1 Grayson, M. Bladder cancer. Nature 551, S33, doi:10.1038/551S33a (2017).
2 Lenfant, L., Aminsharifi, A., Seisen, T. & Roupret, M. Current status and future directions of the use of novel immunotherapeutic agents in bladder cancer. Curr Opin Urol 30, 428-440, doi:10.1097/MOU.0000000000000740 (2020).
3 Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439-451, doi:10.1016/s0092-8674(02)00655-4 (2002).
4 Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8, 93-103, doi:10.1038/nrg1990 (2007).
5 Hammerle, M. et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 58, 1703-1712, doi:10.1002/hep.26537 (2013).
6 Nguyen, L. H. et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell 26, 248-261, doi:10.1016/j.ccr.2014.06.018 (2014).
7 Chatterji, P. & Rustgi, A. K. RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends Mol Med 24, 490-506, doi:10.1016/j.molmed.2018.03.008 (2018).
8 Cui, X. H., Hu, S. Y., Zhu, C. F. & Qin, X. H. Expression and prognostic analyses of the insulin-like growth factor 2 mRNA binding protein family in human pancreatic cancer. BMC Cancer 20, 1160, doi:10.1186/s12885-020-07590-x (2020).
9 Ma, F. et al. Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Lett 450, 63-75, doi:10.1016/j.canlet.2019.02.008 (2019).
10 He, Y. et al. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett 344, 20-27, doi:10.1016/j.canlet.2013.10.021 (2014).
11 Mentrikoski, M. J. et al. Diagnostic utility of IMP3 in segregating metastatic melanoma from benign nevi in lymph nodes. Mod Pathol 22, 1582-1587, doi:10.1038/modpathol.2009.128 (2009).
12 Walter, O. et al. IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol 40, 1528-1533, doi:10.1016/j.humpath.2009.05.005 (2009).
13 Wang, B. J., Wang, L., Yang, S. Y. & Liu, Z. J. Expression and clinical significance of IMP3 in microdissected premalignant and malignant pancreatic lesions. Clin Transl Oncol 17, 215-222, doi:10.1007/s12094-014-1216-4 (2015).
14 Feng, W. et al. Expression of insulin-like growth factor II mRNA-binding protein 3 in human esophageal adenocarcinoma and its precursor lesions. Arch Pathol Lab Med 135, 1024-1031, doi:10.5858/2009-0617-OAR2 (2011).
15 Fadare, O. et al. Expression of the oncofetal protein IGF2BP3 in endometrial clear cell carcinoma: assessment of frequency and significance. Hum Pathol 44, 1508-1515, doi:10.1016/j.humpath.2012.12.003 (2013).
16 Vercellini, P. et al. The oncofetal protein IMP3: a novel biomarker and triage tool for premalignant atypical endometriotic lesions. Fertil Steril 99, 1974-1979, doi:10.1016/j.fertnstert.2013.02.002 (2013).
17 Wei, Q., Fu, B., Liu, J., Xu, J. & Zhao, T. Combined detection of p16(INK4a) and IMP3 increase the concordance rate between cervical cytologic and histologic diagnosis. Int J Clin Exp Pathol 6, 1549-1557 (2013).
18 Lastra, R. R. et al. Utility of ProExC and IMP3 immunocytochemical staining in atypical glandular cells of undetermined significance in liquid-based cervical cytology. Diagn Cytopathol 42, 375-379, doi:10.1002/dc.23029 (2014).
19 Su P, Hu J & Zhang H, e. a. IMP3 expression is associated with epithelial-mesenchymal transition in breast cancer. Int J Clin Exp Pathol 7, 3008-3017 (2014).
20 Trivedi, A., Cartun, R. W. & Ligato, S. Role of lymphovascular invasion and immunohistochemical expression of IMP3 in the risk stratification of superficially invasive pT1 esophageal adenocarcinoma. Pathol Res Pract 210, 402-406, doi:10.1016/j.prp.2014.01.018 (2014).
21 Wang, L., Li, H. G., Xia, Z. S., Lu, J. & Peng, T. S. IMP3 is a novel biomarker to predict metastasis and prognosis of gastric adenocarcinoma: a retrospective study. Chin Med J (Engl) 123, 3554-3558 (2010).
22 Palanichamy, J. K. et al. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. J Clin Invest 126, 1495-1511, doi:10.1172/JCI80046 (2016).
