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Abstract

In existing cell-free non-orthogonal multiple access (NOMA) networks, each user
equipment (UE) receives desired signals from a group of access points (APs)
simultaneously, however, the UE belongs to only a single NOMA cluster. This
prevents exploiting the potential benefits of having clusters with common UEs.
Previous studies have investigated clusters with common UE in cellular NOMA
networks by considering that UEs at the cell borders can communicate with base
stations through multiple clusters using coordinate multi-point techniques. How-
ever, this approach has not been investigated for cell-free NOMA networks yet.
In this paper, we consider the UE clustering in a cell-free NOMA network consid-
ering three strategies, including single-UE OMA (CF-OMA), double-UE NOMA
with no common UE (CF-NOMA), and double-UE NOMA with common UE
(CF-NOMAC) clusters. We analytically prove that the proposed CF-NOMAC
clustering improves the sum rate compared to the CF-NOMA, and CF-OMA
methods, provided that certain conditions hold. Considering the three character-
ized UE clustering methods, we formally define UE clustering, AP grouping, and
power allocation problem for maximizing the sum rate in cell-free NOMA net-
works. We decompose the formulated mixed-integer non-linear program (MINLP)
problem into subproblems with integers and continuous decision variables. The
integer decision variables correspond to UE clustering and AP grouping which are
obtained based on the analytically elaborated results, and the continuous ones
correspond to the power values that are obtained by converting a non-convex
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signomial programming problem into geometrical programming using the mono-
mial approximation technique. Analytical results reveal the outperformance of
the proposed algorithm due to employing a lower number of orthogonal clusters
in the network.

Keywords: Cell-free NOMA networks, UE clustering, AP grouping, power allocation,
signomial programming

1 Introduction

Spectrum is a valuable and limited resource in the highly demanded next-generation
wireless networks. Two key enabling technologies (KET) for achieving high spectral
efficiency (SE) in the sixth generation of wireless networks (6G) are cell-free networks
and non-orthogonal multiple access (NOMA) techniques [1, 2]. Cell-free networks typ-
ically encompass multiple access points (APs) distributed in the network area, all
connected to a central processing unit (CPU). This architecture offers numerous advan-
tages. First, the use of distributed antennas enables cell-free networks to cover a large
number of user equipments (UEs), ensuring extensive connectivity [3]. Furthermore,
the distributed architecture of cell-free networks enables improved spatial reuse of the
available spectrum, reducing interference and improving overall SE. On the other hand,
the NOMA technique can also enhance SE. Unlike orthogonal multiple access (OMA),
which assigns orthogonal spectrum to each UE, NOMA allows multiple UEs to share
the same time-frequency resources by allocating different power levels to each UE [4],
[5]. This enables simultaneous transmissions in a common bandwidth and enhances
network capacity. In the downlink NOMA, the UEs characterized by stronger chan-
nel gains receive signals with lower power compared to the UEs with weaker channel
gains. Strong UEs employ successive interference cancellation (SIC) techniques to alle-
viate the interference caused by stronger signals (relating to weaker UEs) in the same
cluster. This interference cancellation process effectively improves the overall system
capacity and performance. In recent years, extensive research has been carried out on
the advantages presented by the integration of both cell-free and NOMA technologies.
This has resulted in the attainment of higher data rates and increased coverage for
a greater number of UEs [6-11]. These investigations have focused on various aspects
such as AP selection strategies [7] and power allocation [8], as well as studying the SE
maximization [9] in cell-free NOMA networks. In cell-free NOMA networks, UEs are
categorized into separate clusters, where the signals transmitted within each cluster
are generally designed to be orthogonal to those in other clusters. The implementation
of dynamic OMA/NOMA switching methods can significantly enhance the perfor-
mance in cell-free NOMA networks [10, 11]. In cellular NOMA networks, a noticeable
difference in channel gain among UEs is desirable for classifying them into double-UE
clusters. However, since there is no cell edge and all clusters can receive signals from
all APs, a significant difference between UEs’ channel gain may not be as crucial in
cell-free NOMA networks [11].
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Resource allocation (RA) techniques based on the NOMA method have been
extensively studied in numerous papers, such as [2, 4]. In the case of cellular net-
works, a crucial issue is to efficiently cover the UEs located at the border of the cells.
In cellular-NOMA networks, coordinate multi-point methods are employed to miti-
gate the interference for cell border UEs [12], [13], [14]. These methods encompass
dynamic point selection (DPS), coordinated scheduling (CS), and joint transmission
(JT) techniques as means to improve system performance [13]. The DPS technique
entails continuously monitoring the channel state information (CSI) between the bor-
der UE and the base station (BS) in each cell. This enables the selection of the BS
with the strongest channel quality to establish communication with the UE. In the
CS technique, neighboring cells employ orthogonal signaling, which prevents potential
interference experienced on the border UEs [13]. The JT technique requires that UEs
receive signals from all adjacent cells, which, in turn, necessitates synchronous trans-
mission of the same information from the BSs to border UEs [15], [16], [17]. Cell-free
networks have emerged as a promising technology for wireless communication systems
[1]. The addition of NOMA to cell-free networks can further enhance the system’s SE,
increase the number of simultaneously served UEs, and improve UE fairness [6]. In a
conventional cell-free NOMA network, each cluster of NOMA UEs consists of multi-
ple UEs being served by a group of APs, however, each UE is assigned to only a single
cluster [18]. The issue of power allocation in cell-free NOMA networks is an important
issue that highly affects the performance of the network. This has been extensively
discussed in the literature [19], [20], [21]. The optimal solution of power allocation can
be achieved through various criteria. Notably, the Max-min rate and sum rate are con-
sidered the most crucial criteria. The solution to power allocation in cell-free NOMA
networks, employing the Max-min rate criteria, has been addressed in [11],[19], while
the approach based on sum rate criteria has been resolved in [20], [21]. In [19], A
closed-form SINR expression is derived under Rayleigh fading and used to formulate
a max-min quality-of-service power control problem. In [20] sum-rate maximization
problem is formulated for jointly optimizing the power allocation of the NOMA down-
link, the uplink transmit power, and both the beamformer of the satellite and of the
APs. Additionally, the analysis of UE clustering in cell-free NOMA networks holds
substantial importance. In [22] two methods of UE clustering are proposed based on
the similarity of large-scale fading coefficients, which are named UE similarity com-
bination algorithm and mean shift clustering algorithm. The authors of [23] develop
two efficient unsupervised machine learning-based UE clustering algorithms, namely
k-means++ and improved k-means++, to effectively cluster UEs into disjoint clus-
ters in a cell-free NOMA massive MIMO network. The authors of [24] investigated the
necessity for optimizing UE clustering to maximize the benefits of NOMA for a cell-
free network, emphasizing the importance of efficient clustering, and then proposed
an optimal UE pairing strategy to group UEs that jointly optimizes the minimum
downlink rate per UE and power allocation at an acceptable cost of complexity.

It is worth noting that all the previous studies have focused on independent NOMA
clusters, where no UE is shared between them. While RA with common-UE clustering
has been explored in cellular NOMA networks, the advantages of power allocation and
AP grouping under efficient UE clustering in cell-free NOMA networks, where clusters
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may or may not have common UEs, have not been investigated in the literature to
date.

