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Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome
and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we
performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13
WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well
as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative
throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral
profiles were distinct from infants. Using linear mixed effects models, we showed that while the
microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive
and seronegative women. However, seropositive women’s positive trajectory while uninfected was
abruptly reversed after SARS-CoV-2 infection (p = 0.015). However, gut virome signatures of women were
not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally
not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically
significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our
study provides insights into the complex interplay between maternal and infant bacterial microbiome,
virome, and the influence of SARS-CoV-2 and HIV status.

INTRODUCTION
Disruptions in healthy gut microbiota can have lasting consequences1–4, and there is growing evidence
that viral infections can lead to significant alterations in both the gut bacterial microbiome and virome5–

8. For example, people living with HIV have shown increased risk of inflammation, altered virome and
bacterial microbiome, and increased pathogenic viral and bacterial infections, even during antiretroviral
treatment (ART)8–10. In addition, children who are HIV-exposed but uninfected (HEU) have been reported
to have an altered gut microbiome compared to HIV-unexposed and uninfected (HUU) children11, 12.

SARS-CoV-2 infection has also been observed to alter the gut microbiome for both adults and infants and
can cause long lasting microbiota disruption7, 13–16. Some studies have found specific gut species to be
associated with severity of SARS-CoV-2 symptoms, ranging from mild/asymptomatic to severe. For
example, Faecalibacterium prausnitzii, Bifidobacterium bifidum, and Akkermansia muciniphila were
negatively associated with disease severity7, 14. Other studies have reported overall lower gut microbiome
alpha diversity and richness during versus after SARS-CoV-2 infection, and while the richness and alpha
diversity increased after recovery, richness was still lower six months after SARS-CoV-2 infection when
compared to uninfected controls13, 17. To date, few studies include virome sequence data; however, there
is some evidence that SARS-CoV-2 impacts the intestinal virome as well18–20.

Given that both HIV and SARS-CoV-2 have been shown to alter gut microbiota, and that more than
39 million people have been living with HIV globally during the SARS-CoV-2 pandemic21, studies are
needed to understand whether infection with both viruses has additional effects on the gut microbiota.
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This could have impactful consequences as gut microbiota are implicated in clinical outcomes such as
the risk of persistent diarrhea diseases, one of the leading causes of childhood disability-adjusted life
years22. This longitudinal study investigates the impact of SARS-CoV-2 on the gut bacterial microbiome
and virome of a mother-infant cohort in Kenya that includes women living with HIV (WLHIV) and women
without HIV and their HIV-exposed and unexposed infants. We hypothesized that the gut bacterial
microbiome and DNA virome of mothers and infants would be altered due to SARS-CoV-2 infection, both
at time of infection as well as post infection. This unique cohort additionally also allowed us to
investigate whether maternal HIV infection contributes additional alterations to the gut bacterial
microbiome and/or virome in mothers and their infants during and after SARS-CoV-2 infection.

METHODS AND MATERIALS

Study population
All infants with maternal consent for SARS-CoV-2 testing with stool (for bacterial microbiome and virome
sequencing) and blood samples (for SARS-CoV-2 serology) collected between January 2020 and
December 2020 were included; maternal samples were only included if their related infant was included in
this analysis. SARS-CoV-2 infection was determined by serology assays detecting antibodies to SARS-
CoV-2 nucleocapsid protein, as described previously 23. Of 72 eligible infants, 60 were negative and 12
were positive for SARS-CoV-2 in 2020. Eighteen WLHIV and 22 HIV-negative women remained negative
for SARS-CoV-2 (controls), while the remaining 13 WLHIV and 10 HIV-negative women tested positive for
SARS-CoV-2 in 2020. Participants that had SARS-CoV-2 infection were primarily asymptomatic or mildly
symptomatic, with no hospitalizations as previously described 23. Of the 95 ever seropositive SARS-CoV-2
samples, there were 54 pre-infection samples and 41 post-infection samples. Stool samples were
collected from the study participants during scheduled infant wellness checks at day 4 (month 1), week 6
(month 2), week 10 (month 3), month 6, month 12, month 15, month 18 and month 21 (Fig. 1B). Samples
were stored at -80ºC and maintained in cold chain during transport from Kenya to the United States.

