OFFLOAD DOMAIN SIZE=1

I MPI OFFLOAD FAST MEMCPY COLL=1

I MPI OFFLOAD CBWR=0

I MPI PIN CELL=core

I MPI PIN DOMAIN=omp

Table 3: Environment configurations for Florence and Aurora PVC-powered super-
computers

active (448 vs default 512) and is set with a lower TDP (500W vs default 600W): the
effects of this configuration on GPU performances will be analyzed in section 3.2.

The table 2 lists the main characteristics of the Florence and Aurora PVCs: both
are Intel GPU Max 1550, but the Aurora PVC has slightly fewer vector engines active
(448 vs. default 512) and is set to a lower TDP (500W vs. default 600W). The effects
of this configuration on GPU performance are analyzed in the section 3.2.

In table 3 environment setup for Florence and Aurora clusters are reported: C and
Fortran compilers are the same, provided by Intel oneAPI 2024.0.0, but as already
discussed before, Florence uses Intel MPI library (2021.11 version) while Aurora uses
Argonne MPICH library (52.2 version); the environment is therefore slightly different,
and Intel MPI environment variables (I MPI var) are set only for Florence.

In detail, the first four environment variables are related to OpenMP: they set
the number of threads, activate thread binding to CPU, specify that OpenMP thread
must be placed on CPU physical cores and force the program to stop if a device
construct or a device memory routine is encountered and no device is available or the
available device is not supported by the implementation.

The fifth environment variable concerns Level-Zero compiler and increases the
number of registers available to threads. By default, Intel compilers convert the
OpenMP offload program into an intermediate language called SPIR-V and stores
that in the binary produced by the compilation process. The code can be run on
any hardware platform by translating the SPIR-V code into the assembly code of the
platform at runtime (Just In Time - JIT compilation).

On Florence, 8 additional Intel MPI environment variables are set: the first enables
handling of device buffers in MPI functions, the second prevent Intel MPI from topol-
ogy definition, leaving full control to the developer; DOMAIN SIZE environment variable
control the number of base units per MPI rank: in this case, one MPI rank is assigned

13

to one device (PVC tile), FAST MEMCPY enable fast memcpy functions to optimize per-
formance for small message sizes and CBWR controls reproducibility of floating point
operations: if set to zero, the control is disabled. Last two environment variables are
related to MPI process pinning to the CPU: CPU core is selected as the minimal pro-
cessor cell and the size of MPI domanin is defined (a non-overlapping subset of logical
processor in a node) as the number of OpenMP threads.

2.5 OpenMP automation

The automatic generation of code supporting HPC programming paradigms is a con-
solidated strategy that is still used in various contexts (see [35] for a recent CFD
example). A portability tool for STREAmS-2, PyconvertSTREAmS, was originally
proposed in [30]. This tool, now called sutils (short for STREAmS utilities), is
enhanced to automatically translate the CUDA Fortran backend to OpenMP. The
development of sutils still follows its original philosophy – partly borrowed from
[36] – which is to closely follow updates to the CUDA Fortran backend and provide a
user-friendly backend generation of choice (CPU, HIPFort, or OpenMP). The CUDA
Fortran development follows a well-established policy that allows the conversion to be
streamlined and error-free. The tool can therefore generate simple and readable code
for all mainstream GPU architectures along with a standard CPU implementation,
with an option for OpenMP support.

However, the updated tool has some improvements over its predecessor. The main
idea behind these enhancements was to provide a robust framework to continuously
integrate and support new backends such as the one proposed in this paper. First,
the tool has been adapted to make heavy use of the Python-based Mako template
library to seamlessly set up appropriate templates for specific kernel generation in
both Fortran (CPU/OpenMP) and C++ (HIPFort) programming languages. Listing
9 gives a general Mako template for generating OpenMP Offload based on information
extracted from CUDA Fortran kernels. A more detailed background on this extraction
process is discussed in [30].

14

Listing 9 Mako template for the OpenMP offload

% if kernel_type == "global":
If local arrays exist in the global kernel, map them to the device
% if local_arrays == True:

!$omp target data map(alloc:${",".join(larrays)})
% endif

Final construct of directive specifying how the loop should be parallelized
<%
final_construct=f"!$omp target teams distribute\
parallel do collapse({num_loop})\
has_device_addr({‘,’.join(gpu_arrays)})\
{‘private(’+‘,’.join(larrays)+‘)’\
if local_arrays == True else ‘’}\
{‘&’ if is_reduction == True else ‘’}"
%>\

${final_construct}

If reduction exists in the kernel, specify the directive with the reduction clause
% if is_reduction == True:

% for redn_id,redn in enumerate(all_reductions):
Type of reduction (+/max/min/...) and their scalars
% reduction_type = redn[0]
% reduction_scalars = redn[1]
When kernel contains more than one reduction type, add &
% if len(all_reductions) > 1 and redn_id != len(all_reductions)-1:

!$omp& reduction(${reduction_type}:${reduction_scalars}) &
% else:

!$omp& reduction(${reduction_type}:${reduction_scalars})
% endif

% endfor
% endif

If it is a device kernel, specify the device target directive
% elif kernel_type == "device":