The main contributions of this work are expressed as follows:

• We consider a downlink NOMA/OMA cell-free network consisting of AP groups as
well as different types of UEs’ clusters, including single-UE OMA (simply denoted
by CF-OMA), double-UE NOMA with no common UE (CF-NOMA), and double-
UE NOMA with common UE (CF-NOMAC) clusters. We consider that each UE
of a cluster can receive signals from a group of APs within its coverage area. Till
now, cellular NOMA networks with common UE clusters have been dealt with in
the literature in several works, wherein common UEs are assumed to be located
near the cell borders; however, to the best of our knowledge, RA for NOMAC
clusters has not been investigated in the literature for cell-free NOMA networks so
far. In general, handling RA problems for NOMAC clusters in cell-free networks
is more challenging compared to those in cellular networks. We formally define a
novel sum rate optimization problem with UE clustering, AP grouping, and power
allocation in a cell-free NOMA network considering the three CF-OMA, CF-NOMA,
and CF-NOMAC cluster types.

• We decompose the proposed mixed integer non-linear program (MINLP) problem
into integer programming and continuous subproblems, where the former relates
to the UE clustering and AP grouping, and the latter deals with the allocation
of the power levels. For discrete decision variables, first, we analytically compare
the three clustering methods and prove that the proposed CF-NOMAC clustering
method outperforms others in terms of sum rate, provided that certain conditions
hold. Therefore, we consider the UE clustering to enhance the system’s overall per-
formance by exploiting the benefits of common UE clusters. In this regard, the
priority is to consider as many CF-NOMAC clusters as possible, provided that cor-
responding constraints hold. Meanwhile, AP grouping aims at optimally assigning
the resources of the APs to the UEs of each cluster, considering the limited set of
APs in the coverage area of each UE. Based on these objectives, we propose novel
algorithms for UE clustering and AP grouping that solve the integer part of the
original optimization problem.

• The power allocation corresponding to sum rate optimization has been discussed
in numerous works for cellular and/or NOMA networks. In cell-free NOMA net-
works, however, this problem has less been dealt with compared to the common
max-min SE criterion considered for cell-free NOMA networks. To solve the power
allocation sub-problem, we use the geometrical programming (GP) method. First,
we show that the objective and constraints consist of a set of signomial expressions.
Then, we apply the monomial approximation technique as a condensation method
to approximate signomial expressions with suitable monomials. The effectiveness of
the proposed solution schemes is verified in the numerical results.

The rest of the paper is organized as follows. The system model and problem
formulation are expressed in Section II. In Section III, the proposed solution scheme
for UE clustering, AP grouping, and power allocation is elaborated. Finally, numerical
results and conclusions are presented in Sections IV and V respectively.
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Fig. 1 The system model for cell-free NOMA network showing groups of APs in dashed red color,
clusters of UEs in dashed black color, and a synchronizing CPU. APs are connected to the CPU in
the cell-free network and UEs are divided into three types of clusters. UE1 belongs to a CF-OMA
cluster, UE2 and UE3 belong to a CF-NOMA cluster, and finally, UE4, UE5, and UE6 belong to the
CF-NOMAC clusters.

2 System Model and Problem Formulation

2.1 System Model

We study a downlink cell-free NOMA network where a set of K UEs denoted by
K = {1, 2, ...,K} are served by a set of N APs denoted by N = {1, 2, .., N}, where the
APs are coordinated by a CPU. Each AP is equipped with multiple RF chains and a
set of ND directional antennas to span the whole angular domain coverage. We assume
that UEs are randomly distributed in the network and each UE has at least one serving
AP in its vicinity. The UEs are divided into a set of clusters denoted by C, where C =
CO∪CN∪CNC , in which CO, CN , and CNC denote the set of CF-OMA, CF-NOMA, and
CF-NOMAC clusters respectively. Fig.1 depicts such clusters in the cell-free NOMA
network. Each CF-NOMA cluster is composed of two UEs where none is a member of
any other clusters. However, as seen in the figure, for each CF-NOMAC cluster in the
network, another CF-NOMAC cluster exists, with one common UE in both clusters.
To prevent interference between signals transmitted to different clusters, we employ
Orthogonal Frequency Division Multiplexing (OFDM). This technique allows us to
divide the network’s total bandwidth B into carriers that can be allocated to individual
clusters without causing signal overlap. To optimize system performance and minimize
complexity, we have set a limit of two UEs per CF-NOMA cluster, since increasing
the number of UEs beyond two does not significantly improve the performance and
adds more complexity to the system [4]. The cell-free network enables the UEs of each
cluster to receive signals from multiple APs synchronously. The signal transmitted to
each UE k is represented by xk where ∥xk∥2 = 1. Let pkn denote the power transmitted
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from AP n toward UE k, where the aggregate power of UEs from each AP is limited
to Pmax. The group of APs that transmit a signal to UE k, is denoted by Gk which
is expressed in the following:

Gk = {n ∈ N|βkn = 1} (1)

where βkn is a binary parameter that indicates whether AP n transmits signal to UE
k. The maximum allowed number of APs that can service each UE is denoted by
Nmax. The group of UEs assigned to each cluster c is denoted by Uc as expressed in
the following:

Uc = {k ∈ K|ζkc = 1} (2)

where ζkc is a binary parameter indicating whether UE k is a member of cluster c.
Each Uc contains one UE if it is OMA type, or two UEs if it is NOMA or NOMAC
type. The channel between UE k and AP n is denoted by ĥkn which is modeled
as ĥkn = ξkn

√
κkn where ξkn ∼ CN(0, 1) represents the small-scale fading and κkn

represents the large-scale fading (LSF) [25] which is modeled as κkn = PLkn.10
σsh.zmk

10

where PLkn is the path-loss obtained as

PLkn =





−L− 35 log10 dkn dkn ≥ d

−L− 15 log10 d− 20 log10 dkn d < dkn < d

−L− 15 log10 d− 20 log10 d dkn ≤ d

(3)

and 10
σsh.zmk

10 represents the shadow fading with the standard deviation σsh equal to
8dB, zmk ∼ N(0, 1), and d and d are determined distances, and

L = 46.3 + 33.9 log10 f − 13.82 log10 hAP

− (1.1 log10 f − 0.7) hUE + 1.56 log10 f − 0.8 (4)

In (4), hAP and hUE are AP’s and UE’s height, f is carrier frequency in MHz, and
dkn indicates the distance between UE k and AP n. In what follows, we represent the
received signal and SINR for each of the three aforementioned clustering scenarios.
1) CF-OMA clusters: For each c ∈ CO, let UO

c denote the UE of the CF-OMA
cluster c. The signal received by UE k is obtained as follows:

yk =
∑

n∈Gk

ĥkn
√
pknxk + νk, k ∈ UO

c (5)

where νk ∼ CN(0, N0) represents the noise in which N0 = K ′TBNF is the noise
power, K ′ is Boltzmann constant, T is temperature and NF is noise figure. Note that
pkn is non-zero only for APs servicing UE k. The SINR received by UE k is obtained
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as follows.

γO
k =

∑
n∈Gk

h2
knpkn

N0
, k ∈ UO

c (6)

where hkn = |ĥkn|.
2) CF-NOMA clusters: For each c ∈ CN , let UN

c denote the set of UEs in the CF-
NOMA cluster c. To make notations more simple, we consider UN

c = {1, 2}, where
UEs 1 and 2 are, respectively, strong and weak UEs. We simply consider that the
following inequality holds for strong and weak UEs.