Bacterial and viral metagenomic sequencing
Approximately 200mg of stool was weighed out and diluted to 1:6 with SM Buffer then was vortexed at
max speed for three minutes to fully homogenize. Samples were centrifuged at 4° for five minutes at
20,000g. The centrifuged pellet (metagenomics) was taken through Qiagen’s DNeasy PowerSoil Pro Kit
following kit protocol recommendations and then followed by Illumina’s DNA prep for library builds and
sequenced on a NextSeq 2000 (2x150). The supernatant (viral) was filtered by a 0.20µm filter and then
processed by a VLP enrichment before extractions. A mastermix of Benzonase (2µl), Baseline Zero 10x
Buffer (100µ), and Baseline Zero DNASE (4µl) was added to each sample and heated for 37° for one hour.
After the heat treatment 1mL was transferred into bioMérieux's EMAG for total nucleic acid (TNA)
extraction. The TNA was amplified with GenomiPhi V2 (GE Healthcare) before moving into library builds
with DNA Prep (Illumina) and sequencing with a NextSeq 2000 (2x150). Controls of SM Buffer spiked
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with lambdavirus DNA were used to assess cross-sample contamination during amplification and
sequencing.

Bacterial microbiome and virome analysis
Illumina sequencing reads (2x150) paired end reads, an average of 28,749,393 ± 28,076,646 bacterial
metagenomic reads, were quality filtered using BBtools and cutadapt 24, 25. These reads were then input
into krakenuniq to output read counts for assigned bacterial taxa. We then used DBSCAN, a clustering
algorithm, on 10% of our samples (n = 31) to obtain the cutoff for optimal number of unique k-mer
assigned per taxon for false positives and true positives 26. For our data, anything below 5,683 number of
k-mers per taxon was removed. We also used R package decontam, as previously described 27, and
removed the default called contaminants 28. As we only have two features, reads and k-mers, DBSCAN
was used as our clustering models, as it is robust at handling outliers and as well as work well with small
number of features with large number of samples 26.

Illumina sequencing reads (2x150) paired end reads; an average of 23,552,078 ± 24,293,278 DNA viral
metagenomic reads, were quality filtered using BBtools and cutadapt. Quality filtered paired reads for
each sample were used to build contigs with metaSPAdes for each sample (DNA stool sample = 303,
control n = 32) 29. We built a total of 5,536, 238 DNA contigs from stool samples. We then removed
human contigs using bowtie2 (5,415,917 DNA contigs), clustered the remaining contigs via cd-hit
(2,621,693 DNA contigs) and then filtered by minimum contig length of 1000 for DNA bp (267,202 DNA
contigs) 30, 31. Theses contigs were then input into Cenote-Taker 2, VirSorter 2 and tblastx/blastn
(GVD/NCBI NT database) to identify viral contig candidates 32–35. After the contigs initially passed each
tool, we then used checkV for a final contig quality filtering and provirus screening 36. We used contigs
with at least medium quality and those which had more viral contigs then host contigs as well as all
proviruses identified, as per checkV. This gave us a total of (11,500 viral DNA contigs).

The viral contigs were then used to run blastx against viral RefSeq + Neighboring sequences database
(downloaded 2020). Using blastx output, we then used taxonomizr was to assign taxonomy to each
contig (family level) 35, 37. The final DNA contigs were then used as databases for which all stool sample
QC reads were mapped against to get DNA virome matrix for all subsequent analysis. We used R package
decontam, and removed the default called contaminants for DNA viruses and used RPKM (reads per
kilobase million) to normalize for contig length.

Linear mixed effects and PERMANOVA models
We used linear mixed-effects (LME) models (R package nlme, version 3.1–148) to compare changes in
richness and alpha diversity across post-partum time (mothers) or month of life (infants) while
accounting for repeated measurements. We used PERMANOVA (vegan, permute and Adonis in R) to
assess changes in beta diversity as measured by unweighted and weighted Bray-Curtis distances. Person
code (mother or infant), maternal HIV status, post-partum time/month of life (age), time since weaning,
antibiotic use, time since SARS-CoV-2 infection were included in the LME and PERMANOVA models to
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account for exposures and/or possible confounding. For infants, time-since-weaning is an important time
variable in addition to age, as introduction to solids has a large impact on the gut microbes in infants 38,

39. Because infant weaning was collinear with age (Pearson r = 0.94, p < 0.0001), we included them in
models separately. For the models we used two different methods to classify SARS-CoV-2 samples: first,
we used SARS-CoV-2 infection status at sample collection time and second, we used if patients were ever
versus never SARS-CoV-2 seropositive throughout follow-up in the year 2020. This method allowed us to
code samples as controls, pre-SARS-CoV-2 infection, and post-SARS-CoV-2 infection in the models. We
also measured time since SARS-CoV-2 infection for women who were ever seropositive to see if there
were differences in the gut microbiota over time after infection. We first ran LME and PERMANOVA
(Adonis) models with to assess whether outcomes differed between mothers and infants and inform if
subsequent analyses should be stratified by person. After stratifying by person, we included an
interaction between maternal HIV status and SARS-CoV-2 status to assess the need for further
stratification by HIV status in women.