!$omp declare target
% endif

% if kernel_type == "global":
Parallel for loops are created here in Fortran syntax
% for idx in range(num_loop):

do ${index_list[idx]}=${id_range[idx][0]},${id_range[idx][1]}
% endfor

% endif

Add global(non-parallel)/device kernel operations
${kernel_operations}

Loop ending
% if kernel_type == "global":

${‘enddo\n’*num_loop}
% endif

Marks the end of a target data region for local arrays in global kernels
% if kernel_type == "global" and local_arrays == True:

!$omp end target data
% endif

In addition, a simple but efficient TOML input file is used to perform basic opti-
mizations. This includes controlling various kernel parameters such as launch bounds,

15

block dimension, loop index order, and number of parallel loops. This feature was
added to address cases where certain kernel parameters used in the CUDA Fortran
backend may not be ideal for other backends. In the context of OpenMP development,
this feature was particularly useful for generating directives with different loop index
orders, allowing us to easily find the optimal configuration. Listing 10 gives an exam-
ple of updating the compute residual cuf kernel, which is a reduction kernel. This
listing has three components. First, the changes are specified for a particular backend,
in this case OpenMP (specified by the key, kernel name.omp). Second, the loop order
is specified by its indices from outer to inner index (key idx). Finally, the number of
loops to parallelize is specified (key num loop). An example of how this particular ker-
nel is translated from CUDA Fortran to OpenMP is given in the listing 11. Here, the
CUDA Fortran version had all loops parallelized in the order k → j → i. Now, using
the TOML input specification (from the listing 10), we get the OpenMP equivalent
with 2 outer loops parallelized (j and i) along with the new order, j → i → k.

Listing 10 Input TOML file for kernel optimisation

[compute_residual_cuf]
[compute_residual_cuf.omp]
idx = ["j","i","k"]
num_loop = 2

16

Listing 11 Tranlsation of CUDA Fortran kernel directive to OpenMP

CUDA Fortran

residual_rhou = 0.0
!$cuf kernel do(3) <<<*,*>>> reduce(+:residual_rhou)
do k=1,nz
do j=1,ny
do i=1,nx
residual_rhou = residual_rhou + (fln_gpu(i,j,k,2)/dt)**2

enddo
enddo

enddo
!@cuf iercuda=cudaDeviceSynchronize()

OpenMP

residual_rhou = 0.0
!$omp target teams distribute parallel do collapse(2) has_device_addr(fln_gpu) &
!$omp& reduction(+:residual_rhou)
do j=1,ny
do i=1,nx
do k=1,nz
residual_rhou = residual_rhou + (fln_gpu(i,j,k,2)/dt)**2

enddo
enddo

enddo

3 Performance results

In this section, we discuss the performance obtained with the STREAmS-2 code using
Intel GPU Max 1550 – hereafter simply PVC GPU – with reference to the Florence
cluster cards – hereafter PVC-Florence – and to the Aurora cluster – hereafter PVC-
Aurora (for details see 2.1). For the sake of comparison, in some cases we will consider
the performance of NVIDIA A100 GPUs from the Leonardo cluster as well as AMD
MI250X GPUs from the LUMI cluster. The analyses are performed at the different
levels of parallelism at which the devices operate within their clusters. The simulated
physical case is the turbulent channel flow as declared in 2.2, and the computational
grids used are described in the different sections. We will refer to the offloaded compu-
tational regions as kernels, even though such terminology is not standard in OpenMP
terminology.

3.1 Single tile PVC performances

Since a PVC GPU consists of two tiles, we will first look at the performance of the
single PVC tile. We focus on PVC-Florence because it uses all available vector engines
and has the power set to the GPU specification (600W). The simulated case uses a
numerical grid of 900 × 400 × 500, which is able to saturate more than 80% of the tile
memory (64GB).

While OpenMP offload allows for developer-friendly GPU porting, it is still
necessary to determine the optimal implementation choices in terms of achievable per-
formance. To this end, a first study was conducted to determine the optimal order

17

Fig. 2: Elapsed times of convective kernel along y using central scheme considering all
possible orders of loops and two levels of OpenMP loop collapse (2 or 3). PVC-Florence
tile has been used.

of 3D loops among the six possible choices, e.g., i-j-k, i-k-j, j-i-k, j-k-i, k-i-j, k-j-i.
Second, the three possible levels of OpenMP collapse were considered, i.e., 1, which
corresponds to no collapsed loop, 2, and 3. Finally, the activation of the large register
option (see table 3) was tested for each case. Figure 2 shows the execution times of a
reference kernel – convective kernel along the y-direction and using central schemes –
for all the combinations now defined.

The results show that the performance obtained without collapsing the loops is
dramatically worse than that of collapse 2 and 3, regardless of the order of the loops
and the activation of large registers. In fact, it is expected that without collapsing
the loops, the number of iterations of the outer loop will not be able to saturate the
parallel capacity of the GPU (the number of active threads is less than the number
of available vector unit threads). It should be noted that the ability to collapse loops
depends on the algorithm and its implementation. STREAmS-2 has been deliberately
written in a parallel-oriented way, so that for all demanding loops it is possible to
collapse them completely.

