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Abstract
The description of the relationship between temperature (T) and electricity consumption (EC) is key to
improve our understanding of a potential climate change ampli�cation feedback and, thus, energy
planning. We sought to characterize the relationship between the EC and daily T of different regions of
Argentina and use these historical relationships to estimate expected EC under T future scenarios. We
used a time series approach to model, remove trends and seasonality of EC accounting for breaks and
discontinuities. EC and T data were obtained from Argentine Wholesale Market Administrator Company
and global databases, respectively. We evaluated the T-EC model for the period between 1997 and 2014
and two sub-periods: 1997–2001 and 2011–2014. We used modelled temperature projections for the
2027–2044 period based on the Representative Pathway Concentration 4.5 together with our region
speci�c T-EC models to predict changes in EC due to T changes. The shape of the T-EC relationships was
quite stable between periods and regions but varied according to the temperature gradient. We found
large increases in EC in warm days (from 40 to 126 Wh/cap/ºC) and a region speci�c response to cold
days (from �at to steep responses). The T at which EC was minimum varied between 14 and 20°C and
increased in time as mean daily T also increased. Estimated temperature projections translate into an
average increase factor of 7.2 in EC with contrasting relative importance between regions of Argentina.
Results highlight potential sensitivity of EC to T in the developing countries.

1 Introduction
For centuries energy use was associated to human well-being (Ahuja & Tatsutani, 2009). However, this
relationship might have been recently levelled off due to the extensive environmental impacts of energy
generation. To meet material needs, societies use energy and impact ecosystems by changing land use-
land cover (e.g., for roads, oil and gas seismic exploration grids, transmission lines, dams, etc.), emitting
greenhouse gas and consequently, intensifying global warming (Dale et al., 2011). In parallel, changes in
air temperature alter patterns of energy consumption, as the rise and fall of temperature increases
demand for cooling and heating respectively (Dale et al. 2011; Auffhammer & Mansur, 2014). The
International Energy Agency (IEA) in the World Energy Outlook (2016) (IEA, 2016) estimated that
electricity accounts for 30% of residential energy consumption, but due to the rapid uptake of appliances
and cooling systems it is expected to rise more than 40% in 2040. In addition, electricity integrates
different sources of primary energy and therefore its consumption can be used as an estimator of the
total energy consumption (IEA, 2019). Understanding of the energy-climate relationship, and more
precisely the relationship between temperature and electricity consumption along a mean annual
temperature gradient, is a critical requirement to improve energy planning within a context of a potential
climate change ampli�cation feedback.

Relationships between air temperature and electricity consumption (T-EC) are, in general, non-linear as
both, temperature increases and decreases result in higher electricity consumption (Moral-Carcedo &
Vicens-Otero 2005; Bessec, & Fouquau 2008; Apadula et al. 2012; Santamouris et al. 2015; Gupta 2016;
Shaik, & Yeboah 2018, Li et al. 2019). T-EC relationship has been characterized by means of three
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attributes: i) the shape (Bessec, & Fouquau 2008; Auffhammer & Aroonruengsawat 2011; Apadula et al.
2012; Davis & Gertler 2015, Li et al. 2019), ii) the threshold temperature –TT (Moral-Carcedo & Vicens-
Otero 2005; Santamouris et al. 2015; Auffhammer & Aroonruengsawat 2011; Psiloglou et al 2009), and
iii) the response of EC to temperatures below or above the TT (Moral-Carcedo & Vicens-Otero 2005; De
Cian et al. 2007; Bessec, & Fouquau 2008; Psiloglou et al 2009; Auffhammer & Aroonruengsawat 2011;
Apadula et al. 2012; Santamouris et al. 2015; Gupta 2016; Thornton et al. 2016; Shaik, & Yeboah 2018).
(see Appendix A). The shape of T-EC relationships describes qualitatively how EC changes when T varies
and it ranges from linear (increasing or decreasing) to U-shape (where in both extremes of temperature
range the EC increases strongly) to hockey stick-shape (where the EC increases strongly with only high or
only low temperature values). TT is the value (or range of values) of air temperature at which the
qualitative behavior of electricity consumption changes and the electricity consumption is minimum,
known as the in�ection point of electricity consumption. Finally, the response of EC to temperature above
or below the TT is generally quanti�ed by means of the slope of a linear model �tted to T and EC values
above and bellows the TT (i.e. warm temperature regimes –WTR-, and cool temperature regimes –CTR).

Previous studies found that the T-EC relationship differs across climate zones (i.e countries or regions).
Bessec & Fouquau (2007, 2008) described warmer zones with U shaped pattern and colder ones with
hockey stick shape. Linear negative or positive responses of EC to temperature were found in zones
where the temperature ranges were constrain to high or low temperatures (e.g Finland or Sweden in
Bessec & Fouquau 2007). Several authors found lower values of TT at colder regions: Auffhammer &
Aroonruengsawat (2011) comparing different regions in California; Santamouris et al. (2015) analyzed
�fteen studies around several northern hemisphere countries; Moral-Carcedo & Vicens-Otero (2005) at
different locations in Spain; Psiloglou et al. (2009) comparing different countries in Europe. Bessec &
Fouquau (2008), Santamouris et al. (2015) and Shaik & Yeboah (2018) found that the responses of EC to
temperatures depends mainly on characteristics of the zone, like the infrastructure, energy sector and the
type of energy used.