To assess if there was a change in the richness, alpha and beta diversity of SARS-CoV-2 women in
comparison to controls, we modeled an interaction term between SARS-CoV-2 and time
postpartum/infant month of life. We also removed the interaction term to re-run the LME and
PERMANOVA models to test if for differences in alpha diversity, richness and beta-diversity due to the co-
variables (metadata) within the model. For the women who were ever SARS-CoV-2 seropositive, we
created interactive models for SARS-CoV-2 infection status at time of collection and time to compare the
changes that occur in the alpha diversity and richness before and after seroconversion. We then wanted
to analyze if there was a change in the first ever positive SARS-CoV-2 samples from all SARS-CoV-2
negative samples. Only the first positive samples were kept in the models. Linear and PCoA plots were
plotted using ggplot2 (version 3.3.1).

Community states
To obtain the community states present in the stool samples of this study we clustered our weighted beta
diversity distance matrix with k-means method for the bacteria. We first used the R package factoextra
(version 1.0.7) to determine the optimal number of clusters and then used stats function k-means to
cluster the relative abundance at bacterial species level into five groups. To determine associations
between community states and time, infant/mother, maternal HIV status, SARS-CoV-2 infection, or
antibiotic use, we used R package mclogit (version 0.8.7.2) to perform multinomial logit models with
random effects for individual participants; the Benjamini-Hochberg method was used to correct for
multiple comparisons.We were unable to cluster the DNA virome data due to high interpersonal beta
diversity. We used Kruskal Wallis, while accounting for multiple comparisons, to test for significant
differences in the most abundant viral families between mother sand infants.

Differential analysis
To find differentiating bacteria and viruses, we created models using R package Microbiome
Multivariable Association with Linear Models (MaAsLin2) with metadata and controlling for longitudinal
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samples per patient 40. For bacteria and viruses separately, we used all samples to determine taxa that
that differentiated mothers and infants. We used the default q-value threshold of 0.25 for significance.
We then stratified the samples by mother or infant and assessed other factors, including maternal HIV
status, SARS-CoV-2 status, antibiotic use, postpartum time, or time since weaning, that could be
associated with specific bacteria in mothers and/or infants. We recalculated the q-value using all results
outpupt file and used the updated q-value of 0.05 for significance per factor. Among mothers, there were
no specific bacteria significantly associated with SARS-CoV-2 infection, HIV status, antibiotics use or
postpartum time. Among infants, differentiating bacteria taxa were significantly associated with age
(Supplementary Fig. 1H), time since weaning (Supplementary Fig. 1I), and SARS-CoV-2 status in infants
(Supplementary Fig. 1J). Viral contigs were associated with SARS-CoV-2 status at time of collection in
infants (Supplementary Fig. 1K). No differentiating viral contigs were associated with HIV status, SARS-
CoV-2 status or postpartum time for mothers. One contig (Redondoviridae) was found to be more
abundant in mothers using antibiotics in comparison to mothers with no antibiotics.

Shared bacterial microbiome and virome
To determine if the infant bacterial microbiome and virome was becoming more similar to the maternal
(adult-like) bacterial microbiome and virome, we plotted the weighted Bray-Curtis dissimilarity distances
between mothers and infants by age/time postpartum. We then used linear regression to determine if
there was a significant change in dissimilarity by maternal HIV status and SARS-CoV-2 infection status.

Humann3
To find active pathways in the bacterial metagenomic sequences, we ran quality filtered sequences
through humann3 41 using default parameters. This output gave us the abundance of pathways for the
samples, which we then used for differentiation. With the pathways’ abundance matrix for the stool
samples, we used Maaslin2 on all samples to see differentiating pathways between mother and infant
samples. We then subset the data into mother and infants and once again ran Maasline2 to test for
additional metadata significance including antibiotic use, infant age/maternal post-partum time,
maternal HIV status and time since-weaning. The resulting pathways for significant metadata were
plotted as heatmaps using pathway relative abundance.