∑

n∈G1

h2
1n ≥

∑

n∈G2

h2
2n (7)

The signal received by UE k ∈ {1, 2} is obtained as follows:

yk =

2∑

k̃=1

∑

n∈G
k̃

ĥkn
√
pk̃nxk̃ + νk, k ∈ UN

c (8)

in which x1 and x2 are transmit signals relating to the strong and weak UEs respec-
tively. Considering the basics of NOMA, a weaker power is allocated to the stronger
UE, i.e.

∑
n∈G2

p2n >
∑

n∈G1
p1n. Hence, the stronger UE has to perform SIC to

decode its signal by subtracting the weaker UE’s signal, however, the weak UE can
not remove the signal of the strong UE through SIC. Therefore, assuming perfect SIC
for the strong UE, the SINRs of strong and weak UEs in the cell-free NOMA network
are respectively expressed as follows:

γN
1 =

∑
n∈G1

h2
1n p1n

N0
, γN

2 =

∑
n∈G2

h2
2n p2n∑

n∈G1
h2
2n p1n +N0

(9)

3) CF-NOMAC clusters: Let c ∈ CNC , and c′ ∈ CNC be two CF-NOMAC clusters
having one common UE. Let UNC

c and UNC
c′ denote the UEs of two NOMA clusters

having three UEs with one common UE, as seen in Fig. 2. For simplicity, we have
considered UNC

c = {1, 2} and UNC
c′ = {3, 2}, where UE1 and UE3 are the strong UEs

of the corresponding clusters, and UE2 is the weak common UE. The two clusters
are assumed to share the same bandwidth. The APs are categorized into two distinct
groups. The first group denoted by G1 comprises the APs transmitting signals exclu-
sively to the UEs of the first cluster (i.e. UE1 and UE2). Similarly, the APs in G3

transmit the signal to exclusively to the UEs in the second cluster (i.e. UE3 and UE2).

h1n′ ≫ h1n′′ (10a)

h1n′ > h2n′ (10b)

h3n′′ ≫ h3n′ (10c)

h3n′′ > h2n′′ (10d)
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Fig. 2 Two groups of APs serving two CF-NOMAC clusters. UE2 is the common user.

∀n′ ∈ G1, ∀n′′ ∈ G3

Remark 1. To guarantee the feasibility of the SIC, constraint (10) should hold. It
should be noted that in practice, the UEs are distributed randomly all over the network
area. Therefore, as will be explained later, the UE clustering is achieved in a way that
proper UEs are grouped as clusters such that this condition holds for as many clusters
as possible considering a rather dense distribution of UEs, it is of probability that there
exist numerous UEs for which the constraint (10) is satisfied.

The signal received by UE k ∈ {1, 2, 3} is obtained as follows:

yk =

3∑

k̃=1

∑

n∈G
k̃

hkn
√
pk̃nxk̃ + νk, k ∈ {1, 2, 3} (11)

where p1n′′ = p3n′ = 0, ∀n′ ∈ G1, n
′′ ∈ G3. Assuming perfect SIC for UE1 and UE3,

the SINRs of the UEs are obtained as follows:

γNC
1 =

∑
n′∈G1

h2
1n′ p1n′

N0

γNC
2 =

∑
n∈G1∪G3

h2
2n p2n∑

n′∈G1
h2
2n′ p1n′ +

∑
n′′∈G3

h2
2n′′ p3n′′ +N0

γNC
3 =

∑
n′′∈G3

h2
3n′′ p3n′′

N0
(12)

In the following, we may use the notation γk to stand for any of the SINRs γO
k , γN

k ,
or γNC

k , and notation Uc to stand for any of cluster UEs UO
c , UN

c , or UNC
c .

2.2 Problem Formulation

Based on what stated so far, given the set of UEs and APs in a cell-free NOMA net-
work, we aim to maximize the sum rate by optimally clustering the UEs, grouping the
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APs, and allocating the downlink transmit powers, considering all relating constraints
hold. This is formally defined as follows.

max
pkn,βkn,ζkc,µk

∑

k

{u(µk − 1) log(1 + γO
k ) + u(−|µk|) log(1 + γN

k )

+ u(−µk − 1) log(1 + γNC
k )} (13)

s.t. C1 :
∑

k

pkn ≤ Pmax, ∀n ∈ N

C2 : pk′′n − pk′n ≥
P tolN0

hk′′n
, ∀c ∈ CN ∪ CNC , k′, k′′ ∈ UN

c OR k′, k′′ ∈ UNC
c

C3 : log(1 + γk) ≥ Rmin, ∀k ∈ K
C4 :

∑

n∈Gk

βkn ≤ Nmax, ∀k ∈ K

C5 : 1 ≤
∑

k

ζkc ≤ 2, ∀c ∈ C

C6 : UO
c ∩ UO

c′ = Ø, ∀c ̸= c′ ∈ CO

UN
c ∩ UN

c′ = Ø, ∀c ̸= c′ ∈ CN

|UNC
c ∩ UNC

c′ | = 1, ∀c ̸= c′ ∈ CNC

C7 : µk ∈ {−1, 0, 1}, βkn ∈ {0, 1}, ζkc ∈ {0, 1}, ∀k ∈ K, n ∈ N , c ∈ C

where µk represents the cluster type of UE k. If UE k is a member of CF-OMA, CF-
NOMA, or CF-NOMAC clusters, µk is 1, 0, or -1 respectively, and u(.) is the unit step
function expressed as follows:

u(x) =

{
1 x ≥ 0

0 x < 0
(14)

In (??), C1 ensures that the maximum downlink transmit power of each AP n is
limited to the allowed threshold Pmax, and C2 guarantees the feasibility of SIC, where
P tol is the minimum power difference required for implementing SIC in CF-NOMA
and CF-NOMAC clusters.

C3 guarantees that the achieved rate of each UE k is higher than the minimum
desired value Rmin. C4 specifies that the number of APs in each group is limited to
Nmax, and C5 states that the number of UEs in each cluster is limited to 1 for OMA
and 2 for NOMA and NOMAC clusters. C6 ensures that there exists no common UE
in OMA and NOMA clusters, and one common UE in NOMAC clusters, and finally
C7 specifies the sets of valid values for the decision variables.

3 Proposed Solution Scheme

In order to handle the NP-Hard problem expressed in (??), we split the stated problem
into three sub-problems namely UE clustering, AP grouping, and power allocation.
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We investigate each sub-problem separately in order to obtain the overall resource
management algorithm.