Regarding the performance for collapse levels 2 and 3, we notice that two loop
orders are significantly more efficient than the others, regardless of whether the large
register option is enabled. In particular, for collapse(2) the optimal orderings are k-
i-j and j-i-k, while for collapse(3) the optimal orderings are k-j-i and j-k-i. The huge
performance differences between these optimal orders and the others are due to a cor-
rect/incorrect pattern of memory accesses, which turns out to be kernel-independent.
In all optimal configurations, the innermost parallelized loop is the contiguous one
in memory. This optimal memory access behavior replicates what can be found with
other GPUs that dominate the current HPC landscape (NVIDIA or AMD).

Regarding the comparison collapse(2) vs. collapse(3), the results are quite similar
and the optimal choice is expected to be kernel dependent.

Finally, regarding the role of the option on registers, the use of large registers is
definitely beneficial in all configurations. However, since register usage is a highly ker-
nel dependent issue, there is no guarantee that what we have found for this particular
kernel will hold true in general.

18

Fig. 3: Elapsed times of significant kernels for loop collapse 2 or 3 and, for each of
them, for the two fastest loop orderings. PVC-Florence tile has been used.

In Figure 3, the previous analysis is extended to 11 significant kernels, but con-
sidering only the optimal memory access configurations, i.e. collapse(2) with k-i-j and
j-i-k ordering and collapse(3) with k-j-i and j-k-i. The selected kernels represent the
different types of STREAmS-2 kernels, i.e. simple (update flux) or relatively sim-
ple (eval aux) kernels, complex kernels that do not require the use of private arrays
(visflx nosensor), complex kernels that use private arrays (convective kernels consid-
ered in central mode, e.g, euler x cen, and WENO, e.g. euler x wen), kernels including
reductions (compute residual or force rhs 1). The reported kernels also represent over
75% of the total computation time for the test case considered in this discussion.

First, we observe that, as expected, enabling large registers is beneficial for complex
kernels, while for simple kernels the register factor is irrelevant, or even detrimental in
the case of a specific reduction kernel. However, this negative contribution is negligible
in the overall balance. Since it is only possible to enable/disable large registers globally,
the overall enable is definitely recommended.

Similarly, the simplest kernels show no macroscopic differences in the choice of
collapse level and loop order. On the other hand, many complex kernels show clear
optimal choices – e.g., collapse(2) j-i-k for euler z cen – or, on the contrary, clear
inefficient choices – e.g., collapse(2) k-i-j for euler x wen. For convective kernels, there
is no general superiority of collapse(2) or collapse(3), and especially in the case of
collapse(2), there is no simple rule to determine the best order. For the viscous kernel,
the optimal configuration is collapse(2) j-i-k, which is what was found for the CUDA
Fortran kernel on NVIDIA A100 GPUs. It is worth noting that the code is mostly used
in hybrid mode (the convective kernels work partly in central mode, partly in WENO
mode), with typically a large majority of points evolved with the central algorithm.
The optimization choice must therefore consider a compromise between the central
and WENO optimal configurations, but giving more weight to the central case. The
analysis of the results shows that the optimal choices of the central mode are also
efficient in the WENO mode, except in the y direction, where a partial performance
penalty has to be accepted in the WENO configuration. Therefore, from now on we

19

will consider the optimal configuration for each kernel, taking into account the optimal
central mode configuration for convective kernels.

At the end of this type of optimization, it is worth noting that an a priori choice
of collapse(3) k-j-i for all loops allows the user to achieve a final performance of the
iteration time that is less than 10% slower than the loop-by-loop optimized version.
It can therefore be a simple general recommendation for a priori loop tuning in cases
where extensive testing as done thus far is not appropriate.

Fig. 4: Elapsed times of significant kernels. Comparison of different GPU devices
is shown, namely PVC-Florence and PVC-Aurora files, A100 GPU from Leonardo
cluster, and AMD MI250X GCD from LUMI cluster.

In Figure 4 we report the performance of the different kernels comparing a PVC tile
from Florence, from Aurora, an A100 GPU from Leonardo and a MI250X GCD from
LUMI. Overall, the performance of the PVC tiles and the A100 GPU are comparable,
with a slight advantage of the PVC Florence tile for the convective kernels, while the
A100 GPU prevails for the diffusive terms, possibly due to a better use of the cache.
The MI250X GCD, on the other hand, shows a performance comparable to the other
units for simple kernels, while for more complex kernels the gap is considerable, even
exceeding a factor of two in some cases. This suggests that while the AMD GCD has
theoretical performance similar to PVC tile and A100 GPU, especially in terms of
bandwidth (see Table 1) which is expected to play the major role, in practice it is
more difficult to achieve good performance on complex kernels.

Comparing PVC-Florence and PVC-Aurora tiles, they differ in both active vector
units and power capping. When using a single tile, the lower number of active vector
units of Aurora is expected to lead to a performance penalty, while power capping,
which works at the GPU level (2 tiles), should not play a role. In addition, aspects
related to the different software stack may slightly explain the results.

In figure 5 we report the iteration times comparing a PVC tile from Florence,
from Aurora, an A100 GPU from Leonardo, and a MI250X GCD from LUMI. We also
report the performance of a general purpose node (CPU) from Leonardo equipped
with 2 Intel Platinum 8480+ CPUs. Consistent with what has been discussed, the

20

Fig. 5: Elapsed times per iteration considering full-central or full-WENO execu-
tions. Comparison of different computational units is shown, namely PVC-Florence
and PVC-Aurora tiles, A100 GPU from Leonardo cluster, and AMD MI250X GCD
from LUMI cluster, Leonardo General Purpose partition node equipped with 2x Intel
Platinum 8480+ CPUs.

