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Abstract
Ornamental �sh during short-term or long-term transportation have stress-related effects due to their
exposure to degrading levels of water quality e.g., pH (acidic or alkaline), oxygen, ammonia, temperature
levels, etc., and captivity in container. Thus, estimation of biochemical parameters, as lipid peroxidation
(LPO) and antioxidant enzymatic activities (SOD-superoxide dismutase, CAT-catalase, GST-glutathione-s-
transferase) during pH shift response in liver and muscle of three ornamental �sh such as black wagtail
platy, rosy barb and lemon-yellow cichlid was reported here. Although 100% survivability was noted
among all �sh species but oxidative stress was marked with an increase in LPO levels in all �shes
transported in different containers /plastic bags for a travel of 6hours by road and those exposed to
short-term for 6hours/day for 96 hours to pH5 and pH10 maintained under lab conditions. Exposure of
Rosy Barb to pH10 and platy and cichlid to pH5 induced signi�cant increase in LPO in liver tissue
compared to all transported �sh whereas, muscle tissue of platy and cichlid showed increased activities
of LPO during transportation compared to exposed ones and control group of �sh. Signi�cantly elevated
levels of SOD activity in both tissues of all experimental �shes whereas CAT activity was more in liver
tissue of transported �shes to counteract stress response and detoxify products of lipid peroxidation.
Therefore, understanding variation in stress levels of ornamental �shes during transportation and
exposure to pH levels which is tissue as well as species-speci�c becomes critically important for their
welfare in aquaculture practices as observed in this study.

Introduction
Transportation of �sh, although a global necessity, are known to cause acute and/or chronic stress due
to duration and distance covered between source of initial travel and their �nal destination causing
changes in water quality of the container consisting of different types of �sh species crowded together
in different types of containers. Transportation of ornamental �shes is an important practice in
aquaculture but for successful method of transportation the aquaculturist has to understand many
technical issues. Fish welfare during transportation is rapidly gaining importance and many scientists
have identi�ed conditions to be ful�lled regarding welfare criteria of �sh so as to reduce stress, suffering
and pain during transportation. The data available in literature regarding transport of live �sh, included
scienti�c information about 8 h or less (short transport) and more than 8 h duration (long transport)
(Stieglitz et al., 2012). According to Noga (2000) and Davis (2006) effects of duration of transport stress
can be categorized into acute (short-term) or chronic (long-term). Reviews by Berka (1986) and Harmon
(2009) was mainly focused on stress associated with alteration in water quality during transportation.

In water chemistry, pH is an intensity factor whereas acidity or alkalinity of water is capacity factor which
is de�ned based on carbonate system (Stumm and Morgan, 1996). CO2 causes acidity while
bicarbonate and carbonate cause alkalinity of water (Boyd, 2000). Reaction of water molecules with
ammonia released by �sh resulted in formation of ammonium (NH4+) and hydroxyl ions (OH-) ions into
water which further reacted with CO2 to produce HCO3 (bicarbonate)- that in turn increased water
alkalinity (Boyd, 1990). Water with pH less than 4.5 do not have alkalinity while pH greater than 8.5 don’t
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have acidity. The transported �sh are exposed to �uctuation of water quality when repacked from
different sources by the stakeholders from the time in wild or aquaculture farm to their �nal destination
of aquarist vendors or domestic aquarium. Lim et al. (2003) and Pramod et al. (2010) accepted that
ornamental �sh are transported for long distances and mainly in plastic sealed bags in high densities
causing damage to �sh health or mortality (Braun and Nuner 2014). Bower and Turner, (1982), Silva et al.,
(2015) and Sampaio and Freire, (2016) observed that important factors of water viz., pH, dissolved
oxygen, temperature and ammonia should be monitored while studying the simulated commercially
transported �sh so as to understand their effect on physiology of the �sh in question (Paterson et al.
2003, Abreu et al. 2008 and Manuel et al. 2014).

