1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J Clin 70, 7-30, doi:10.3322/caac.21590 (2020).
2 Warth, A. et al. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30, 1438-1446, doi:10.1200/JCO.2011.37.2185 (2012).
3 Rolfo, C. et al. Improvement in lung cancer outcomes with targeted therapies: an update for family physicians. J Am Board Fam Med 28, 124-133, doi:10.3122/jabfm.2015.01.140072 (2015).
4 Chen, D. et al. Could tumor spread through air spaces benefit from adjuvant chemotherapy in stage I lung adenocarcinoma? A multi-institutional study. Ther Adv Med Oncol 12, 1758835920978147, doi:10.1177/1758835920978147 (2020).
5 Bensussan, A. V. et al. Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging. Clinical chemistry 66, 1424-1433, doi:10.1093/clinchem/hvaa207 (2020).
6 Reck, M. et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 375, 1823-1833, doi:10.1056/NEJMoa1606774 (2016).
7 Reck, M. et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J Clin Oncol 37, 537-546, doi:10.1200/JCO.18.00149 (2019).
8 Brahmer, J. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med 373, 123-135, doi:10.1056/NEJMoa1504627 (2015).
9 Boyero, L. et al. Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy. Cancers (Basel) 12, doi:10.3390/cancers12123729 (2020).
10 Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24, 1277-1289, doi:10.1038/s41591-018-0096-5 (2018).
11 Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322, doi:10.1016/j.ccr.2012.02.022 (2012).
12 Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 194, 3475-3486, doi:10.4049/jimmunol.1402711 (2015).
13 Kinoshita, T. et al. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology 27, 2117-2123, doi:10.1093/annonc/mdw319 (2016).
14 Maynard, A. et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 182, 1232-1251 e1222, doi:10.1016/j.cell.2020.07.017 (2020).
15 Netea-Maier, R. T., Smit, J. W. A. & Netea, M. G. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer letters 413, 102-109, doi:10.1016/j.canlet.2017.10.037 (2018).
16 Ma, L. et al. Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell 36, 418-430 e416, doi:10.1016/j.ccell.2019.08.007 (2019).
17 Ge, P. et al. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. Biomed Pharmacother 118, 109228, doi:10.1016/j.biopha.2019.109228 (2019).
18 Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 20, doi:10.3390/ijms20040840 (2019).
19 Belli, C. et al. Targeting the microenvironment in solid tumors. Cancer Treat Rev 65, 22-32, doi:10.1016/j.ctrv.2018.02.004 (2018).
20 Hao, Q., Vadgama, J. V. & Wang, P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 18, 82, doi:10.1186/s12964-020-00589-8 (2020).
21 Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17, 559-572, doi:10.1038/nri.2017.49 (2017).
22 Zheng, Y., Wang, Z., Wei, S., Liu, Z. & Chen, G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer letters 499, 148-163, doi:10.1016/j.canlet.2020.11.034 (2021).
23 Bottero, V., Santiago, J. A. & Potashkin, J. A. PTPRC Expression in Blood is Downregulated in Parkinson's and Progressive Supranuclear Palsy Disorders. J Parkinsons Dis 8, 529-537, doi:10.3233/JPD-181391 (2018).
24 Porcu, M. et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood 119, 4476-4479, doi:10.1182/blood-2011-09-379958 (2012).
25 Zhao, X. et al. Surgical Resection of SCLC: Prognostic Factors and the Tumor Microenvironment. J Thorac Oncol 14, 914-923, doi:10.1016/j.jtho.2019.01.019 (2019).
26 Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet (London, England) 389, 299-311, doi:10.1016/S0140-6736(16)30958-8 (2017).
27 Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424, doi:10.3322/caac.21492 (2018).
28 Cheng, T. Y. et al. The International Epidemiology of Lung Cancer: Latest Trends, Disparities, and Tumor Characteristics. J Thorac Oncol 11, 1653-1671, doi:10.1016/j.jtho.2016.05.021 (2016).
29 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, doi:10.3322/caac.21660 (2021).
30 Bader, J. E., Voss, K. & Rathmell, J. C. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 78, 1019-1033, doi:10.1016/j.molcel.2020.05.034 (2020).
31 Giraldo, N. A. et al. The clinical role of the TME in solid cancer. Br J Cancer 120, 45-53, doi:10.1038/s41416-018-0327-z (2019).
32 Gao, S. et al. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics 9, 126-151, doi:10.7150/thno.29431 (2019).
33 Tan, X. et al. Role of CCR2 in the Development of Streptozotocin-Treated Diabetic Cardiomyopathy. Diabetes 68, 2063-2073, doi:10.2337/db18-1231 (2019).
34 Niiya, M. et al. Induction of TNF-alpha, uPA, IL-8 and MCP-1 by doxorubicin in human lung carcinoma cells. Cancer Chemother Pharmacol 52, 391-398, doi:10.1007/s00280-003-0665-1 (2003).
35 Soria, G. & Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer letters 267, 271-285, doi:10.1016/j.canlet.2008.03.018 (2008).
36 Tu, M. M. et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol 3, 720, doi:10.1038/s42003-020-01441-y (2020).
37 Courtney, A. H. et al. CD45 functions as a signaling gatekeeper in T cells. Sci Signal 12, doi:10.1126/scisignal.aaw8151 (2019).
38 Rheinlander, A., Schraven, B. & Bommhardt, U. CD45 in human physiology and clinical medicine. Immunol Lett 196, 22-32, doi:10.1016/j.imlet.2018.01.009 (2018).
39 Chen, J. et al. Intratumoral CD45(+)CD71(+) erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma. Cancer letters 499, 85-98, doi:10.1016/j.canlet.2020.12.003 (2021).
40 Lafont, V. et al. Plasticity of gammadelta T Cells: Impact on the Anti-Tumor Response. Frontiers in immunology 5, 622, doi:10.3389/fimmu.2014.00622 (2014).
41 Murayama, M., Tanaka, Y., Yagi, J., Uchiyama, T. & Ogawa, K. Antitumor activity and some immunological properties of gammadelta T-cells from patients with gastrointestinal carcinomas. Anticancer Res 28, 2921-2931 (2008).
42 Kang, N. et al. Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol Ther 8, 1540-1549, doi:10.4161/cbt.8.16.8950 (2009).
43 Dieli, F. et al. Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer research 67, 7450-7457, doi:10.1158/0008-5472.CAN-07-0199 (2007).
44 Chien, Y. H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu Rev Immunol 32, 121-155, doi:10.1146/annurev-immunol-032713-120216 (2014).
45 Pauza, C. D. et al. Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Frontiers in immunology 9, 1305, doi:10.3389/fimmu.2018.01305 (2018).
46 Galati, D., Zanotta, S., Bocchino, M., De Filippi, R. & Pinto, A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother, doi:10.1007/s00262-020-02805-3 (2021).