RESULTS

Study population
The Linda Kizazi Study was a prospective birth cohort study of 211 mother-infant pairs in Nairobi, Kenya
from 2018–2022 (see methods)23, 42. Between January 1-December 31, 2020, a subset of 63 mothers
and 72 infants consented to SARS-CoV-2 testing and had longitudinal stool samples collected for
bacterial microbiome and virome sequencing (Fig. 1A-B). Thirty-one mothers (women) were living with
HIV (WLHIV) and receiving ART and 32 were HIV-negative (Fig. 1); 35 infants were HEU and 37 were HUU.
SARS-CoV-2 infection timing was determined by serology testing of plasma samples collected
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approximately quarterly; 23 mothers and 12 infants were positive for SARS-CoV-2 antibodies at any time
during study follow-up, which was prior to the availability of SARS-CoV-2 rapid tests or vaccines in
Kenya23, 42.

When stratified by SARS-CoV-2 seropositivity, we found that there was no significant difference in infant
age, gestational age at birth, time from weaning, delivery route or maternal CD4 count; however, antibiotic
use, maternal age and post-partum time at sample collection were significantly different (Table 1). When
stratified by HIV-status, we found no difference by maternal post-partum time, infant age, gestational age
at birth, time from weaning or delivery route; however maternal age at study enrollment was significantly
higher among WLHIV (Table 1).

Table 1
Population characteristics

Characteristics Controls SARS-
CoV-2

HIV-
negative

WLHIV P-value (SARS-
CoV-2; HIV status)

Maternal age (median, IQR,
range)

27 (6, 22) 30
(6.5,18)

26 (8,
22)

30 (6,
16)

0. 0097; 0.0009

Maternal post-partum month
(median, IQR, range)

9 (9, 21) 6 (7,
18)

9 (6.75,
17)

6 (10,
17)

0.0025;0.28

Infant age in months (median,
IQR, range)

9 (6, 17) 6 (7,
17)

9 (6, 17) 9 (9, 17) 0.096; >0.99

Gestational age (median, IQR,
range)

38 (0,10) 38
(1.25,
3)

38 (0,3) 38 (1,
10)

0.28; >0.99

Time-since-weaning (median,
IQR, range)

6 (9, 16) 3 (6.25,
15)

6 (9, 16) 3 (9, 15) 0.10; 0.81

Antibiotics usage, no. (%) 27 (48%) 29
(51%)

27
(10%)

29 (62%) 0.0004; 0.883

Vaginal delivery no. (%) 94 (91%) 30
(100%)

65
(93%)

59 (94%) 0.21; >0.99

Maternal CD4 count (median,
IQR, range)

546
(252.5,
1084)

621
(400,
847)

NA 591
(316.8,
1084)

0.56; NA

DNA virome and bacterial microbiome differences between
mothers and their infants
We performed metagenomic sequencing for bacteria and DNA viruses on 306 stool samples collected
longitudinally from the study participants (Fig. 1B). One maternal sample for the bacterial analysis and 3
infant samples for the DNA viral analysis were excluded due to low sequencing read depth (< 200K
reads). An average of 14,147,662 ± 13,612,749 bacterial metagenomic reads per sample and 4,498,593 ± 
3,826,239 DNA viral metagenomic reads per sample were analyzed.
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Previous studies have shown that adult and infant gut microbiomes differ substantially27, 43–46. Using
linear mixed effects models (LME) and PERMANOVA to compare microbiome diversity, we found that
maternal and infant samples had significantly different bacterial richness (p = 0.0002) and alpha
diversity (p < 0.0001), but not beta diversity (PERMANOVA, p = 0.85). DNA virome richness also differed
between mothers and infants (p = 0.006), while virome alpha and beta diversity did not (p = 0.13; p = 
0.62). When comparing all infant and maternal sample Bray-Curtis distances without controlling for time,
we found significant differences for bacterial and viral beta diversity (p < 0.001, Fig. 2A-B). Microbiome
Bray-Curtis dissimilarity distance between mothers and infants decreased over time regardless of SARS-
CoV-2 or maternal HIV status (p < 0.0001), indicating infants were converging toward an adult-like
microbiome configuration that is resilient to these viral infections (Fig. 2C, Supplementary Fig. 1A-B). In
contrast, the DNA virome beta diversity between mother and infants did not change over time (p = 0.23)
and maintained high dissimilarity throughout the early life period, regardless of SARS-CoV-2 and
maternal HIV status (median maternal-infant dissimilarity = 0.99, Fig. 2D, Supplementary Fig. 1C-D).