PVC tiles show similar performance to the A100 for both full-central and full-WENO
runs, while the AMD GCD is about twice as slow. The CPU node based time is about
4 times slower than PVC Florence for the WENO case, while it is about 3 times slower
for the central case.

Fig. 6: Elapsed times per iteration against the size of numerical grid considering
full-central (left) or full-WENO (right) execution. Performance of PVC-Florence and
PVC-Aurora tiles are compared.

We complete the performance analysis of the single PVC tile by analyzing the effect
of two simulation inputs that have a particularly significant computational impact.
The first input is the number of points of the numerical discretization, which is rel-
evant because it is known that GPUs are only efficient when they have sufficient
computational load. Figure 6 shows the trend of the grind time as the number of grid

21

points varies. The grind time is necessary to compare computation times that refer
to different grids and is defined as Tg = T/Npoints × 106.

The results show that for both central convective runs (Figure 6.a) and WENO
runs (Figure 6.b), optimal performance is obtained when the cardinality of the grid
exceeds one million points. The behavior of the Florence and Aurora tiles is very
similar. The behavior is also similar to that of NVIDIA and AMD GPUs, with the dif-
ference that these cards require a number of points around 2 million to work efficiently
[30].

Fig. 7: Performance of hybrid central/WENO runs. (Left) Iteration elapsed time is
plotted against the percentage activation of WENO scheme. Horizontal lines represent
full-central (dashed line) or full-WENO (solid line) times. PVC-Florence and PVC-
Aurora tiles are compared. (Center/Right) Elapsed time of convective kernel along
y using PVC-Aurora/PVC-Florence. Horizontal lines represent full-central and full-
WENO times. Additional line represents the expected hybrid time resulting from
weighted combination of full-central and full-WNEO times.

The final analysis focuses on the hybrid convective discretization, i.e. where the
convective kernels operate in central or WENO mode depending on a shock sensor
variable. In figure 7, on the left, the elapsed iteration times are plotted against the
WENO activation percentage, for PVC-Florence and PVC-Aurora tiles. For visual-
ization purposes, two horizontal lines are shown, corresponding to the full-central and
full-WENO times, respectively. It can be seen that for WENO activations above 20%,
the hybrid mode time exceeds the WENO time due to branch divergence within the
kernel. However, it always remains well below the sum of the central and WENO
times. The behavior of Aurora and Florence is similar, with the advantage of Florence
being maintained for all activation levels. In the same figure, the elapsed times of
the convective kernel along y are plotted separately for Aurora (center) and Florence
(right). The line combining the central and WENO times according to the activation
percentage is also shown. The cost of loop divergence is measured by the difference
between the measured time and that of this straight line of interpolated values. This
cost is very high, but in line with what is found with NVIDIA or AMD GPUs.

22

3.2 Intra-GPU scalability

As mentioned above, a PVC contains two units called tiles. A common way to use
them is to associate each tile with an MPI process. In this way, from the user’s point
of view, each tile is used as a separate device, and the same happens from the job
scheduler’s point of view, which allocates the tiles as separate entities. However, since
two tiles of the same GPU belong to the same physical device, it is interesting to
evaluate the performance variability by switching from one to two tiles of the same
PVC GPU.

Fig. 8: Iteration elapsed times comparing 1 tile (left), 2 tiles in strong scaling spirit
(center), 2 tiles in weak scaling spirit (right). Full-central/full-WENO (CEN/WEN)
and synchronous/asynchronous (SYNC/ASYNC) runs are considered. Performances
of PVC-Aurora, PVC-Florence, and PVC-Florence-500W are compared.

In Figure 8, the elapsed times per iteration are shown using 1 tile, using 2 tiles with
the same total grid (strong scaling spirit), and using 2 tiles with the same grid per tile
(weak scaling spirit). We consider runs in central mode, in WENO mode, and con-
sidering synchronous and asynchronous parallelization. For each case, the results for
PVC-Aurora and PVC-Florence are compared. A third device, PVC-Florence-500W,
is also considered, i.e., a Florence PVC configured at 500W to match Aurora’s power
limit. Considering a single tile, as seen in the previous section, PVC-Florence shows
an advantage over PVC-Aurora of about 10% for central runs, while this difference
practically disappears for WENO runs. With two tiles, the advantage increases and is
clearly visible even for WENO runs. The results for PVC-Florence limited to 500W
help to understand the previous results. At one tile, PVC-Florence-500W shows iden-
tical performance to PVC-Florence, while PVC-Aurora remains slower, presumably
due to the lower number of active vector units. However, with two tiles, PVC-Florence-
500W shows a significant performance degradation. To better evaluate the extent of
this degradation, figure 9 shows the two-tile times divided by the expected ideal times,
i.e. T2tile/(T1tile/2) for strong scaling and T2tile/T1tile for weak scaling. This figure
shows a good similarity of the scaling of PVC-Aurora and PVC-Florence-500W, from

23

which it can be deduced that the power capping plays a crucial role in the scalability
limit between 1 and 2 tiles of PVC-Aurora (and PVC-Florence-500W).

Fig. 9: Results for 2 tiles reported in Figure 8 are here reported normalized by the
ideal values, i.e., T2tile/(T1tile/2) for strong scaling (left), and T2tile/T1tile for weak
scaling (right).