There are several reasons to study the T-EC relationship in a developing country like Argentina. First, most
studies focused on developed countries from the Northern hemisphere (Moral-Carcedo & Vicens-Otero
2005; Bessec, & Fouquau 2008; Psiloglou et al 2009; Auffhammer & Aroonruengsawat 2011; Apadula et
al. 2012; Thornton et al. 2016; Shaik, & Yeboah 2018, Li et al. 2019) however for exceptions see De Cian
et al. (2007) and Santamouris et al. (2015). Davis and Gertler (2015) and Gupta (2016) worked in
developing countries but in the Northern hemisphere. Second, Argentina's steep climatic gradient allows
the characterization of regional T-EC relationships minimizing the effects of different regulations. Third,
Argentina provides a relevant case-study because it is representative of a set of Southern hemisphere
upper/middle-income countries under-represented in the literature. Argentina is one of the largest
economies from Latin American countries with a marked cultural, social and demographic diversity,
depicted of countries with constant economic and political instability. Data from The World Bank Group
(2019) showed that in the last two decades, Argentina underwent smooth and abrupt changes that make
it an interesting -as well as challenging- case to study. For example, the average density population
doubled from 1990-2014 (The World Bank Group, 2019). The pump price for gasoline was non-linear,
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doubling from 1990-2014 but had two peaks, one in 2000 of 1.07 US$ per liter, a fall of 30% in
subsequent years and a maximum peak in 2014 of 1.52 US$ per liter (The World Bank Group, 2019). The
Gross Domestic Product (GDP) amounted to ca. 140 billion current US$ in 1990 and doubled by 2001
then it decreased markedly to 98 billion current US$ during the 2002 crisis and by 2014 it reached 530
billion current US$ (The World Bank Group, 2019). In conclusion, to study the T-EC relationship in
Argentina approaches should account for abrupt changes associated with modi�cations in legal
regulations, prices, or due to economic crises that countries may experience.

The study of the T-EC relationship is still incipient in Argentina. For example, Legisa and Reali (1989)
showed that daily EC increased up to 2 GWh per unitary increase in the difference between daily
temperature and the mean temperature for all the country. Moreover, Beyrne et al. (2015) analyzed the T-
EC relation for all the country using annual econometric model and determined that an increased in EC
per unit change in T was slightly less than double in summer compared to winter (6.99 GWh and 3.78
GWh average, respectively). Most recently, Margulis et al. (2016) analyzed the T-EC relationship in winter
in Buenos Aires between 1998-2015 and found that it was a negative relationship, that is, the lower the
temperature, the higher the EC and vice versa. In addition, Margulis et al. (2017) analyzed the T-EC
relationship in summer in 3 different administrative units of the country and found a semi-elasticity of
1.5% reached for the Gran Buenos Aires area (the biggest city in the country). However, for the rest of the
administrative units (i.e. Santiago del Estero and Chubut Provinces, and Trelew city) the impact of T on
EC was much lower (from 0.3% to 0.6%) (Margulis et al., 2017). In relation to these last publications,
Mastronardi et al. (2016) analyzed the T-EC relation in different regions during 2010-2016 and found an
increment in the EC between 1.8% and 3.2% when mean daily temperature increased by 1°C during
summer. Chévez et al. (2018) found that the highest EC in warm regions were associated to the use of air
conditioning equipment. Finally, Zanek et al. (2019) proposed a model to forecasts the residential EC of
the City of Salta (city in the north of Argentina) using surveys and interviews to characterize EC.
Therefore, we still lack a quantitative long-term description of spatial patterns in T-EC relationship across
Argentina. Such regional characterization for the rest of the country would shed light on the potential
underlying mechanisms and its temporal dynamics.

Climate change is projected to have impacts on EC across the world (Auffhammer et al., 2017; Wenz et
al., 2017; Li et al. 2019; van Ruijven et al., 2019). These potential effects of climate change on the electric
power system is an issue of growing interest and important for decision-making (Franco & Sanstad,
2008). Future EC is likely to increase due to climate change, but the magnitude depends on many
interacting sources (van Ruijven et al., 2019). Locally, Franco & Sanstad (2008) estimated that a 3%
increase in EC in California by 2020 due to global warming would translate to about $930 million (2000
dollars) in additional annual electricity expenditures. At a larger scale, Auffhammer et al. (2017) found an
average EC increase of 2.8% across the United States by end of century under a business as usual
scenario. In China, Li et al. (2019) found that annual EC will increase by 9.2% per +1°C in annual global
mean surface temperature. More extensive study from Wenz et al. (2017) found a signi�cant increase on
the overall EC in Southern and Western (∼3 to ∼7% for Portugal and Spain) countries and a signi�cant
decrease in Northern European countries (∼−6 to ∼−2% for Sweden and Norway) due to future warming.
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Finally, van Ruijven et al., (2019) combined socioeconomic and climate scenarios to estimate EC around
the world and found that EC will rise by more than 25% in the tropics and southern regions of the USA,
Europe and China.