To better understand the community structures, we applied k-means clustering that derived 5 distinct gut
bacterial community profiles (Fig. 3A). Community groups 2 (composed of Faecalibacterium prausnitzii
(22%) and Prevotella copri (15%) abundance) and group 4 (composed of Faecalibacterium prausnitzii
(12%), Bifidobacterium adolescentis (11%), Collinsella aerofaciens (10%) abundance) had significantly
more maternal samples than infants in comparison to other community groups (Supplementary Fig. 1E-F,
p-values between 0.005 and < 0.0001). Likewise, 2274 active metabolic pathways were differentiated
between mothers and infants (Supplementary Fig. 1G). Due to high interpersonal variation in the viromes,
k-means clustering could not identify distinct virome community clusters. In general, mothers had
significantly higher median abundance of Microviridae, Inoviridae, and Suoliviridae (65%, 1.1% and 0.2%
respectively) than infants (4.2%, 0% ,0.03% respectively; p < 0.0001) (Fig. 3B). Infants had significantly
higher median abundance of Anelloviridae and Genomoviridae (6% and 2% respectively) compared to
mothers (0.01% and 0.4% respectively; p < 0.0001).

Multivariable analyses identified 30 bacteria taxa which differentiated mother (e.g., Bifidobacterium
adolescentis and several Ruminococccus species) from infants (e.g., Bifidobacterium bifidum,
Escherichia coli, and several Streptococcus and Veillonella species) (Fig. 3C). We also identified 11 viral
contigs (mostly Anelloviridae) differentially associated with infants (Fig. 3D). Within just infants, we
found several bacterial taxa and viral contigs associated with time and SARS-CoV-2 infection
(Supplementary Fig. 1H-K). Longibacterium sp. KGMB06250, Faecalibacillus intestinalis and several
Genomoviridae contigs were more abundant in SARS-CoV-2 infected infants (Supplementary Fig. 1J-K).
Taken together, these findings indicate that robust microbiome and virome signatures differentiated
maternal samples from infants.

Assessing changes in microbiome and virome trajectory
after SARS-CoV-2 infection
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Given the dynamic nature of the microbiome, we tested the hypothesis that SARS-CoV-2 infection
affected microbiome trajectory over time by LME modeling. Since a subset of women in this study were
living with HIV, we assessed if there was an interaction between HIV and SARS-CoV-2. However, because
there was no significant interaction between HIV status and SARS-CoV-2 infection on microbiome and
virome richness and diversity (Supplementary Fig. 1L), women were not stratified by HIV status in further
analyses. Interaction between HIV exposure and SARS-CoV-2 could not be assessed for infants due to the
limited number of HEU infants with SARS-CoV-2 infection (n = 7).

We designed interaction LME models to test if the trajectory of microbiome was altered due to SARS-CoV-
2 infection over time in women. We found the trajectory changes in bacterial alpha diversity trended
differently after infection (post-SARS-CoV-2) compared to SARS-CoV-2 negative women throughout study
follow-up (controls), though this did not reach statistical significance (alpha diversity p = 0.082, Fig. 4A).
We then compared samples prior to infection (pre-SARS-CoV-2) and after infection (post-SARS-CoV-2) by
including an interaction term between SARS-CoV-2 infection and time since infection. Alpha diversity
increased over post-partum time before SARS-CoV-2 infection, but then markedly reversed to decrease
significantly after infection (p = 0.015; Fig. 4B). Changes in beta diversity and bacterial richness over time
were not associated with SARS-CoV-2 infection (Fig. 4C, Supplementary Fig. 2A). To assess the
significance of individuals variable factors in women, we removed the interaction and found post-partum
time and antibiotic use to be significant for changes in beta diversity across all women (post-partum time
p = 0.020, antibiotic use p = 0.030, Supplementary Fig. 2B-C).