3.1 UE clustering

In this part, we will analyze the UE clustering process. This process enable us to
obtain the parameters ζkc and βkn for all k ∈ K, n ∈ N , and c ∈ C. The contribution
of UE clustering and AP grouping is derived by jointly considering the parameter βkn.
We hereby present two theorems that constitute the optimal metrics for UE clustering
and AP grouping. More specifically, we formally analyze the benefits of CF-NOMAC
over CF-NOMA and CF-OMA clustering methods. By using CF-NOMAC clustering,
the network can improve the sum rate by allocating the bandwidth more effectively
to the UEs and reducing the number of orthogonal clusters needed to serve all UEs.
Although the UE clustering algorithm pertains to the entire UEs of the network, first,
we consider the clustering problem for the simple case of a set of 3 UEs and then
extend the results for the general case considering all UEs of the network. Consider
the set of three UEs denoted by {1, 2, 3}, operating in a cell-free network with two
groups of serving APs, denoted by G1 and G3, where UEs can be clustered in one of
the following three scenarios: CF-OMA where all UEs employ OMA each allocated
one-third of the available bandwidth, CF-NOMA, where one of the UEs operates as
an OMA cluster (we consider UE 3 as OMA cluster) and the two remaining operate as
a NOMA cluster, and each cluster occupies one-half of the spectrum, and finally CF-
NOMAC, where three UEs operate as two NOMA clusters with a common UE (we
consider UE 2 as common UE), and each cluster is allocated the whole spectrum. In
the following, we first provide the conditions under which CF-NOMA outperforms CF-
OMA, and then show how CF-NOMAC outperforms the other schemes under certain
conditions.
Theorem 1. In cell-free NOMA networks, the CF-NOMA cluster outperforms CF-
OMA in terms of sum rate under high-SNR conditions for each UE, if the following
inequality holds.

h1n′h3n′′

h2
2n′ + h2

2n′′

≥ 3/2

∀n′ ∈ G1, ∀n′′ ∈ G3 (15)

Proof. See Appendix I.
Theorem 2. In cell-free NOMA networks, the NOMAC clustering outperforms
NOMA in terms of sum rate under high-SNR conditions.

Proof. See Appendix I.
Remark 2. Constraint (15) is a sufficient (and not necessary) condition for the
outperformance of CF-NOMA over CF-OMA in cell-free networks. On the other hand,
by considering that the constraints in (10) hold, one can verify that (15) is verified
most of the time in practice.
Remark 3. The superior performance of CF-NOMA compared to CF-OMA can be
attributed to its higher bandwidth allocation for CF-NOMA UEs, which effectively
mitigates the detrimental impact of interference generated by the NOMA technique.
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Similarly, CF-NOMAC outperforms CF-NOMA due to the higher bandwidth allocation
provided to CF-NOMAC UEs.
Remark 4. Based on the expressed theorems, CF-NOMAC clustering improves cell-
free NOMA network performance. Therefore, the priority is to include as many UEs
as possible in these clusters. The next priorities are to place UEs in CF-NOMA clus-
ters and finally CF-OMA clusters. Although the outperformance of CF-NOMAC in
Theorem 2 is stated for high SNR regimes, we will validate the superiority of that for
various SNRs through numerical results.

The UE clustering algorithm has two steps as follows:
I) Selection of the first UE of each cluster
In the initial phase, for each AP n, we consider a new cluster c with a single UE which
is selected as the UE corresponding to the strongest available channel. Therefore, we
have

k1c = argmax
k∈K

hkn, ∀n ∈ N (16)

where k1c is the first member of the set of UEs associated with one direction of AP
n through cluster c. Consequently, we set ζk1

cc
= 1, βk1

cn
= 1, and Uc = {k1c}. We

construct the set of first UEs of all clusters as follows:

Q1 = {k1c}, ∀c ∈ C (17)

II) Selection of the second UE
The NOMA method experiences a decline in performance when the channels between
UEs within the same cluster and the corresponding APs are close to each other. To
mitigate this issue, the clustering algorithm mandates that UEs within a cluster must
be separated by a distance greater than a predefined threshold, denoted as dmin.
Consider k2c is the second member of the set of UEs associated with AP n through
cluster c. We define the set Q2

c to encompass all second UE candidates that may be
associated with cluster c, which is organized as follows:

Q2
c = {k /∈ Q1| dmin < dk1

cn
− dkn︸ ︷︷ ︸

A

, |∆ϕk1
c ,k
| < ϕth

︸ ︷︷ ︸
B

} (18)

From the set of all UEs except the ones in Q1, we search through those located in
the main lobe of the beam forwarded to the first UE (k1c ), and the distance difference
between k1c and other potential candidates with respect to AP n be higher than dmin.
This is expressed as the SIC constraint in term A of (18). Considering that AP n steers
the beam (with maximum directivity) toward the first UE, term B of (18) ensures
that the relative phase angle between (AP n, UE k1c ) and (AP n, UE k2c ) denoted by
|∆ϕk1

c ,k
| is smaller than a threshold value ϕth. This ensures that the first (near) and

second (far) UEs are aligned to a desired extent.
Once the first UE and second UE candidates for all clusters are processed according

to the above procedure, we choose the clusters’ types as follows. For each c ∈ C, if
Q2

c is null (i.e. there exists no UE for which constraints A and B hold), cluster c
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Algorithm 1 : UE clustering

1: Initialize: Set ζkc = 0, c = n, βkn = 0 ∀k, n;
2: for each c do
3: Select UE k1c from (16);
4: Set ζk1

cc
= 1;

5: end for
6: Construct Q1 and Q2

c from (17) and (18);
7: for each c do
8: if |Q2

c | = 0 then
9: Determine the clustering type of c as CF-OMA and µk1

c
= 1;

10: else if |Q2
c | ≠ 0, |Q2

c ∩Q2
c | = 0, ∀c ̸= c′ then

11: Select UE k2c from (19);
12: Set ζk2

cc
= 1;

13: Determine the clustering type of c as CF-NOMA and µk1
c
= µk2

c
= 0;

14: else if |Q2
c | ≠ 0, |Q2

c ∩Q2
c | ≠ 0, ∀c ̸= c′ then

15: Select UE k2c from (20);
16: Set ζk2

cc
= ζk2

cc
′ = 1;

17: Determine the clustering type of c, c′ as CF-NOMAC and µk1
c
= µk1

c′
=

µk2
c
= −1;

18: end if
19: end for

corresponding to UE k1c is selected as a single UE CF-OMA (UOMA
c = {k1c}). In order

to handle the CF-NOMA and CF-NOMAC clusters, we note that the sets Q2
c , ∀c

may or may not intersect with each other. In the case that there exists no common
UE between Q2

c , and Q2
c′ , ∀c′ ̸= c (i.e. Q2

c ∩ Q2
c′ = Ø, ∀c ̸= c′ ), we assign the

second UE of cluster c denoted by k2c from the set of candidate UEs Q2
c , where k2c is

obtained from (19) and cluster c (containing UEs k1c and k2c ) is labeled as CF-NOMA
(UNOMA

c = {k1c , k2c}).

k2c = argmax
k∈Q2

c

hkn, ∀c ∈ C (19)

Consequently, we set ζk2
cc

= 1 and βk2
cn

= 1. If Q2
c has a common UE with Q2

c′ for
some c′ ̸= c (i.e. |Q2

c ∩ Q2
c′ | ≠ 0, ∀c′ ̸= c ), k1c , k

2
c and k1c′ form CF-NOMAC clusters

as UNC
c = {k1c , k2c} and UNC

c′ = {k1c′ , k2c′}, where k2c′ = k2c is obtained as follows:

k2c = argmax
k∈Q2

c∩Q2
c′

(1 + γNC
k1
c

)(1 + γNC
k2
c

)(1 + γNC
k1
c′

), ∀c, c′ ∈ C (20)