pH exposure can be the forerunner to oxidative stress in �sh species was con�rmed by few scientists
e.g., Gilmour and Perry, (1994) checked the pH shift and acid–base equilibrium from the physiological
regulation perspective, Halliwell and Gutteridge, (1999) studied the oxidative damage during pH shift in
liver and kidney tissue and Fenner, (2001) considered pH above or below 1.5points to have negative
effect beyond a period of time. Das et al., (2006) studied the in�uence of alteration in environmental
(water) conditions with respect to pH levels during transportation which in�uences their welfare since
they are unable to maintain acid-base and ion regulation. Hence, altered pH levels were considered
common stressor among the potential stressors during transportation of �sh due to its denaturing effect
on cellular membrane (EIFAC, 1971). Previous studies by Sies (1985) on suboptimal pH or salinity
exposed �shes showed enhancement in the free radical production which resulted in oxidative damage.
Winston and Giulio, (1991) observed the presence of low and high molecular weight anti-oxidants
defences such as reduced glutathione (GSH) and superoxide dismutase (SOD), catalase CAT,
glutathione-s-transferase (GST) to scavenge free radical elements in stressed �sh. Such conditions were
exhibited due to evaluation of LPO levels through MDA values. Later Droge (2002), Hermes-Lima, (2004),
Husak et al., (2014) and Moniruzzaman et al., (2017) proposed that anti-oxidant system in �sh either
prevented or counter balanced the elevated free radical (ROS) by triggering the release of antioxidant
enzymes such as, SOD, CAT and enzymes related with GPx since they acted in a synchronised manner
for protection against oxidative stress. Bagnyukova et al., (2006) reported that different type of stressors
induced external stress in gold�sh which stimulated variable patterns of antioxidant enzyme activities in
liver and kidney. Liver, a metabolically active organ regulates homeostasis process by breakdown of
metabolites and toxic elements to maintain natural body physiology and thus, it is preferred organ to
assess the status of oxidative stress in aquatic organisms.

The energy demand of transported �sh is also compromised with variable metabolic responses causing
changes in plasma glucose levels while combating oxidative stress (Van Der Boon et al. 1991). The
antioxidant defense systems plays a role in maintenance of physiology of cells and tissues (Mourente et
al. 2002) but in turn gets affected due to pH stress during transportation that disrupts the removal of
ROS resulting in tissue dysfunction (Mukherjee et al. 2017a, b). Suggestions of Bagnyukova et al., (2006)
regarding obscure knowledge about effect of pH shift processes on free radical mechanism led to
assumptions that rise in lipid oxidation resulted due to a shift of pH from 8.25 (control) to 8.67
(limestone water) and antioxidant enzymes response. The information regarding protocol for
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transportation of live ornamental �sh is incipient and there are lacunae in literature about the ornamental
�sh response to physiological stress due to alteration in water quality and interaction of these factors.
Thus it becomes extremely relevant for studying environmental stress on transported ornamental �shes.
Eyckmans et al., (2011) reported that variation in antioxidants stimulation between �sh species is
dependent on their �exibility to combat stress causing oxidative damage. Counterbalancing the
response of enzymatic antioxidants to oxidative stress might vary among �sh species with different
tolerance limits to alteration in water quality in general and pH in particular. Interpretation of such
variation may support identi�cation of essential mechanisms involved in sensitivity of �shes to different
pH values. Due to lacuna in the �eld, the present study was focused to explicate oxidative stress and its
complex effects on the antioxidant status of vital organs, viz., liver and muscle of three commercially
important ornamental �sh species, black wagtail platy (live bearer) and rosy barb and lemon-yellow
cichlid (egg layers) that differed in their sensitivity towards pH. These �shes are mildly tolerant and can
survive a small range of stressful conditions in general for example, cichlid can survive prolonged
exposure (48 hour) to clove oil (Kaiser et al., 2006) and platy survived temperature alterations from 22 to
28◦C (Singh and Zutshi, 2020).

These interesting ornamental �sh models were used to analyse oxidative stress when exposed to pH5
and pH10 points in lab conditions and those of transported �sh species for a period of 6 hours from the
source to its destination in containers with altered water quality. Biochemical parameters, viz., LPO and
antioxidant enzymes (SOD, CAT and GST) were assessed as an endpoint to measure oxidative stress due
to pH shift.