When assessing whether SARS-CoV-2 infection changed infants’ bacterial microbiome trajectory, we
found that the richness, alpha diversity and beta diversity of SARS-CoV-2 seropositive infants were not
statistically significantly different compared to controls when measuring time by month of life (alpha
diversity p = 0.10, richness p = 0.40, weighted beta diversity p = 0.14; Fig. 4D-E, Supplementary Fig. 2D), or
by time since weaning (richness p = 0.63, alpha diversity p = 0.20, weighted beta diversity p = 0.093).
Because changes in the gut microbiome are associated with early life development47, 48, we also
analyzed infant samples without modeling for SARS-CoV-2 interactions. Bacterial richness, alpha
diversity and beta diversity were associated with changes both by month-of-life and time since weaning
(richness p < 0.0001, alpha diversity p < 0.0001, beta diversity by month-of-life p < 0.001, beta diversity by
time-since-weaning p < 0.001; Supplementary Fig. 2E). These findings strongly suggest SARS-CoV-2
infection in microbiome changes over time in adult women but not in infants, potentially due to stronger
drivers of microbiome maturation associated with infant development.

Virome alpha diversity, beta diversity and richness over time were generally not associated with SARS-
CoV-2 infection in either SARS-CoV-2 seropositive or seronegative women (alpha diversity p = 0.67, beta
diversity p = 0.95, richness p = 0.25, Fig. 4F-G, Supplementary Fig. 2F). However, all women had increasing
richness over time postpartum (p = 0.017), and women that remained seronegative for SARS-CoV-2 had a
higher alpha diversity compared to women who were ever seropositive for SARS-CoV-2 (p = 0.046,
Supplementary Fig. 2F-G). Infant models with interaction between SARS-CoV-2 status and month-of-life
showed no significant associations between virome richness (p = 0.28), alpha diversity (0.075) and beta
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diversity (p = 0.85, Fig. 4I-J, Supplementary Fig. 2H). Similar to the gut microbiome developmental
dynamics, when omitting the interaction from the model, infant virome richness, alpha diversity and beta
diversity were significantly associated with changes by month-of-life (richness p = 0.010, alpha diversity
p = 0.034, beta diversity p = 0.001, Supplementary Fig. 2I). These findings are consistent with the dynamic
changes in the gut virome during early infant development47, 49. Together, these results indicate that the
SARS-CoV-2 infection does not substantially alter the gut virome.

Assessing short term impacts of SARS-CoV-2 infection
We next considered whether SARS-CoV-2 might have a more pronounced impact on the microbiome
during or immediately after infection. To test this, we compared only the first SARS-CoV-2 seropositive
samples to all seronegative samples (including samples prior to seroconversion and all samples from
seronegative, uninfected controls). This approach allowed us to identify changes immediately post-
infection that might be masked by the overall microbiome stability over time (i.e., prior trajectory analysis)
and is more comparable to existing cross-sectional studies. Among women, we did not find significant
differences between SARS-CoV-2 seronegative and the first seropositive samples in bacterial richness (p 
= 0.94), alpha diversity (p = 0.22), or weighted beta diversity (p = 0.095; Fig. 5A-B, Supplementary Fig. 3A).
Findings were similar for infants (richness p = 0.93, alpha diversity p = 0.61, month-of-life weighted beta
diversity p = 0.76, time-since-weaning weighted beta diversity p = 0.48, Fig. 5C-D, Supplementary Fig. 3B).
There were also no significant differences between women’s seronegative and first seropositive samples
in viral DNA richness (p = 0.70), alpha diversity (p = 0.29), or weighted beta diversity (p = 0.49, Fig. 5E-F,
Supplementary Fig. 3C). Likewise for infants, when modeling for month-of-life, viral richness (p = 0.066),
alpha diversity (p = 0.28), and beta diversity (p = 0.95), of their first SARS-CoV-2 positive samples were not
significantly different (Fig. 5G-H, Supplementary Fig. 3D). Thus, there was no evidence that SARS-CoV-2
infection significantly alters the gut microbiome and virome in mothers and infants immediately after
infection.

DISCUSSION
In this study, we investigated how SARS-CoV-2 impacts the gut microbiome of women (both WLHIV and
HIV-negative) and their infants. We found that SARS-CoV-2 altered the microbiome; however, the changes
we observed were less pronounced than described in several previous studies that found SARS-CoV-2
alters the gut microbiome significantly after infection 5, 7, 13, 14, 16, 17, 19, 20, 50–54. This result could be due,
in part, to the clinically mild SARS-CoV-2 cases in our study23. We also found that among women who
were seropositive for SARS-CoV-2, bacterial alpha diversity increased before infection, though after
infection the alpha diversity showed a trend to be decreasing. This result is consistent with other studies
that have similarly showed alteration in the gut bacterial microbiome after SARS-CoV-2 infection 7, 13, 14,

17.