As expected, the synchronous/asynchronous nature of MPI parallelization does
not play a significant role at such a small number of processes. In fact, there is a
slight performance penalty in the asynchronous version, presumably due to the higher
complexity of the algorithm.

In figure 10 we present a new comparison of the elapsed times per iteration for the
different GPU architectures, where the whole GPU is taken as reference, i.e. Intel PVC
GPU (2 tiles), NVIDIA A100 and LUMI MI250X GPU (2 GCDs). It can be seen that
the A100 and the MI250X have very similar performances in this comparison, while
the PVC has significantly better performances, especially in the 600W PVC-Florence
version, which has an advantage of about 40% over the A100/MI250X.

3.3 Intra-node scalability

This section analyzes the intranode scalability for Florence and Aurora nodes com-
pared to Leonardo and LUMI GPU partitions. In line with what was discussed in
the previous paragraph, the intranode scalability is measured using the entire GPU
as a reference, i.e., PVC GPU, A100 GPU, and MI250X GPU. The results are
shown in Figure 11 considering strong scaling (left) and weak scaling (right). To
highlight the scalability, the graphs show the times rescaled with the ideal times:
TNGP Us/(T1GP U /NGP U) for strong scaling and TNGP Us/T1GP U for weak scaling. For
completeness, the graph also includes the values for using 1 tile and 1 GCD, which
are shown with a gray background and thus correspond to half a GPU.

In terms of weak scaling, the PVC-Florence, A100 and MI250X powered nodes
show almost ideal efficiencies, while the Aurora node shows an efficiency loss of about

24

Fig. 10: Elapsed times per iteration considering full-central or full-WENO execu-
tions. Comparison of different GPUs is shown, namely PVC-Florence and PVC-Aurora
GPUs (2 tiles), A100 GPU from Leonardo cluster, and AMD MI250X GPU (2 GCDs)
from LUMI cluster.

5%. Aurora is the only architecture with 6 GPUs (corresponding to 12 tiles) per node,
but the (modest) loss of efficiency does not seem to be related to this aspect, since
already at 4 GPUs a non-negligible (albeit modest) performance loss can be observed.
It is worth noting that the half-GPU point in this scalability is far from ideal for
PVCs (especially for Aurora), while the same penalty is not found for the MI250X,
which is composed of 2 GCDs.

In terms of strong scaling, the 4 architectures show essentially equivalent scala-
bility, with efficiency losses of around 10% from 1 GPU to the full node. Overall, all
architectures show more than satisfactory intra-node scalability results.

3.4 Inter-node scalability

In terms of inter-node scalability, we report the comparison between Florence and
Aurora. In addition to the differences already mentioned in this section, it is useful
to remember that the two clusters have a different software stack, in particular the
MPI library is IntelMPI on Florence vs. mpich on Aurora. Also, the interconnect is
Mellanox HDF on Florence vs HPE Slingshot on Aurora.

The performance results are shown in figure 12 for strong scaling (left) and weak
scaling (right) and considering full-central and full-weno executions with synchronous
and asynchronous communication modes. The reference for scalability is the comput-
ing node, but since the Florence and Aurora nodes have different numbers of GPUs,
this means that an equal number of nodes does not correspond to an equal number of
GPUs and MPI processes. Also, two different numerical grids are used for the single
node case due to the different memory availability. Specifically, the 3200 × 300 × 1600
grid is used for Florence and the 3200 × 300 × 2400 grid is used for Aurora.

As with intranode scaling, the elapsed times shown are normalized to ideal times.
The maximum number of nodes used in Florence (top) is 16, while in Aurora (bottom)
it is 256, but for visualization purposes identical axis scales are used.

25

Fig. 11: Intra-node scalability, based on GPU, in the strong scaling spirit (left)
and weak scaling spirit (right). Values refer to Florence (first line), Aurora (second
line), Leonardo (third line) and LUMI (fourth line). Results are shown for both full-
central/full-WENO (CEN/WEN) and synchronous/asynchronous (SYNC/ASYNC)
runs. For Aurora, Florence and LUMI nodes, gray background region highlights
half-GPU data.

26

Fig. 12: Inter-node scalability based on one node for Florence (top) and Aurora (bot-
tom) PVC-powered clusters. Strong scaling (left) and weak scaling (right) results are
shown for both full-central/full-WENO (CEN/WEN) and synchronous/asynchronous
(SYNC/ASYNC) runs. Despite the different maximum number of nodes, the same
axis ranges are used for visualization purposes.

In the range between 1 and 16 nodes, the efficiency loss of Florence in strong scal-
ing is about 30% for all cases, while for Aurora the loss is about 30% for synchronous
cases, and around 50% for asynchronous cases. The additional complexity of the asyn-
chronous pattern appears to be a penalty overall, despite the possibility of overlap
between computation and communication. At 32 and 64 nodes, Aurora’s strong scal-
ing efficiency deteriorates significantly, as expected due to the small number of points
processed by each tile. For weak scaling, up to 16 nodes, Florence shows an efficiency
loss of around 5% in all cases, while for Aurora asynchrony plays an important role,
halving the efficiency loss and reaching values close to 3%. Up to 256 nodes, on Aurora,
the elapsed times for the asynchronous mode remain less than 10% slower than the
ideal ones, while in the synchronous mode the efficiency loss approaches 20%. The
different behavior, especially of the asynchronous mode, can be influenced by the dif-
ferent number of MPI processes, the different connection topology and also by the
different MPI libraries used.