Materials and Methods
2. 1 Collection of �sh

A total of 75 ornamental �sh, black wagtail platy-Xiphophorus maculatus, rosy barb-Pethia conchonius)
and (lemon-yellow cichlid– Labidochromis caeruleus belonging to family Poecillid, Cyprinid and Cichlid
respectively, were collected from Ornamental Fish farm, Hessarghatta, Bangalore District. Live and
healthy �shes (15no.per bag) were brought to the laboratory in 5 polythene airtight bags, half-�lled with
oxygenated water and quarantined in 0.1% potassium-per-manganate solution. The experimental �sh
group was acclimatized for a week in pre-washed, dried and disinfected �berglass aquarium �lled with
well-aerated tap water and fed with standard commercial ornamental �sh food, (“Taiyo Staple” by Taiyo
Feed Mill Pvt.Ltd.) for platy �sh, (“Hikari Micro pellets” by Kyorin Food Ind. Ltd., Japan) for rosy barb and
(“Optimum Cichlid” by Perfect Companion Group Co. Ltd.,) for cichlid �sh. Fishes were not fed 2 days
prior to experimentation, so as to provide time for the gut to be emptied and to stabilize nitrogenous
waste excretion. 10–15% of the water was siphoned off along with faecal matter and replaced with fresh
dechlorinated tap water every alternate day. The transported �shes were collected immediately from the
vendors in Bangalore transported from the main source in Chennai for 6-8hours by road.

2.2 Experimental protocol
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The experimental set up consisted of exposing each of the three species of �sh to two different pH
standardized by conducting LC50 for all �sh species and �xed at pH5 (pH4.5-5.5) and pH10 (9.5–10.5)
for a period of 6 hrs intermittently for 04 days. The experimental �sh were exposed in 6 L glass aquaria
(water volume set to 4 L). Control groups of �sh were kept in similar aquaria parallel to the period of
experimental groups. The uniformly sized experimental �sh (n = 5) viz., with an average mass (mean ± 
standard deviation) 1.2 ± 0.2g black wagtail platy (Xiphophorus maculatus), 1.8 ± 0.3g rosy barb (Pethia
conchonius) and 2.5 ± 0.5g lemon-yellow cichlid (Labidochromis caeruleus) in triplicate were placed in
an individual glass aquarium in dechlorinated and aerated water with the temperature maintained at 26 
± 1◦C and a natural light–dark cycle of about 12:12h and with pH 7.0-7.5 in lab conditions. Dissolved
oxygen, temperature, ammonia, total alkalinity and total hardness were measured in transported water
and experimental tanks as given in Table 1. The transported experimental �shes were collected from
vendors and anesthetized immediately on site for further procedures.

2. 3 Preparation and procedure for analyses of anti-oxidant enzyme activity

Fish were removed from aquaria (n = 5) with the help of scoop net, anesthetized using neutralized
MS222/few drops of clove oil (pH 8.0, ethyl 3-aminobenzoate methane-sulfonic acid, 1 g/L, Acros
Organics, Geel, Belgium). Fish was dissected on ice to excise liver and muscle tissue of control and
experimental group of �sh species exposed to pH 5.0 and 10.0 after 96hours of intermittent exposure for
6 hours but those of transported �sh was immediately excised and an assay on oxidant and anti-oxidant
enzymes was conducted by following the standard procedures. The liver and muscle tissue weighing
100mg each, excised from both control and experimental �sh species were homogenised in potassium
phosphate buffer at pH 7.0 and later centrifuged at 5000 rpm for 15 minutes. The supernatant was
collected for assay of LPO (lipid peroxidation/malondialdehyde), superoxide dismutase (SOD), catalase
(CAT) and glutathione-S-transferase (GST).

Lipid peroxides (LPO) were determined as Thiobarbituric Acid Reactive Substances (TBARS) method of
Nehius and Samuelson (1986). TBARS concentrations were determined from a standard curve
established with TBA-malondialdehyde (MDA, 1,1,3,3-tetramethoxypropane) adducts. GST activity was
determined spectrophotometrically by Habig et al (1974) method, superoxide dismutase (SOD) by
Beauchamp and Fridovich (1971) and catalyse activity by Beers and Sizer (1952). The optical density of
all the reaction mixtures were read at 560nm.