To address the optimization problem stated in equation (20), we employ Algorithm 3
which is detailed in the subsequent two subsections. Consequently ζk2

cc
= 1 , βk2

cn
= 1,

ζk2
cc

′ = 1 and βk2
cn

′ = 1 where n′ is the AP initially associated with cluster c′. We
repeat the above steps until all UEs are clustered. Based on what is stated so far, the
proposed UE clustering is presented in Algorithm 1.
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Algorithm 2 : AP Grouping Algorithm

1: Initialization: Let ζkc be known from the clustering scheme presented in
Algorithm 1;

2: for each k ∈ K do
3: Construct QAP

k from (21);
4: if µk ∈ {0, 1} then
5: Select the first min{Nmax−1, |QAP

k |} elements of QAP
k and set βkn = 1 for

these decision variable;
6: else if µk=-1 then
7: if k = k1c then
8: Update QAP

k by applying constraints (10);
9: else if k = k2c then

10: Update QAP
k by applying constraints (10b) and (10d);

11: end if
12: Select the first min{Nmax−2, |QAP

k |} elements of QAP
k and set βkn = 1 for

these decision variable;
13: end if
14: end for

3.2 AP grouping

From UE clustering each UE is assigned to 1 AP (for CF-OMA and CF-NOMA clus-
ters, as well as the strong UE of CF-NOMAC clusters) or 2 APs (for weak common UE
in the CF-NOMAC clusters). In cell-free networks, a set of multiple APs can simul-
taneously cover each UE to increase SE. We define the set QAP

k to include the APs
capable of covering UE k as follows:

QAP
k = {n ∈ N|dkn < D}, ∀k ∈ K (21)

where D is the maximum allowed distance between the UE and the AP candidate. For
each UE k, we sort the members of QAP

k in descending order based on the hkn, ∀n ∈
QAP

k . For UEs that belong to CF-OMA or CF-NOMA clusters (µk ∈ {1, 0} ), it’s
evident that the first member of QAP

k is the initial AP that covers UE k; We select the
first min{Nmax − 1, |QAP

k |} elements of QAP
k (excluding the initial AP) as addition

APs that cover UE k. For UEs that belong to CF-NOMAC clusters (µk = −1 ), it is
essential to apply the following constraints in addition to (21); for strong UEs (k = k1c )
within the CF-NOMAC clusters, the constraint specified in (10) and for weak UEs
(k = k2c ), (10b) and (10d), should be followed. After updating QAP

k We select the first
min{Nmax−2, |QAP

k |} elements of QAP
k (excluding those that cover UE k ) along with

the initial AP as APs that cover UE k. Throughout the execution of this algorithm,
the values of βkn, ∀k, n have been updated. The proposed AP grouping is presented
in Algorithm 2.
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3.3 Power allocation

After clustering UEs and grouping APs, we compute the optimal downlink transmit
power of the APs towards the UEs as follows. Given that the variables associated with
UE clustering and AP grouping (βkn, ζkn, µk) are computed using Algorithms 1 and
2, the power allocation problem corresponding to (??) can be written as follows:

max
pkn

∑

k∈K

log2 (1 + γk)

s.t. C1, C2, C3 (22)

where γk can be any of the three terms γO
k ,γN

k and γNC
k . Problem (22) is equivalent

to the following problem:

min
pkn

∏

k

1

(1 + γk)

s.t. C1, C2, C3 (23)

After some mathematical manipulations, (23) can be written as (24).

min
pkn

∑I
i=0 li

∏
j,k,n(p

a
(j)
i

kn . N
a
(j)
0

0 )

∑I′

i′=0 l
′
i′
∏

j,k,n(p
a
(j)

i′

kn . N
a
(j)
0

0 )

s.t. C1, C2, C3 (24)

where li, l
′
i′ , a

(j)
i and a

(j)
i′ are constant coefficients derived through basic mathematical

operations, and I, I ′ are integer numbers whose values are usually much less than
K × N . The objective function of (24) is a ratio whose numerator and denominator
are posynomials which can be approximated to monomial expressions through the
monomial approximation technique and then solved through GP method [26]. The
preliminaries of the GP method related to solving the stated power allocation problem
are briefly presented in Appendix II. As described in Appendix II, (24) belongs to the
category of signomial programming (SP), also known as Complementary GP, and can
be effectively addressed through the condensation method. To solve this equation, we
apply monomial approximation to the denominator of (24). The steps of obtaining
the optimal power allocation through the GP method are expressed in Algorithm
3. As outlined in Section III, clusters that are outside the coverage range of an AP
cannot receive signals from that AP. Consequently, equation (24) can be decomposed
into multiple independent problems, each of which can be addressed separately. This
approach enhances simplicity and reduces the computational complexity associated
with solving the power allocation problem.
Remark 5. Constraint C3 has the potential to render problem(23) infeasible; To miti-
gate this problem, we employ the user removal technique; if problem (23) is determined
to be infeasible, the cell-free NOMA network proceeds by removing weak UEs from the
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Algorithm 3 : Power Allocation Algorithm

1: Initialize: Let m← 1, where m is the step number, ϵ be a small number, and let
p
0 be an initial feasible power vector;

2: Do
3: Compute the posynomial corresponding to the denominator of (24) using p

m−1;
4: for each i′ ∈ {0, 1, ..., I ′} do
5: Compute α∗

i′(p
m−1) from (B19);

6: end
7: Condense the posynomial denominator of (24) into monomial form by applying

the weights α∗
i′(p

m−1) in (B18);
8: Obtain p

m by solving the resulting GP optimization problem using the interior-
point method;

9: While ∥pm − p
m−1∥ ≥ ϵ;

coverage set based on their total channel gain until feasibility is achieved. The total
channel gain of UE k is defined as hTot

k =
∑

n∈QAP
k
∥hkn∥2.

3.4 Computational complexity

To analyze the computational complexity of Algorithms 1, 2, and 3, we evaluate their
performance under the worst-case scenario, wherein the network considers the max-
imum number of CF-NOMAC clusters. The computational complexity of Algorithm
1 and Algorithm 2 is determined to be O(NK + K2) and O(NK) respectively. On
the other hand, the complexity of calculating Algorithm 3 is of O((KN)3.5 log(1/ϵ) +
(NK)2 + NK) ≡ O((KN)3.5 log(1/ϵ)) where ϵ is achievable precision [27]. Conse-
quently, when addressing the optimization problem presented in equation (??), the
maximum complexity among Algorithms 1, 2, and 3 is O((KN)3.5 log(1/ϵ)).

4 NUMERICAL RESULTS and DISCUSSIONS

Table 1 Simulation parameters

parameter value

f 1.9 GHz
B 20 MHz

NF 9 dB
Antenna gain 15 dB
hAP , hUE 15 m, 1.65 m

d, d, dmin, D 50 m , 10 m , 5 m, 500 m

P tol 10 mW

ND 3

In this section, we present numerical results to verify analytical justifications and
proposed algorithms. Consider a 2Km × 2Km network area wherein a set of K UEs
and a set of N APs are randomly distributed in the network area where the values ofK
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and N will be specified in each simulation scenario. Unless explicitly stated otherwise,
all simulation parameters considered are listed in Table I. The channels between UEs
and APs are modeled as (3). Simulation results have been obtained using the Monte
Carlo method by averaging from 500 independent iterations and utilizing the CVX
toolbox. To verify the superiority of the proposed CF-NOMAC clustering over CF-

(a)

100 200 300 400 500 600 700 800 900
5

6

7

8

9

10

11

12

13

S
u
m

 R
a
te

 (
M

b
it
/s

)

Proposed CF-NOMAC

CF-NOMA

CF-OMA

(b)

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

P
o
w

e
r(

m
W

)

(c)

Fig. 3 (a) The scenario for analyzing the proposed clustering methods. Three UEs and two groups of
APs with Pmax = 200mW have been considered. UE1 and UE3 are assumed to be fixed, while UE2
moves within the feasible range. (b) Sum rate per ∆d21 for three clustering methods. (c) Aggregate
power of each UE per ∆d21 for CF-NOMAC clustering method.