Overall, the inter-node performance of both clusters is satisfactory, with a slight
advantage for Florence, partly due to the lower number of GPUs used for the same

27

number of nodes, which however has a much smaller overall size. The role of asyn-
chronicity is basically detrimental in strong scaling. It is beneficial in weak scaling, but
only for Aurora, which is the most important case for large-scale production contexts.
However, it should be noted that in this paragraph we intentionally only reported
scalability, while the real benefit of asynchronism has to be weighed against the per-
formance penalty at a single GPU/node. All in all, asynchronism does not seem to
be a real advantage in clusters like Florence or Aurora, mainly due to their optimal
networking capabilities.

In terms of production simulations, we have demonstrated that Aurora is an exas-
cale machine capable of significantly pushing the boundaries of compressible fluid
dynamics, both in terms of hero runs and parametric studies of medium-sized runs.
Furthermore, the ability to achieve good performance using a lightweight paradigm
such as OpenMP is encouraging for the development and maintenance of current and
future codes.

4 Conclusions

The Intel Ponte Vecchio (PVC) GPU presents itself as an ambitious contender in
the HPC landscape currently dominated by GPU computing. In this paper, we pre-
sented challenges and results of its use considering the STREAmS community code.
STREAmS is a fluid dynamics solver for compressible and turbulent canonical flows,
an area traditionally greedy for computational resources to narrow the gap between
direct numerical simulations (i.e., without turbulence models) and realistic contexts.

The first issue addressed was the porting of code required to use PVC. In this con-
text, it is well known that programming NVIDIA and AMD GPUs to achieve optimal
performance is traditionally challenging and may require particularly invasive inter-
ventions in the existing software. In addition, for Fortran codes such as STREAmS,
porting may require additional efforts when using some paradigms, e.g., HIP for AMD
does not provide a complete version dedicated to Fortran. However, compiler sup-
port for directive-based paradigms is growing and should lead to less porting effort in
the future. Intel decided to invest, directly at launch of Xe architecture, in support
for OpenMP, a widely used standard paradigm that in recent years has gained spe-
cific support for accelerated architectures in recent years (OpenMP v4.5 and v5.x).
We discussed the OpenMP porting done on STREAmS and its implementation. The
completed port is not fully based on the directive approach, but rather on a hybrid
approach thanks to OpenMP memory allocation/free/copy APIs. This choice is due
to the software architecture of STREAmS-2 and the use of an automatic conversion
tool between backends, which was successfully extended to convert backend-dependent
code parts to the new OpenMP offload backend. The realized code is highly readable
and potentially usable in the future to take advantage of additional hardware devices.

The second aspect addressed was the evaluation of PVC performance using
STREAmS-2 and considering the supersonic turbulent channel as the physical refer-
ence case. The performance was evaluated on two major clusters powered by PVC
GPUs: the Florence cluster – a test-oriented cluster with standard PVC configura-
tion – and the Aurora cluster – runner-up of the Top500 list and equipped with PVC

28

in a slightly capped configuration. The performance analyses followed the different
levels of cluster parallelism: intrinsic PVC tile parallelism, comparison of single-tile
PVC vs. 2-tile PVC performance within the same PVC GPU, intra-node scalability of
PVC GPUs, and inter-node scalability based on compute node. The single-tile anal-
ysis revealed that while the OpenMP implementation is quite simple, it is critical to
follow certain rules to achieve adequate performance. Improved performance can be
achieved by tuning kernels one by one, but the benefits of this type of optimization
are very limited. Overall, the PVC GPU shows about 40% better performance than
the NVIDIA A100 GPU or the AMD MI250X, which however were released about 3
years earlier. In addition, the scalability shows more than satisfactory results in both
strong and weak scaling spirits. Overall, the entry of PVC into the GPU computing
HPC landscape is a positive step forward for the diversification and competitiveness
of the industry.

Acknowledgments. Funded by the European Union. This work has received fund-
ing from the European High Performance Computing Joint Undertaking (EuroHPC
JU) and Germany, Italy, Slovenia, Spain, Sweden, and France under grant agreement
No 101092621.

This research used resources of the Argonne Leadership Computing Facility, a U.S.
Department of Energy (DOE) Office of Science user facility at Argonne National Labo-
ratory and is based on research supported by the U.S. DOE Office of Science-Advanced
Scientific Computing Research Program, under Contract No. DE-AC02-06CH11357:
this work was done on a pre-production supercomputer with early versions of the
Aurora software development kit.