Statistical analysis: The results were expressed as mean value ± S.E. Within species, no signi�cant
differences were observed among the control values. Thus, controls value was pooled for each
experimental group. To compare the means among the variables Tukey–Bonferroni multiple comparison
test was used. All data were subjected to two-way analysis of variance (ANOVA). The data were analyzed
by Statistical Package for the Graph Prism 5 to calculate probability level p < 0.001, p < 0.01 and p < 0.05
was used for rejection of the null hypothesis.
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Table 1
Details of physico-chemical parameters of control, transported and experimental tanks

Parameters BIS:
2012

Control
tank

Transported
container

Experimental
tanks pH5

Experimental
tanks pH10

Temperature (°C) 24–26 26 32 32 28

D.O (mg/l) 4.5–
6.5

4.5 2.6 2.5 3.0

NH3 (mg/l) ≥ 0.5 0.37 1.4 1.45 1.38

Total alkalinity
(mg CaCO3L− 1)

≥ 200 136 145 147 147

Total hardness
(mg CaCO3L− 1)

≥ 200 207 212 207 207

pH 6.5–
8.5

7.2 5.5–9.5 5 10

Results
In the present study water parameters assessed from control and experimental tanks (pH5 & pH10) and
before and after transportation containers carrying �shes are represented in Table 1. Water parameters
recorded in control tanks were within BIS limits whereas in experimental tanks there was a slight
increase in temperature, ammonia and alkalinity due to the pH variation from normal. The containers
before transportation showed almost similar values of water quality as control tanks but those after
transportation revealed changes in water quality parameters such as changes from pH7 to pH4.5 and
10.5, temperature ranging from 26°C to 28°C in control condition with minimum decrease of 16°C to
maximum of 34°C during transportation, dissolved oxygen (4–6 mg− 1l as control) depletion to 2 mg− 1l,
increase in alkalinity from 128 mg CaCO3− 1l to 145 mg CaCO3− 1l and ammonia from 0.37 to 1.4 with
alteration of 1.38 to 1.45 when compared to control tank water was observed. There were slight changes
in water parameters of the tank water with pH 5 and pH 10 exposed �sh when compared to control tanks
(Table 1).

3.1 Behaviour observations at different pH level
All �sh species exposed to both the extremes of pH, >pH4.5 and < pH10.5 (acidic and alkaline
conditions) showed mortality within 01 hour of exposure due to intolerance of acute and lethal stress
levels of pH. The �shes showed erratic jerking swimming movement assuming diagonal position with
the head upwards towards the water surface so as to engulf atmospheric oxygen. The body was covered
with abundant quantity of mucous; the gill epithelium showed mucous covering and discolouration with
its subsequent destruction. Thus the pH level for their sustainability and survivability was standardized
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to pH 5.0 and pH 10.0 as oxidative stress markers for the conduct of experiments for an intermittent
period of 6 hrs for 92hrs.

3.2 Oxidative stress marker during transportation, exposed to pH (acidic and basic levels) in three �sh
species

The outcome (mean ± SD) of physiological stress responses due to pH shift in liver and muscle tissues
of three �sh species, during transportation and those exposed to pH 5.0 and 10.0 compared to control
ones are represented in Fig. 1–4. The tissues of transported and exposed �sh species tested for LPO
activity revealed signi�cantly high LPO levels (P < 0.001) when compared to those of control ones. The
liver of rosy barb exposed to pH10 and cichlid and platy �sh exposed to pH 5.0 and pH10 showed
maximum LPO activity (signi�cance P < 0.001) when compared to those of transported and control ones
(Fig. 1). However, muscle tissue of platy and cichlid �sh group transported and those exposed to pH5
and pH10 showed signi�cant LPO activity (P < 0.001) that was followed by rosy barb compared to
control ones. LPO activity was insigni�cant in muscle of transported and pH5 exposed barb when
compared to those exposed to pH10 whereas, cichlid exposed to pH10 showed moderate activity (P < 
0.01).

SOD activity was signi�cantly higher (P < 0.001) in liver tissue of all the three �sh species exposed to
pH5 and pH10 compared to transported �sh to counteract an increase in their LPO activity. Surprisingly,
SOD levels were insigni�cant in transported barb and platy compared to control ones but a signi�cant
SOD activity was observed in cichlid �sh with the highest in those exposed to pH5 (Fig. 2). However,
muscle tissue of all transported and pH5 and pH10 exposed �shes showed a signi�cant increase (P < 
0.001) in SOD activity compared to control ones and liver tissue as well. Fish species exposed to pH10
showed minimum SOD activity to compensate the enhanced levels of LPO.

A signi�cantly high CAT (P < 0.001) activity was observed in liver tissue of all transported �shes and
those exposed to pH10 when compared to pH5 exposed and control ones with rosy barb showing a
minimum (P < 0.01) CAT activity (Fig. 3). Muscle tissue of all transported �shes and those exposed to
pH5 and 10 �sh showed higher CAT activity when compared to control but it was insigni�cant when
compared to that in liver tissue. Interestingly in transported barb and cichlid, ph5 exposed platy and
pH10 exposed cichlid the CAT levels showed a further decrease (P < 0.01) when compared to �shes
under other treatments.