23 Gadara, M. R., Gonzalez, M., Cartun, R. W. & Ligato, S. IMP3 Immunoreactivity is More Sensitive Than AMACR in Detecting Dysplastic Epithelium and Early Adenocarcinoma in Barrett Esophagus. Appl Immunohistochem Mol Morphol 25, 386-391, doi:10.1097/PAI.0000000000000319 (2017).
24 Seo, J. W., Ha, S. M. & Song, K. H. Insulin-like growth factor-2 mRNA-binding protein 3 as a novel prognostic biomarker for acral lentiginous melanoma. Br J Dermatol 178, e268-e270, doi:10.1111/bjd.16077 (2018).
25 Liao, B., Hu, Y., Herrick, D. J. & Brewer, G. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem 280, 18517-18524, doi:10.1074/jbc.M500270200 (2005).
26 Suvasini, R. et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem 286, 25882-25890, doi:10.1074/jbc.M110.178012 (2011).
27 Gao, Y. et al. IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma. Hum Pathol 45, 1184-1191, doi:10.1016/j.humpath.2014.01.016 (2014).
28 Chen, Y. L. et al. Expression of insulin-like growth factor II mRNA-binding protein 3 predicts early recurrence and poor prognosis in intrahepatic cholangiocarcinoma. Int J Surg 11, 85-91, doi:10.1016/j.ijsu.2012.11.021 (2013).
29 Hu, S. et al. IMP3 combined with CD44s, a novel predictor for prognosis of patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 140, 883-893, doi:10.1007/s00432-014-1639-x (2014).
30 Huang, Y. et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 35, 677-691 e610, doi:10.1016/j.ccell.2019.03.006 (2019).
31 Dong, Z. & Cui, H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel) 12, doi:10.3390/cancers12030736 (2020).
32 Zhang, C. et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 39, 4507-4518, doi:10.1038/s41388-020-1303-7 (2020).
33 Zhang, Y. et al. Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. Med Sci Monit 26, e919644, doi:10.12659/MSM.919644 (2020).
34 Jiang, Z. et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 7, 556-564, doi:10.1016/S1470-2045(06)70732-X (2006).
35 Ozdemir, N. O., Turk, N. S. & Duzcan, E. IMP3 expression in urothelial carcinomas of the urinary bladder. Turk Patoloji Derg 27, 31-37, doi:10.5146/tjpath.2010.01044 (2011).
36 Sitnikova, L. et al. IMP3 predicts aggressive superficial urothelial carcinoma of the bladder. Clin Cancer Res 14, 1701-1706, doi:10.1158/1078-0432.CCR-07-2039 (2008).
37 Yang, F., Zhou, Q., Meng, L. & Xing, N. IMP3 is a biomarker for non-muscle-invasive urothelial carcinoma of the bladder associated with an aggressive phenotype. Medicine (Baltimore) 98, e16009, doi:10.1097/MD.0000000000016009 (2019).
38 Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 169, 559, doi:10.1016/j.cell.2017.04.005 (2017).
39 Huang, Q. D. et al. IMP3 promotes TNBC stem cell property through miRNA-34a regulation. Eur Rev Med Pharmacol Sci 22, 2688-2696, doi:10.26355/eurrev_201805_14965 (2018).
40 Zhao, W. et al. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) promotes lung tumorigenesis via attenuating p53 stability. Oncotarget 8, 93672-93687, doi:10.18632/oncotarget.21280 (2017).
41 You, S., Guan, Y. & Li, W. Epithelialmesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep 17, 1065-1070, doi:10.3892/mmr.2017.7943 (2018).
42 Shida, D., Takabe, K., Kapitonov, D., Milstien, S. & Spiegel, S. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9, 662-673, doi:10.2174/138945008785132402 (2008).
43 Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10, 489-503, doi:10.1038/nrc2875 (2010).
44 Maiti, A., Takabe, K. & Hait, N. C. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. Cell Signal 32, 85-92, doi:10.1016/j.cellsig.2017.01.021 (2017).
45 Lommel, M. et al. Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A 110, 21024-21029, doi:10.1073/pnas.1316753110 (2013).
46 Sorensen, K. M. et al. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections. BMC Cancer 17, 19, doi:10.1186/s12885-016-2987-5 (2017).