References

[1] TOP500. https://www.top500.org/lists/top500/2023/11/. Accessed: 05 March
2024 (2023)

[2] EUROHPC JU. https://eurohpc-ju.europa.eu/about/our-supercomputers en.
Accessed: 05 March 2024 (2024)

[3] LUMI. https://lumi-supercomputer.eu/. Accessed: 05 March 2024 (2024)

[4] LEONARDO. https://leonardo-supercomputer.cineca.eu/. Accessed: 05 March
2024 (2024)

[5] CUDA, 2023. https://docs.nvidia.com/cuda/cuda-c-programming-guide/.
Accessed: 25 February 2023 (2024)

[6] Zhu, X., Phillips, E., Spandan, V., Donners, J., Ruetsch, G., Romero, J., Ostilla-
Mónico, R., Yang, Y., Lohse, D., Verzicco, R., Fatica, M., Stevens, R.J.A.M.:
Afid-gpu: A versatile navier–stokes solver for wall-bounded turbulent flows on
gpu clusters. Computer Physics Communications 229, 199–210 (2018) https:
//doi.org/10.1016/j.cpc.2018.03.026

29

https://www.top500.org/lists/top500/2023/11/
https://eurohpc-ju.europa.eu/about/our-supercomputers_en
https://lumi-supercomputer.eu/
https://leonardo-supercomputer.cineca.eu/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1016/j.cpc.2018.03.026
https://doi.org/10.1016/j.cpc.2018.03.026

[7] Wei, J., Jiang, J., Liu, H., Zhang, F., Lin, P., Wang, P., Yu, Y., Chi, X., Zhao,
L., Ding, M., Li, Y., Yu, Z., Zheng, W., Wang, Y.: Licom3-cuda: a gpu version
of lasg/iap climate system ocean model version 3 based on cuda. The Journal of
Supercomputing 79(9), 9604–9634 (2023) https://doi.org/10.1007/s11227-022-0
5020-2

[8] kokkos. https://github.com/kokkos/kokkos. Accessed: 05 March 2024 (2024)

[9] RAJA. https://computing.llnl.gov/projects/raja-managing-application-portabi
lity-next-generation-platforms. Accessed: 05 March 2024 (2024)

[10] alpaka. https://github.com/alpaka-group/alpaka. Accessed: 05 March 2024
(2024)

[11] OpenMP, 2024. https://www.openmp.org/wp-content/uploads/OpenMP-API
-Specification-5-2.pdf/. Accessed: 25 February 2024 (2024)

[12] OpenACC, 2024. https://docs.nvidia.com/hpc-sdk/compilers/openacc-gs/.
Accessed: 25 February 2024 (2024)

[13] SYCL 2020 Specification (revision 8). https://registry.khronos.org/SYCL/spec
s/sycl-2020/pdf/sycl-2020.pdf. Accessed: 24 March 2024 (2024)

[14] ISO/IEC: Programming languages — technical specification for c++ extensions
for parallelism. Technical report (2015)

[15] Costanzo, M., Rucci, E., Garćıa-Sanchez, C., Naiouf, M., Prieto-Mat́ıas, M.:
Assessing opportunities of sycl for biological sequence alignment on gpu-based
systems. The Journal of Supercomputing (2024) https://doi.org/10.1007/s11227
-024-05907-2

[16] Malenza, G., Cesare, V., Aldinucci, M., Becciani, U., Vecchiato, A.: Toward
hpc application portability via c++ pstl: the gaia avu-gsr code assessment. The
Journal of Supercomputing (2024) https://doi.org/10.1007/s11227-024-06011-1

[17] Costa, P., Phillips, E., Brandt, L., Fatica, M.: Gpu acceleration of cans for
massively-parallel direct numerical simulations of canonical fluid flows. Comput-
ers & Mathematics with Applications 81, 502–511 (2021) https://doi.org/10.101
6/j.camwa.2020.01.002

[18] HIP: C++ Heterogeneous-Compute Interface for Portability, 2023. https://gith
ub.com/ROCm-Developer-Tools/HIP/. Accessed: 25 February 2023 (2024)

[19] Jansson, N., Karp, M., Podobas, A., Markidis, S., Schlatter, P.: Neko: A Mod-
ern, Portable, and Scalable Framework for High-Fidelity Computational Fluid
Dynamics. arXiv preprint arXiv:2107.01243 (2021)

[20] Germaschewski, K., Allen, B., Dannert, T., Hrywniak, M., Donaghy, J., Merlo,

30

https://doi.org/10.1007/s11227-022-05020-2
https://doi.org/10.1007/s11227-022-05020-2
https://github.com/kokkos/kokkos
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://github.com/alpaka-group/alpaka
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf/
https://docs.nvidia.com/hpc-sdk/compilers/openacc-gs/
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1007/s11227-024-05907-2
https://doi.org/10.1007/s11227-024-05907-2
https://doi.org/10.1007/s11227-024-06011-1
https://doi.org/10.1016/j.camwa.2020.01.002
https://doi.org/10.1016/j.camwa.2020.01.002
https://github.com/ROCm-Developer-Tools/HIP/
https://github.com/ROCm-Developer-Tools/HIP/

G., Ethier, S., D’Azevedo, E., Jenko, F., Bhattacharjee, A.: Toward exas-
cale whole-device modeling of fusion devices: Porting the GENE gyrokinetic
microturbulence code to GPU. Physics of Plasmas 28(6), 062501 (2021)

[21] Carnimeo, I., Affinito, F., Baroni, S., Baseggio, O., Bellentani, L., Bertossa, R.,
Delugas, P.D., Ruffino, F.F., Orlandini, S., Spiga, F., Giannozzi, P.: Quantum
espresso: One further step toward the exascale. Journal of Chemical Theory and
Computation 19(20), 6992–7006 (2023)