We also found that women who remained seronegative for SARS-CoV-2 throughout follow-up had a
higher DNA virome alpha diversity then women who were ever seropositive. This change in virome
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diversity due to SARS-CoV-2 has been observed in previous studies, which have also found unique viral
signatures associated with SARS-CoV-218–20. However, unlike these studies, we did not find any viruses
that differentiated between women with and without any SARS-CoV-2 infection, which could be
influenced by study demographics. Unlike previous studies that mostly included patients from China, our
study included Kenyan participants, infants, and women living with HIV. Another finding consistent with
other studies was the association between antibiotic use significant dissimilarity in bacterial beta
diversity among women 55–57. Additionally, we found that both HIV and SARS-CoV-2 have impact on the
gut microbiome as has been found in previous studies 8, 17, 18, 20, 58, 59. Investigating the interaction
between SARS-CoV-2 and HIV infection and its impact on gut microbiome and virome is unique to our
study, albeit we did not find any significant interactions. However, among SARS-CoV-2 infected women,
richness trended to be decreased in WLHIV compared to HIV-negative women (p = 0.05; Supplementary
Fig. 4A).

For the infants, we found that time (development) rather than SARS-CoV-2 or other factors we examined,
had a stronger effect on the gut microbiome and virome. However, we were able to find several bacteria
and viruses that differentiated between infants with and without SARS-CoV-2 infection such as
Longibacterium sp. KGMB06250, Faecalibacillus intestinalis and several Genomoviridae contigs.
Previous studies identified specific differentiating bacteria and viruses (Faecalibaterium prausnitzii,
Microviridae phages) that we did not observe 7, 14, 18. Although not significant, we also found the bacterial
alpha diversity in the SARS-CoV-2 seropositive infants trended lower than in the seronegative infants, and
the first positive samples trended towards higher viral richness than all seronegative samples
(Supplementary Fig. 3D, Supplementary Fig. 4B-C). Thus, although infant age (i.e., development) was the
primary driver of changes in infant gut microbes, SARS-CoV-2 infection also had a potentially subtle
impact on the infants’ bacteria and viruses. These findings are comparable to a study of infants ≤ 2
years old that found bacterial alpha and beta diversity were not significantly influenced by SARS-CoV-2
50. Other studies with older children (range 8 days – 17 years) showed changes in the bacterial alpha and
beta diversity as well as differentiating bacteria 16, 51, 53. Since the early life microbiome maturation is a
dynamic process that occurs over the first 3–4 years of life to reach an adult-like profile, we expect to see
this difference in which the impact of SARS-CoV-2 in older children is more in line with findings in adults
43, 60. A limitation of the study was the limited number of samples for SARS-CoV-2 positive samples for
infants. We were therefore unable to determine the interaction of HIV exposure and SARS-CoV-2 infection
in infants. Our results indicate that for children under 2, SARS-CoV-2 has no or limited impact on their gut
bacterial and viral microbiomes as compared to drivers of developmental growth.
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Figure 1

Kenyan women living with HIV (WLHIV), HIV-negative women, and infants. (A) Number of women and
infants stratified by SARS-CoV-2 infection or controls. Women are also stratified by HIV infection. (B)
Number of stool samples form infants and all women by timepoint. Colors represent SARS-CoV-2
infection status at time of sample collection.

Figure 2
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Mother-infant beta diversity over time. (A) Bacterial weighted PCoA of all samples colored by maternal of
infant sample. Statistical significance assessed by PERMANOVA for all infant samples vs. all maternal
samples. (B) Viral weighted PCoA of all samples colored by maternal of infant sample. Statistical
significance assessed by PERMANOVA for all infant samples vs. all maternal samples. (C) Weighted
bacterial Bray-Curtis distance between maternal and infant samples at each time point. Statistical
significance assessed by linear regression. (D) Weighted viral Bray-Curtis distance between maternal and
infant samples at each time point. Statistical significance assessed by linear regression.
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Figure 3

Stool samples community states, relative abundance, and differential analysis of bacterial microbiome
and virome. (A) Relative abundance of bacteria at species level, clustered using k-means on weighted
Bray-Curtis distances. Plot labeled with community state groups. Statistical significance assessed by
multinominal logit models and p-value adjusted for multiple comparison. Significant comparisons
represented by color. Multinomial analyses determined if specific bacterial community states were
associated with maternal HIV status, mothers versus infants, SARS-CoV-2 status, antibiotic use,
postpartum time, or time since weaning. (B) Relative abundance of viruses at family level. Plots are
separated by infant or maternal samples and ordered by increasing month of life or post-partum time. (C)
MaAslin2 assigned differential bacteria for mother and infant samples. (D) MaAslin2 assigned
differential viral contigs by month of life for infants.