A good correlation was observed in SOD and CAT activity in liver and muscle tissue of all �sh species to
counteract oxidative stress damage and ROS production in all treatments. Reduced levels of SOD in the
liver of transported lemon-yellow cichlid, platy and barb �sh and GST was compensated by enhanced
activity of CAT whereas an increase in SOD activity was noted in those exposed to pH5 and pH10. Hence,
elevated catalase activity showed an improvement of defense and detoxi�cation of LPO products in
transported �sh species whereas enhanced SOD levels in acidic and alkaline exposed �sh counteracted
the reduced CAT and GST levels (Fig. 4). Rosy Barb showed acute stress levels when exposed to pH10
whereas platy and cichlid were stressed when exposed to pH5 compared to transported �sh for 04 days.
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Conclusion: Elevated levels of CAT in transported �sh compensated the reduced activities of SOD and
GST whereas de�ciency of CAT and GST activity in �sh exposed to pH5 & pH10 due to its inhibition was
counteracted by increased SOD levels which helped to detoxify aldehydic products of lipid peroxidation.
GST activities were inversely related with LPO and SOD levels which proved the involvement of liver GST
in detoxi�cation of aldehydic products of lipid peroxidation. Therefore, it can be concluded that variation
in stress levels when exposed to elevated or lowered pH levels (acidic or alkaline condition) compared to
control is �sh species and tissue dependent.

Discussion
An organism undergoing stress responds by activating corresponding protective mechanism to either
maintain the previous status or may go to new stable state. Many scientists have reported about the
aquatic organism undergoing oxidative stress due to change in water parameters such as pH, from given
normal range during transportation and other climatic conditions. (Doudoroff & Katz, 1950; Dorge, 2002).
In the present study, changes in water quality parameters e.g., pH, temperature, dissolved oxygen,
alkalinity and free ammonia after transportation had resulted in oxidative stress among all �sh groups
and similar changes were noted in the experimental �sh species exposed to pH5 and pH10. Sampaio
and Freire (2016) mentioned that during transportation increase in CO2 leads to acidi�cation and
acidosis of water with progression in hypoxic condition including rise in ammonia levels along with other
secondary factors contributed to alteration in parameters of water quality. Lim et al. (2003) con�rmed
that reduction in oxygen-carrying capacity of the blood (Root effect) was due to presence of low plasma
pH and high plasma CO2 inspite of high levels of DO in water. The scientist have also noted that pH, DO
and ammonia are important during short and long transport of ornamental �sh to evaluate physiological
changes in the �sh. Treasurer (2012) found that long transport causes rise in pH and ammonia levels
due to dissolved CO2 produced by transported �sh in aerobic and ammonia during anaerobic condition
resulting in acidi�cation of water (Marshall and Grosell 2006).

Doudoroff & Katz (1950) reported that �shes within the pH range of 7.4 to about 5.5 can identify and
avoid carbondioxide and their indifference to pH ranging between 5.5 to 10.5 can be considered as the
tolerance limit exhibited by most freshwater �shes. Similar tolerance limit was observed in the
experimental �sh species (cichlid, rosy barb and platy) when exposed to pH4.5 to 5 and pH 9.5 to10 in
the present study. So, the present aim to assess the physiological changes identi�ed in the �sh possibly
could be associated with transportation of the �sh in question, (short and long transport) as discussed
due to changes in the water quality. Many scientists proved that stress markers were used to evaluate
the cause of changes in �sh environment during transportation (means of transport) challenging the
extra- and intracellular homeostasis of �sh. Barton (2002) and Iwama et al. (2006) grouped physiological
responses of �sh to different stresses into primary, secondary and tertiary responses. An increase in
plasma glucose and a decreased hepatic glycogen are some of the primary metabolic consequences for
an increased demand on energy, so as to deal with stressful conditions (Zeppenfeld et al. 2014).
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In the present investigation exposure to pH5 or pH10 caused signi�cant (P < 0.001) LPO activity in liver
and muscle of platy and it was accompanied by a differential oxidative stress response whereas in
transported platy the LPO levels in liver were not as signi�cant as in the exposed �sh. Bagnyukova et al.,
(2006) reports also showed increased levels of lipid peroxidation products (TBARS and LOOH) in
gold�sh liver exposed to pH shift due to addition of limestone water in rearing tanks. Similar increases in
lipid peroxidation were recorded in response to ammonia exposure in Nile tilapia and silver carp by Sun
et al. (2011) and Hegazi (2011) respectively. Occurrence of oxidative stress can be assessed by changes
in levels of oxidative damage markers as products of protein and lipid peroxidation (Storey, 1996;
Hermes-Lima, 2004). ROS generation was noted by Baraboy and Sutkovoy, (1997) and Halliwell and
Gutteridge, (1999) as a response to increased LPO levels due to a various type of stress. Thus, anti-
oxidants such as catalase, SOD and glutathione S transferase levels were assessed along with LPO
levels as stress biomarker.