NOMA and CF-OMA methods, we have considered three UEs namely UE1, UE2, and
UE3 according to Fig. 3-a communicating with two cell-free groups each consisting of
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three APs with Pmax = 200mW , where the location of each of the APs is randomly
set in the corresponding dashed square region where UE1 and UE3 are assumed to
be fixed, while UE2 can move within a predetermined range. The distance between
UE1 and UE3 is considered to be 1 km. Fig.3-b illustrates the sum rate per ∆d21.
As shown in the figure, the CF-NOMAC clustering method presented in this paper
exhibits superior performance compared to the others. Increasing ∆d21 from dmin to
500 results in a decrease in channel gains between UE2 and each of the APs of G1,
thereby resulting in a reduction in the sum rate. This, however, is not substantial due
to UE2’s proximity to the APs of the G3 group. Due to the network symmetry, the
sum rate continues to increase as ∆d21 exceeds the 500-meter threshold. By allowing
a UE to be jointly a member of the two clusters, even though the interference of
signals of the two clusters has a destructive effect on the common UE, the number
of orthogonal clusters is decreased which in turn can lead to a performance leverage.
Fig.3-c depicts the aggregate downlink transmit power toward each UE k denoted by
p̃k (k ∈ {1, 2, 3}) per ∆d21 for the network model presented in Fig.3-a. It is seen that
increasing ∆d21 results in a monotonic increase (decrease) in p̃1 (p̃3) with a relatively
high rate, however, p̃2 is always greater than p̃1 and p̃3 to satisfy C2 in (??). Moreover,
the variation of p̃2 is minimal due to the fact all APs of G1 ∪ G2 contribute to p̃2,
and besides, although increasing ∆d21 results in less power to be allocated to UE2
from the APs of G1, this is somehow compensated by assigning more power from the
APs of G3. In the following, we consider 4 RA algorithms to verify the performance of
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Fig. 4 Sum rate per Pmax. The network has K = 60 UEs and N = 20 APs.

our proposed algorithm. In the first scenario, we consider that the UE clustering, AP
grouping, and power allocation are obtained respectively from Algorithms 1, 2, and
3. We call this Alg-CFNOMAC. In the second scenario, we consider the case where
clusters are exclusively determined by NOMA and OMA methods, and in the third
scenario, we consider the pure OMA method. We call these Alg-CFNOMA and Alg-
CFOMA respectively. Finally, we consider the NOMA clustering where UE pairs are
selected. This is called Alg-CFNOMA-Conv.

Fig. 4 illustrates the sum rate of the UEs versus Pmax in a network with K = 60
UEs and N = 20 APs. Firstly, it is observed how the sum rate increases with an
increase in Pmax for all stated algorithms. For example, for Alg-CFNOMAC, increas-
ing Pmax from 1 to 4 W, results in an increase from 69 Mbit/s to 79 Mbit/s, while the
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power increase is rather substantial, the resulting performance leverage is not determi-
nant. On the other hand, it is seen that Alg-CFNOMAC outperforms Alg-CFNOMA,
and Alg-CFNOMA outperforms Alg-CFOMA to a great extent. For example, for
Pmax = 1W , the performance of Alg-CFNOMAC is higher than Alg-CFNOMA and
Alg-CFOMA about 47% and 30% respectively. In a similar way, Fig. 5 illustrates how
increasing the number of APs in the cell-free NOMA network improves the perfor-
mance of the different RA algorithms. It is seen that the sum rate of our proposed
algorithm is much higher than all other schemes for all values of the number of APs.
This is related to more efficient channel diversity gain achieved through increasing
the probability of accessing APs with higher channel gains. Both Fig. 4 and Fig. 5
illustrate that the proposed CF-NOMAC clustering method outperforms traditional
clustering methods. Considering a fixed value for the number of APs as N = 20, Fig.
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Fig. 5 Sum rate per number of APs (N). The network has K = 60 UEs.

6 illustrates how increasing the number of UEs (K) affects the sum rate of the net-
work for two cases of Rmin = 0 and Rmin = 0.25 Mbit/s corresponding to Figs. 6-a
and 6-b respectively. To take the limitations of channel estimation into account, simi-
lar to [25], we have considered that a pre-log-factor of (1− τ

τcf
) multiplied by the rate

of each UE where τ represents the pilot sequence length which is always greater than
or equal to the number of orthogonal clusters and τcf is coherence interval, where
we have assumed τcf = 50. For Alg-CFOMA, and Alg-CFNOMA-Conv, τ is equal
to K and K/2 respectively. For Alg-CFNOMA which employs both CF-OMA and
CF-NOMA clustering types, the value of τ always holds the inequality K

2 < τ ≤ K.
Similarly, for the Alg-CFNOMAC wherein the clusters might be either of CF-OMA,
CF-NOMA, or CF-NOMAC types, we have K

3 < τ ≤ K
2 . Consequently, the upper

bound for serving UEs for Alg-CFNOMAC and Alg-CFNOMA are up to twice and
three times, respectively, compared to the Alg-CFOMA. As illustrated in both Figs.
6-a and 6-b, the maximum number of UEs that can be served in the Alg-CFNOMA
and Alg-CFNOMAC are lower than 100 and 150, respectively. To justify this, note
that due to the random distribution of UEs and APs, the constraints of (10) and (18)
may not be satisfied for all UEs. Therefore, Alg-CFNOMA leads to the constitution
of both CF-OMA and CF-NOMA clusters, and Alg-CFNOMAC constitutes all CF-
OMA, CF-NOMA, and CF-NOMAC clusters. It is also seen that in both figures and
for all values of K, Alg-CFNOMAC has the superior performance, however, the other
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three algorithms show different performance behavior for different values of K. To
analyze the behavior of these diagrams, we should note that the performance of each
of the studied algorithms is tightly related to the two parameters of SINR and the
number of orthogonal clusters. A higher level of sum rate is associated with higher
SINRs and a smaller number of orthogonal clusters, while a wider diagram is associ-
ated with a smaller number of orthogonal clusters. The performance of Alg-CFOMA
is mostly related to the first factor, while that of other algorithms is influenced by
the two factors. It is seen that Alg-CFNOMAC has taken the benefits of both high
SINR and the smaller number of orthogonal clusters. In contrast to Fig. 6-a wherein
Rmin = 0, the minimum rate of Fig.6-b, it is observed that the implementation of
a minimum rate of Rmin > 0 results in less number of supported UEs (due to the
user removal mechanism), leading to service sustainability for the maximum possible
number of UEs.