[22] Gavini, V., Baroni, S., Blum, V., Bowler, D.R., Buccheri, A., Chelikowsky, J.R.,
Das, S., Dawson, W., Delugas, P., Dogan, M., et al.: Roadmap on electronic
structure codes in the exascale era. Modelling and Simulation in Materials Science
and Engineering 31(6), 063301 (2023)

[23] Zubair, M., Walden, A., Nastac, G., Nielsen, E., Bauinger, C., Zhu, X.: Opti-
mization of ported cfd kernels on intel data center gpu max 1550 using oneapi
esimd. In: Proceedings of the SC ’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis. SC-W ’23, pp.
1705–1712. Association for Computing Machinery, New York, NY, USA (2023)

[24] Owen, H., Lehmkuhl, O., D’Ambra, P., Durastante, F., Filippone, S.: Alya toward
exascale: algorithmic scalability using psctoolkit. The Journal of Supercomputing
(2024) https://doi.org/10.1007/s11227-024-05989-y

[25] Bernardini, M., Modesti, D., Salvadore, F., Pirozzoli, S.: STREAmS: a high-
fidelity accelerated solver for direct numerical simulation of compressible turbu-
lent flows. Comput. Phys. Commun. 263, 107906 (2021)

[26] Bernardini, M., Modesti, D., Salvadore, F., Sathyanarayana, S., Della Posta,
G., Pirozzoli, S.: STREAmS-2.0: Supersonic turbulent accelerated Navier-Stokes
solver version 2.0. Comput. Phys. Commun., 108644 (2023)

[27] Modesti, D., Sathyanarayana, S., Salvadore, F., Bernardini, M.: Direct numerical
simulation of supersonic turbulent flows over rough surfaces. J. Fluid Mech. 942,
44 (2022)

[28] Bernardini, M., Della Posta, G., Salvadore, F., Martelli, E.: Unsteadiness char-
acterisation of shock wave/turbulent boundary-layer interaction at moderate
Reynolds number. J. Fluid Mech. 954, 43 (2023)

[29] Salvadore, F., Memmolo, A., Modesti, D., Della Posta, G., Bernardini, M.:
Direct numerical simulation of a microramp in a high-reynolds number supersonic
turbulent boundary layer. Physical Review Fluids 8(11), 110508 (2023)

[30] Sathyanarayana, S., Bernardini, M., Modesti, D., Pirozzoli, S., Salvadore, F.:
High-speed turbulent flows towards the exascale: STREAmS-2 porting and
performance. Preprint at https://arxiv.org/abs/2304.05494 (2023)

31

https://doi.org/10.1007/s11227-024-05989-y
https://arxiv.org/abs/2304.05494

[31] Pirozzoli, S., Bernardini, M., Grasso, F.: Direct numerical simulation of transonic
shock/boundary layer interaction under conditions of incipient separation. Jour-
nal of Fluid Mechanics 657, 361–393 (2010) https://doi.org/10.1017/S0022112
010001710

[32] Tamaki, Y., Kuya, Y., Kawai, S.: Comprehensive analysis of entropy conservation
property of non-dissipative schemes for compressible flows: Keep scheme rede-
fined. Journal of Computational Physics 468, 111494 (2022) https://doi.org/10
.1016/j.jcp.2022.111494

[33] Guo, H., Zhang, L., Zhang, Y., Li, J., Xu, X., Liu, L., Cai, K., Wu, D., Yang, S.,
Kong, L., Gao, X.: Openmp offloading data transfer optimization for dcus. The
Journal of Supercomputing 80(2), 2381–2402 (2023) https://doi.org/10.1007/s1
1227-023-05422-w

[34] Tian, S., Scogland, T., Chapman, B., Doerfert, J.: Openmp kernel language
extensions for performance portable gpu codes. In: Proceedings of the SC ’23
Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis. SC-W ’23, pp. 876–883. Association for Com-
puting Machinery, New York, NY, USA (2023). https://doi.org/10.1145/362406
2.3624164 . https://doi.org/10.1145/3624062.3624164

[35] Huang, K., Che, Y., Xu, C., Dai, Z., Zhang, J.: Improving cuda performance of
an unstructured high-order cfd application under op2 framework. The Journal of
Supercomputing 80(5), 5832–5846 (2023) https://doi.org/10.1007/s11227-023-0
5679-1

[36] GPUFORT, 2021. https://github.com/ROCmSoftwarePlatform/gpufort/.
Accessed: 25 February 2023 (2021)

32

https://doi.org/10.1017/S0022112010001710
https://doi.org/10.1017/S0022112010001710
https://doi.org/10.1016/j.jcp.2022.111494
https://doi.org/10.1016/j.jcp.2022.111494
https://doi.org/10.1007/s11227-023-05422-w
https://doi.org/10.1007/s11227-023-05422-w
https://doi.org/10.1145/3624062.3624164
https://doi.org/10.1145/3624062.3624164
https://doi.org/10.1007/s11227-023-05679-1
https://doi.org/10.1007/s11227-023-05679-1
https://github.com/ROCmSoftwarePlatform/gpufort/

	Introduction
	Material and methods
	Intel Data Center GPU Max
	Numerical code and test case
	OpenMP porting
	PVC-powered supercomputers
	OpenMP automation

	Performance results
	Single tile PVC performances
	Intra-GPU scalability
	Intra-node scalability
	Inter-node scalability

	Conclusions
	Acknowledgments