The LPO levels in transported rosy barb, platy and cichlid liver were not as signi�cant as in the pH5 and
pH10 exposed ones revealed the antioxidants are more active during transportation whereas, elevated
LPO levels in liver of rosy barb exposed to pH10 and cichlid and platy to pH5 revealed that antioxidants
were differentially effective in different �sh tissues and species under experimental condition during
direct exposure to changes in pH. It is very likely that during pH stress SOD was more active as anti-
oxidant defense in liver and muscle tissue of rosy barb but during transportation catalase took the lead
as effective antioxidant in liver of all �sh groups. Muscle tissue showed signi�cant LPO activity in
response to pH stress but it was comparatively less than liver tissue. Since liver and muscle tissue are
metabolically active in acid-base regulation for the maintenance of body physiology, they were expected
to respond prominently to pH shift in the present study. Both tissues of �sh in control conditions
projected comparatively negligible LPO levels.

Halliwell and Gutteridge, (1999) had reported production of free radical during pH shift by changing the
superoxide state into superoxide anion (O2

−) and hydroperoxyl radical (HO2) causing oxidative damage

to cellular components due to their difference in crossing the biological membrane. Consequently,
oxidative stress level and antioxidant system is regulated by the rate of ROS production in liver in aquatic
organisms. Sinha et al., (2014) reported ammonia stressed carp and gold�sh with high accumulation of
H2O2 and MDA (end product of LPO) in liver unlike those in trout. The defensive approach related with
antioxidant mechanism is less effective in controlling ROS production in liver of cichlid dealing with pH5
and barb liver with pH10 showing high LPO levels, despite high SOD and CAT activity followed by those
platy liver. Carneiro et al., (2021) reported increase in SOD activity in sea horse exposed to acidic
environment when in brackish water but CAT activity remained unaffected when exposed to different pH.
Halliwell and Gutteridge, (2015) also mentioned that insu�cient removal of ROS might be due to
imbalance of SOD and CAT activities leading to accumulation of LPO causing oxidative stress. Further,
barb exposed to pH5 and cichlid and platy to pH10 could effectively remove ROS and limit LPO levels
due to signi�cant (P < 0.001) activity of SOD with compensatory levels of CAT. The above results
indicated disparity in anti-oxidative compensatory responses toward pH exposure by these �sh species.
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The present �ndings perhaps clarify in part that barb has high resistance towards acid waters with pH5
and above whereas cichlid and platy can tolerate alkaline water with pH10 and below.

Interestingly, during short-term transportation (6 hours), LPO activity in cichlid �sh liver was lower than
platy and barb, which might be due to hypoxic condition as was also reported by Lushchak and
Bagnyukova (2006) in common carp liver with reduction in LPO levels but an increase in TBARS, the end
product of LPO under hypoxic condition. Similarly, decrease in LPO levels was observed by Lushchak et
al., (2005a) in gold�sh during hypoxia with an effective detoxifying system to maintain cell integrity. The
low levels of LPO in cichlid during transportation could also be attributed to a decrease in water pH from
7.5 in presence of intermediate ammonia levels during anaerobic metabolism i.e., consumption of
oxygen resulting in production of CO2 causing hypoxic condition as observed by Sampio and Freire,
(2016). Unlike in platy and barb low levels of SOD in transported cichlid liver undergoing oxidative stress
during transportation suggested that SOD, a �rst antioxidant defense to counter excessive ROS
production, is not the only effective mechanism to regulate LPO process. Although SOD being the key
enzyme that catalyses H2O2 synthesis to reduce LPO levels, cichlid depended on catalase activity. H2O2