In order to show how the proposed Alg-CFNOMAC allocates different types of CF-
NOMAC, CF-NOMA, and CF-OMA clusters to the UEs, the corresponding number
of allocated clusters per number of UEs is depicted in Fig. 7. For a small number
of UEs, it is of little probability to find UE pairs for which the constraints relating
to CF-NOMA and CF-NOMAC hold. Therefore, in this case, as seen in the figure,
most UEs are clustered as CF-OMA. This justifies the close performance measures
of all algorithms for a small number of UEs. On the other hand, as the number of
UEs increases, more UE candidates are available to be clustered as CF-NOMA and
CF-NOMAC. This results in gaining higher efficiency of Alg-CFNOMAC for a larger
number of UEs compared to other algorithms.

5 CONCLUSIONS

Our paper extensively presents and examines the performance advantages of a clus-
tering method in cell-free NOMA networks that share a common UE between two
clusters which we refer to as CF-NOMAC cluster. We provided mathematical proofs
and numerical results to substantiate the superiority of CF-NOMAC over tradi-
tional clustering schemes like NOMA and OMA in cell-free networks. Additionally,
we introduced UE clustering and AP grouping algorithms which efficiently decrease
the number of orthogonal clusters. To efficiently address the power allocation prob-
lem, we utilized geometrical and signomial programming. Noting that the proposed
solution schemes are inherently sub-optimal, in future works we anticipate significant
potential in exploiting machine learning and artificial intelligence algorithms to opti-
mize UE clustering, as well as AP grouping for cell-free NOMA networks employing
CF-NOMAC clusters.

Appendix A PROOF OF THEOREMS I, II

A) Proof of Theorem I: In what follows, first, we provide the proof for the case
where each cluster is serviced by only one AP, namely n′ ∈ G1 and n′′ ∈ G3; then we
justify that the proof is valid for the general case of multiple APs servicing each UE in
the cell-free network. The power allocation for maximizing the sum rate corresponding
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Fig. 6 Sum rate per number of UEs (K). The network has N = 20 APs: a) Rmin = 0Mbit/s. b)
Rmin = 0.25Mbit/s.
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to the CF-OMA clustering is obtained as (A1):

max
p1n′ ,p2n′ ,p2n′′ ,p3n′′

log2

((
1 +

h2
1n′p1n′

N0

)(
1 +

h2
2n′p2n′ + h2

2n′′p2n′′

N0

)(
1 +

h2
3n′′p3n′′

N0

))η

s.t. p1n′ + p2n′ ≤ Pmax

p2n′′ + p3n′′ ≤ Pmax (A1)
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where η = BOMA/B = 1/3 and BOMA is the allocated bandwidth to each UE of
the CF-OMA cluster. Considering the high SNR assumption, (A1) is equal to (A2),
expressed as follows.

max
p1n′ ,p2n′ ,p2n′′ ,p3n′′

f(p)

s.t. p1n′ + p2n′ ≤ Pmax

p2n′′ + p3n′′ ≤ Pmax (A2)

where

f(p) =

((
h2
1n′p1n′

N0

)(
h2
2n′p2n′ + h2

2n′′p2n′′

N0

)(
h2
3n′′p3n′′

N0

))η

(A3)

For the CF-NOMA case, the sum rate maximization is obtained as follows.

max
p′

1n′
,p′

2n′
,p′

2n′′
,p′

3n′′

((
h2
1n′p′1n′

N ′
0

)(
1 +

h2
2n′p′2n′ + h2

2n′′p′2n′′

h2
2n′p′1n′ +N ′

0

)(
h2
3n′′p′3n′′

N ′
0

))η′

s.t. p′1n′ + p′2n′ ≤ Pmax

p′2n′′ + p′3n′′ ≤ Pmax

p′2n′ − p′1n′ ≥ P tolN ′
0

h2n′

(A4)

where η′ = BNOMA/B = 1/2, BNOMA is the allocated bandwidth to each UE of the

CF-NOMA cluster, N ′
0 = δN0 and δ = B/2

B/3 = 1.5. The objective function of (A4) can

be written as (A5).

f ′(p′) =

((
h2
1n′p′1n′

N0

)(
h2
2n′Pmax + h2

2n′′p′2n′′

N0

)(
h2
3n′′p′3n′′

N0

))η′

︸ ︷︷ ︸
f ′

A
(p′)

(
N0

δ2h2
2n′p′1n′

)η′

(A5)

First, we compare term in (A5) with f(p). Considering the fact η′ > η and each term in
the parentheses for f ′

A(p
′) and f(p) is greater than one, it can be seen that maximizing

the NOMA objective f ′
A(p

′) is similar to maximizing the OMA objective f(p), having
a larger bandwidth than that of the OMA (since η′ > η), and at the same time p2n′ is
equal to the maximum allowed value Pmax; this verifies the feasibility constraints of
(A4). Therefore, by selecting suitable power levels, f ′

A(p
′) will be greater than f(p).

One possible sub-optimal choice is to select p′2n′′ = 0 and consequently p′3n′′ = Pmax.
Therefore, considering the aforementioned sub-optimal values of p′, and optimal values
of p, the ratio of f ′

A(p
′) over f(p) is always greater than or equal to (A6), expressed
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in the following.

(
1

δ2h2
2n′p′1n′

)η′

(h2
1n′p′1n′h2

2n′Pmaxh2
3n′′Pmax)η

′

(h2
1n′p1n′(h2

2n′p2n′ + h2
2n′′p2n′′)h2

3n′′p3n′′)η
(A6)

By simplifying (A6), and considering constraints (10), it can be verified that (A6) is
higher than unity, and thus the superiority of CF-NOMA over CF-OMA is concluded.
Considering that (10) is valid for all APs, if APs other than n′ and n′′ are added to G1

and G3, the terms added to the (A5) are correspondingly greater than those added to
f(p), and thus the outperformance of CF-NOMA over CF-OMA in cell-free NOMA
networks is verified. ■

B) Proof of Theorem II: Similar to Theorem 1, first we consider that AP groups
G1 and G3 consist of single APs denoted by n′ and n′′, and then extend the proof for
groups containing multiple APs. The sum rate maximization problem for CF-NOMAC
is formally written as follows.

max
p′′

1n′
,p′′

2n′
,p′′

2n′′
,p′′

3n′′

(
h2
1n′p′′1n′

N ′′
0

)(
h2
2n′p′′2n′ + h2

2n′′p′′2n′′

h2
2n′p′′1n′ + h2

2n′′p′′3n′′ +N ′′
0

+ 1

)(
h2
3n′′p′′3n′′

N ′′
0

)η′′

s.t. p′′1n′ + p′′2n′ ≤ Pmax

p′′2n′′ + p′′3n′′ ≤ Pmax

p′′2n′ − p′′1n′ ≥ P tolN ′′
0

h2
2n′

p′′2n′′ − p′′3n′′ ≥ P tolN ′′
0

h2
2n′′

(A7)

where η′′ = BNOMAC/B = 1, BNOMAC is the allocated bandwidth to each UE of the
CF-NOMAC cluster and N ′′

0 = 3N0. The objective function of (A7) is equal to (A8)
in the following.

f ′′(p′′) =

((
h2
1n′p′′1n′

N ′
0

)(
Pmax(h2

2n′ + h2
2n′′)

N ′
0

)(
h2
3n′′p′′3n′′

N ′
0

))η′′

︸ ︷︷ ︸
f ′′

A
(p′′)

×
(

N ′
0

4(h2
2n′p′′1n′ + h2

2n′′p′′3n′′)

)η′′

(A8)

Remember that the bandwidth allocated to each UE in CF-NOMA and CF-NOMAC
clusters is B/2 and B respectively. First, we compare the term f ′′

A(p
′′) with f ′

A(p
′).