Figure 4

Trajectory change in microbiome and virome after SARS-CoV-2 infection in women and infants. (A) Linear
regression plot of maternal bacterial alpha diversities against post-partum time. Colors represent
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infection status at time of sample collection. Statistical significance of interaction between post-partum
time and SARS-CoV-2 assessed by linear mixed effect model. (B) Linear regression plot of SARS-CoV-2
seropositive (same for below) women’s bacterial alpha diversity by time since SARS-CoV-2. Colors
represent seropositivity (same for below) status at sample collection. Statistical significance assessed by
linear mixed effect model. Statistical significance of interaction between time since SARS-CoV-2 and
SARS-CoV-2 positivity assessed by linear mixed effect model. (C) Bacterial weighted Bray-Curtis PCoA of
women by SARS-CoV-2 infection status. Colors represent infection status at time of sample collection.
Statistical significance assessed by PERMANOVA. (D) Linear regression plot of infant bacterial alpha
diversities against month of life. Colors represent infection status at time of sample collection. Statistical
significance of interaction between month of life and SARS-CoV-2 assessed by linear mixed effect model.
(E) Bacterial weighted Bray-Curtis PCoA of infants by SARS-CoV-2 infection status. Colors represent
infection status at time of sample collection. Statistical significance assessed by PERMANOVA. (F)
Linear regression plot of maternal viral alpha diversities against post-partum time. Colors represent
infection status at time of sample collection. Statistical significance of interaction between post-partum
time and SARS-CoV-2 assessed bylinear mixed effect model. (G) Viral weighted Bray-Curtis PCoA of
women by SARS-CoV-2 infection status. Colors represent infection status at time of sample collection.
Statistical significance assessed by PERMANOVA. (H) Linear regression plot of SARS-CoV-2 infected
women viral alpha diversity by time since SARS-CoV-2. Colors represent infection status at sample
collection. Statistical significance assessed bylinear mixed effect model. Statistical significance of
interaction between time since SARS-CoV-2 and SARS-CoV-2 positivity assessed by linear mixed effect
model. (I) Linear regression plot of infant viral alpha diversities against month of life. Colors represent
infection status at time of sample collection. Statistical significance assessed by linear mixed effect
model. Statistical significance of interaction between month of life and SARS-CoV-2 assessed by linear
mixed effect model. (J) Viral weighted Bray-Curtis PCoA of infants by SARS-CoV-2 infection status.
Colors represent infection status at time of sample collection. Statistical significance assessed by
PERMANOVA.
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Figure 5

Change in microbiome and virome at first SARS-CoV-2 positive infection visit sample in women and
infants against all SARS-CoV-2 negative visit samples. (A) Linear regression plot of maternal bacterial
alpha diversities against post-partum time. Colors represent infection status at time of sample collection.
Statistical significance assessed bylinear mixed effect model. (B) Bacterial weighted Bray-Curtis PCoA of
women by SARS-CoV-2 infection status. Colors represent infection status at time of sample collection.
Statistical significance assessed by PERMANOVA. (C) Linear regression plot of infant bacterial alpha
diversities against month of life. Colors represent infection status at time of sample collection. Statistical
significance assessed bylinear mixed effect model. (D) Bacterial weighted Bray-Curtis PCoA of infants by
SARS-CoV-2 infection status. Colors represent infection status at time of sample collection. Statistical
significance assessed by PERMANOVA. (E) Linear regression plot of maternal viral alpha diversities
against post-partum time. Colors represent infection status at time of sample collection. Statistical
significance assessed bylinear mixed effect model. (F) Viral weighted Bray-Curtis PCoA of women by
SARS-CoV-2 infection status. Colors represent infection status at time of sample collection. Statistical
significance assessed by PERMANOVA. (G) Linear regression plot of infant viral alpha diversities against
month of life. Colors represent infection status at time of sample collection. Statistical significance
assessed by linear mixed effect model. (H) Viral weighted Bray-Curtis PCoA of infants by SARS-CoV-2
infection status. Colors represent infection status at time of sample collection. Statistical significance
assessed by PERMANOVA.
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