is a secondary by-product of spontaneous or enzymatic dismutation of O2. CAT an antioxidant enzyme is
involved in the destruction / elimination of H2O2 which is a by-product of the SOD activity (Sinha et al.,
2014). Thus, we can say that cichlid liver used an up-regulation of CAT as anti-oxidative sentinels with
minimum of SOD and GST to effectively remove ROS, limiting the accumulation of LPO (MDA) as was
reported by Bagnyukova et al., (2005a) in gold�sh liver showing positive correlation of CAT with LOOH
levels. Lipid peroxidation level is the marker of oxidative damage to lipids and involves in inducing the
release of antioxidant enzymes (Lushchak and Bagnyukova, 2006c) to further supress LPO activity. Our
results are in agreement with those of Sinha et al., (2014) in trout, carp and gold�sh with response to
high environment ammonia and Chanu et al., (2014) in liver, muscle and gill of L. calbasu in response to
acid stress possibly indicating the role of SOD and CAT in scavenging of superoxide anion. The presence
of high LPO levels for a period of 6 days of exposure despite the activities of SOD and CAT questions the
e�ciency of anti-oxidant enzymes.

The muscle of platy and cichlid �sh groups when transported for short-term period of 6hours revealed
signi�cantly (P < 0.001) high levels of LPO compared to control which was due to oxidative stress
assumed to be caused by crowding or erratic swimming activity in containers with high density of �shes.
Elevated levels of LPO that increased �sh metabolites or accelerated reactive oxygen species (ROS)
production, resulted in oxidative stress. Urbinati et al. (2004) and Braun and Nuner (2014) con�rmed that
density of �sh during transportation is an important feature because large number of �sh in a bag
corresponded to cost economy but in turn the crowding of �sh caused stress or even mortality thus
compromising with �sh health proving not economically viable. Subsequently, on exposure of these �sh
to acidic (pH5) and alkaline water condition (pH10), a signi�cant increase in LPO activity of their
muscles was noted caused by disturbance in their behaviour of swimming activity. Similar results of
increase in pectoral �n movement and erratic swimming were reported by Hoglund & Hardig (1969)
among parr of Atlantic salmon (Salmo salar) when exposed to acidic waters and this behaviour varied in
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intensity with the magnitude of the stimulus of pH. Schreck et al., (1997) suggested that alteration in
swimming patterns is a behavioural marker for chronic stress in ornamental �shes. The occurrence of
signi�cantly high LPO levels in muscle of all �sh species transported and pH exposed ones with rosy
barb as exception, wasstabilized by signi�cant SOD activity that played an important role as antioxidants
in removal or elimination of ROS production but with a minimum e�ciency of CAT activity. Acute
exposure to acidic stress in an aquatic environment reduced fertility of �ounder �sh that resulted in a
decreased growth of the species was reported by Fromm (1980). In contrast with the present result,
limited activation of SOD was noted for rainbow trout in comparison to common carp and gibel carp
when encountered water-borne copper (Eyckmans et al., 2011).

Relatively to platy and cichlid, the muscle and liver of barb revealed insigni�cant rise in LPO levels during
transportation and pH5 exposure but it was signi�cantly more than control. Whereas, when exposed to
pH10, barb showed high LPO activity in both tissue in response to oxidative stress by alkaline water
which was well counteracted by signi�cantly high SOD activity compared to CAT. Winston, (1991) reports
suggested the presence of a well-developed recovery system or an antioxidant defense mechanism in
�sh to facilitate overcome stress, and to generate and degrade free radicals. Such observations
regarding stimulation or production of intracellular ROS and antioxidant reactions of SOD and GST
activities to compensate the pH oxidative stress have been proved in previous studies on pH shift (acidic
or alkaline) by Maqsood and Benjakul, (2011). Thus, an increase in SOD activity in liver can be related to
the augmented ROS generation since free radicals and ROS can damage �sh livers through lipid
peroxidation (LPO) (Lin et al., 2019). In contrast to present result, Kim et al., (2021) found a signi�cant
reduction in SOD activity in liver of P. olivaceus when exposed to an acidic (pH 5 and 6) and alkaline (pH
9 and 10) water, caused by excessive ROS generation as was also previously reported by Yu et al.,
(2020).