Noting that η′′ > η′, and each term in the parentheses in both f ′′
A(p

′′) and f ′
A(p

′) is
greater than one, similar to the proof of Theorem 1, maximizing the term f ′′

A(p
′′) is

similar to maximizing the sum rate of an OMA problem, having a larger bandwidth
than that for f ′

A(p
′) (since η′′ > η′), and at the same time p′2n′′ is equal to the

maximum allowed value Pmax; this verifies the feasibility constraint, as well as the
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power constraints of (A7). Therefore, it’s concluded that by selecting suitable power
values, f ′′

A(p
′′) will be greater than f ′

A(p
′). The ratio of f ′′(p′′) over f ′(p′), is obtained

as follows:

h1n′p′′1n′h3n′′p′′3n′′(h2
2n′ + h2

2n′′)Pmaxh2n′N ′
0N

′′−2
0

(h2
2n′p′′1n′ + h2

2n′′p′′3n′′)
√

h2
2n′p′2n′ + h2

2n′′p′2n′′

√
p′3n′′

(A9)

By simplifying (A9), we get (A10) as follows.

(
h1n′h3n′′Pmin

N ′′
0

)(
h2
2n′pmax

N ′′
0

)(
N ′

0

h2
2n′p′2n′ + h2

2n′′p′2n′′

× N ′
0

h2
2n′p′3n′′

)η′

(A10)

where Pmin = min(p′′1n′ , p′′3n′′). It should be noted that the ratio (A10) with the
optimal UEs power is always greater than or equal to (A9). The first two terms of
(A10) are greater than the next two terms as they are associated with the SNRs of
desired signals. On the other hand, the next two terms are associated with the SNRs
of interference signals. By considering the high SNR assumption we conclude that
the (A10) is greater than one. Considering that APs other than n′ and n′′ are added
to G1 and G3, the terms added to the (A8) are correspondingly greater than those
added to the objective function of (A7), and thus the outperformance of NOMAC
over CF-NOMA in cell-free NOMA networks is verified. ■

Appendix B SIGNOMIAL PROGRAMMING

GP belongs to a class of nonlinear optimization techniques that possess numerous
advantageous theoretical and computational properties [26]. Despite GP being seem-
ingly non-convex in its standard form, it can be easily transformed into a convex
optimization problem. GP can be represented in two interchangeable forms: the stan-
dard form and the convex form. The standard form involves constrained optimization
of a specific function category known as a posynomial. The convex form is derived
from the standard form by employing a logarithmic transformation of variables. The
monomial function f : Rs

++ → R is defined as follows:

f(p) = kpa
(1)

1 pa
(2)

2 . . . pa
(J)

s (B11)

where the multiplicative constant d ≥ 0 and the exponential constants a(j) ∈ R, j =
1, 2, ..., J. Sum of monomials, indexed by i, is called a posynomial that expressed in
(B12).

f(p) =

I∑

i=1

kip
a
(1)
i

1 p
a
(2)
i

2 . . . p
a
(J)
i

s (B12)

where ki ≥ 0, and the exponential constants a
(j)
i ∈ R, j = 1, 2, ..., J, i = 1, ..., I. The

key features of a posynomial, are its positivity and convexity in the log domain. The
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following optimization problem is called a GP problem in the standard form:

min
p

f0(p)

s.t. fs(p) ≤ 1, s = 1, 2, ..., S

hv(p) = 1, v = 1, 2, ..., V (B13)

where fs and hv are posynomial and monomial, respectively. Although the posyn-
omial seems to be a non-convex function, it becomes a convex function after using
the log − sum − exp transformation In contrast to the constrained or unconstrained
minimization of polynomials, the minimization of a posynomial within GP relaxation
loosens the integer constraint on the exponential constants while enforcing a pos-
itive constraint on the multiplicative constants and variables. These two problems
exhibit a distinct disparity: polynomial minimization is known to be NP-hard, whereas
GP can be transformed into convex optimization using polynomial-time algorithms
with guaranteed global optimally. GP in the standard form allows only the upper
bound inequality constraints for posynomials and equality constraints for monomi-
als. However, these requirements might be violated in practice. i.e. there might exist
lower-bounded posynomial inequality constraints, as well as equality constraints hav-
ing posynomials.This issue can be tackled by extending GP to signomial programming
(SP): minimizing a signomial objective function subject to upper bounded inequality
constraints on signomials, and/or equality constraints on posynomials. A signomial
function which is expressed as (B14) is a sum of monomials, wherein, the coefficient
of each monomial can be positive or negative.

fs(p) =

I∑

i=1

ci

J∏

j=1

p
a
(j)
i

j , s = 1, ..., S (B14)

where ci ∈ R, a
(j)
i ∈ R, ∀e, j, p ∈ R

J
++. SP is an extension of the GP problem,

which cannot be generally turned into a convex problem [26]. Complementary GP is
an approach for solving SP problems. This approach allows upper bound constraints
on the ratio between two posynomials and then applies a monomial approximation
iteratively. This is called the condensation technique, which is an instance of the
cutting-plane method for nonlinear programming. The conversion from an SP into a
Complementary GP is trivial. An inequality in SP is in the form of (B15).

fs1(p)− fs2(p) ≤ 1 (B15)

where fs1(p) and fs2(p) are posynomials. (B15) is equivalent to the following
inequality.

fs1(p)

1 + fs2(p)
≤ 1 (B16)
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There exist two options for making the monomial approximation. One is to approxi-
mate the denominator 1+fs2(p) with a monomial but leave the numerator fs1(p) as a
posynomial. This is called the single condensation method, and results in a GP approx-
imation of a SP. An alternate option is to employ the monomial approximation for both
the denominator and numerator, commonly referred to as the double condensation
approach. The double condensation approach entails a higher degree of computational
complexity. Therefore, in this paper, we exclusively utilize the single condensation
approach and incorporate the monomial approximation for enhanced precision. In the
context of single condensation, we employ a simplified approximation built upon the
geometric inequality concept, which has consequently fostered the evolution of GP.
The following inequality forms an upper-bound monomial approximation.

∑

i

αiνi ≥
∏

i

ναi

i (B17)

where νi > 0 , αi > 0, ∀i, ∑
i αi = 1. Letting ui = αiνi , (B17) can be written as

follows:

∑

i

ui ≥
∏

i

(
ui

αi
)
αi

(B18)

Let ui(p) be the monomial term in posynomial f(p) =
∑

i ui(p). This approximation is
in the conservative direction because the original constraint is tightened. One possible
choice for α is

αi(p) =
ui(p)

f(p)
, ∀i (B19)

Given an α for each lower bound posynomial inequality, a standard form GP can be
obtained based on the above monomial approximation of the SP. It should be noted
that both the monomial approximation and the aforementioned selection of α might
not yield the optimal approximation, either in terms of minimizing the approximation
error or enabling the computation of a global optimizer for the original SP. To mitigate
this limitation, an iterative procedure can be employed to solve the geometric mean
approximation of the SP. This iterative process involves initiating with some feasible
power vector pv and subsequently computing α(pv). This leads to the formation of a
GP problem which yields the power pv+1. The algorithm continues until it converges
to a fixed point.
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