A signi�cant increase in SOD activity, the �rst-line of defense against free radicals compared to low
levels of CAT observed in barb, platy and cichlid �sh group’ muscle during transportation, exposure to
pH5 & pH10 including the liver of all �sh exposed to pH5& 10 with slight variation suggested that all �sh
relied mainly on superoxide dismutase dependent defensive mechanism against increase in LPO activity.
Previous studies have shown that decreased catalase activity might be due to its inactivation by
overproduction of ROS (Pigeolet et al., 1990). Chitra and Maiby (2014) reported signi�cant decrease in
catalase activity in the liver of fresh water �sh Oreochromis mossambicus on exposure to the sublethal
concentration of bisphenol-A which is in accordance with the present study on exposure of �sh to pH5
and pH10. Jin et al., (2010) had also suggested alteration in catalase activity following oxidative stress.
In transported �sh, it was likely due to stress from long crowding conditions, whereas in experimental
ones the pH exposure 5 and pH10 leading to excessive ROS production. Tristan et al., (2021) suggested
that hyperoxia/hypoxic environment during transportation could be the triggering cause for alteration in
SOD activity or generation or removal of ROS due to oxidative stress. The �ndings of Qiang, et al., (2017)
and Refaey, and Li, (2018) on 6hrs of transportation of hybrid snapper and channel cat�sh, Ictalurus
punctatus caused signi�cant increase in SOD activity and MDA contents in �sh respectively due to
transport stress are in lines with the present study on transported �sh (6 hours) inducing high SOD and
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LPO levels. In the present experimentation high SOD and CAT activity and minimum GST levels in liver
and muscle tissue of all test �shes possibly indicates major role of SOD and CAT in scavenging of H2O2

and superoxide anion (Parihar et al., 1997). Scienti�c research for the protocol development of live �sh
transport is still budding and has incomplete knowledge.

To conclude it can be anticipated that rosy barb followed by platy liver and muscle utilized the protective
system moderately and showed more effective anti-oxidative compensatory responses throughout the
experimental exposure and transportation period, while cichlid liver helped to stabilize in the
transportation stress more effectively including its muscle tissue on pH exposure. The present work also
indicated that all three species responded well in acidic environment by compensating a relatively mild
oxidative stress in the muscles. This probably explains that oxidative stress, as well as the antioxidant
potential to overcome the effect of stress that resulted in damaging of cells was different between the
three species and their tissues.
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Figure 1

Lipid peroxidation content (µmoles/MDA/mg protein) in (A) liver and (B) muscle of P. conchonius, X.
maculatus, and L. caeruleus during transportation and exposure to pH (5&10). Data are shown as mean
± SE. Signi�cance by two-way ANOVA and post-hoc test – Bonferroni (P<0.01) using GraphPad Prism
5.1. Superscripts a, b and ns indicate statistical mean differences between transport and exposure to pH
(5&10) which are P<0.001, P<0.01 and P<0.05.
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Figure 2

Superoxide dismutase activity (U/mg protein) in (A) liver and (B) muscle of P. conchonius, X. maculatus,
and L. caeruleus during transportation and exposure to pH (5&10). Data are shown as mean ± SE.
Signi�cance by two-way ANOVA and post-hoc test – Bonferroni (P<0.01) using GraphPad Prism 5.1.
Superscripts a, b, c and ns indicate statistical mean differences between transport and pH (5&10) which
are P<0.001, P<0.01 and P<0.05.
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Figure 3

Catalase activity (U/mg protein) in (A) liver and (B) muscle of P. conchonius, X. maculatus, and L.
caeruleus during transportation and exposure to pH (5&10). Data are shown as mean ± SE. Signi�cance
by two-way ANOVA and post-hoc test – Bonferroni (P<0.01) using GraphPad Prism 5.1. Superscripts a, b,
c and ns indicate statistical mean differences between transport and pH (5&10) which are P<0.001,
P<0.01 and P<0.05.
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Figure 4

Glutathione-s-transferase (mU/mg protein) in (A) liver and (B) muscle of P. conchonius, X. maculatus,
and L. caeruleus during transportation and exposure to pH (5&10). Data are shown as mean ± SE.
Signi�cance by two-way ANOVA and post-hoc test – Bonferroni (P<0.01) using GraphPad Prism 5.1.
Superscripts a, b, c and ns indicate statistical mean differences between transport and pH (5&10) which
are P<0.001, P<0.01 and P<0.05
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