Here we sought to characterize the relationship between EC and T at a daily time step at different regions
of Argentina, assess its temporal changes and use these historical relationships to estimate expected EC
under two different T scenarios. The main questions guiding our work were: (1) How does the T-EC
relationship vary along a temperature gradient? (2) How did the electricity consumption-temperature
relationship change between 1997 and 2014? And (3) How will future temperature translate into EC
across different region of Argentina? To address these issues we performed a time series and regression
analysis based on spatially explicit meteorological, electricity consumption databases and different
temperature scenarios.

2 Methodology
We restricted our analysis to Continental Argentina, a total area of 2.79 Mkm2 inhabited by 40.1 Mhab in
2010 and that displays a marked latitudinal and altitudinal temperature gradient from 7 to 22 °C of mean
temperature (18-year daily average) (Argentine National Geographic Institute, 2019). We used electricity
consumption data collected by Argentine Wholesale Market Administrator Company (CAMMESA acronym
in Spanish). Data from CAMMESA included the total hourly supplied electricity consumption from 1997
to 2014 for 9 regions in which the country is subdivided by the Argentinean Secretary of Energy
dominated by different thermal regimes (Figure 1 a and b). It is the net consumption between the total
demanded and the losses by region. These regions were: Patagonia, Comahue, Cuyo, Buenos Aires (BAS),
Centro, Noroeste, Gran Buenos Aires (GBA), Litoral and Noreste. Tierra del Fuego, Antarctica and South
Atlantic Islands were not included in our analysis because they are not connected to the national power
grid (Sistema Argentino de Interconección, SADI acronym in Spanish). Due to the aggregated EC data that
was available, residential, commercial or industrial electricity consumption could not be discriminated.
Nevertheless, residential and commercial represent on average almost 80 % of total EC (Mastronardi, et
al., 2016). According to data from CAMMESA and the National Energy Ministry (MINEM 2021) between
2012 and 2014, only Patagonia had 40% more industrial consumption than residential and commercial
(see Appendix B). Daily EC was calculated as the sum of hourly EC between 9 pm of the day before to 9
pm of the following day to match meteorological data daily time-step. We excluded holidays or weekends
from the analysis to avoid including days with altered economic or residential activity.

The study of T-EC relationships is complex because EC covariates with several social, economic and
environmental factors that operate at different time scales (Psiloglou et al., 2009). Two approaches have
been frequently use to minimize confounding effects on the T-EC relationship: a time series analysis –
where long term and seasonal trends are removed- or a multivariate regression analysis including time
(Psiloglou et al., 2009). However, these approaches do not fully account for abrupt changes associated
with modi�cations in legal regulations, prices, or due to economic crises that countries may experience.
Therefore, we here performed a time series analysis coupled with a breakpoint detection using BFAST
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(Breaks for Additive Seasonal and Trend) (Verbesselt et al., 2010) and characterized daily EC with the
residuals of the model (i.e. Residual EC). Residuals were obtained from the difference between the
modeled and the observed data. As many other time series analyses BFAST models and removes trends
and seasonality using an additive decomposition model (Verbesselt et al., 2010). Changes in the trend
component are often associated to variations on the population or economic activity (e.g. GDP or fuel or
electricity price) while changes in the seasonal component can be related to changes in the seasonal
temperature. Therefore, we regressed BFAST residuals to daily temperature values in order to characterize
the T-EC relationship with minimum in�uences from long-term trends and/or seasonal variability.
However, BFAST additionally seeks for breakpoints (i.e. abrupt changes) (Verbesselt et al., 2010) which
make it particularly suitable to study the T-EC relationship in Argentina due to the numerous disrupting
events (economic crises, sudden changes in relative prices, etc.) that have taken place during the study
period (e.g. the 2001 economic crisis).

BFAST requires several user-de�ned parameters including the expected number of breakpoints. To avoid
user bias, we performed several runs with all possible breakpoints (i.e. from 0 - without breakpoints- to
18) and chose the number of breakpoints that minimized the standard deviation (SD) of residuals as a
measure of the spread of a data distribution. The general model is of the form (Eq. 1):

Where i=1,…,18; Xi – the average residual in one year , Xavg– the arithmetic mean of the average residual
in the period analyzed, n –18 years

We also evaluated the minimum root-mean-square error (RMSE) of residuals as a measure of goodness
of �t. Thus, for each region daily EC time-series, we performed 7 BFAST runs (ranging from 0 to 5
breakpoints plus the maximum number of breakpoints detected for the region under consideration). We
did not consider more than 10 breakpoints to avoid over-�tting the model. Results showed that in most
cases, models with 5 breakpoints minimized the SD (or the RMSE) and therefore from here on we base
our results on these models (see appendix C).

Daily temperature data were obtained from WATCH Forcing Data ERA-Interim (WFDEI) (Weedon et al.,
2014).This database has a 0.5 x 0.5° spatial resolution for all the globe and daily temporal resolution
from 1979 to date. The selection of this database was the result of a per region comparison of 7 data
sources (Table1) using the indices proposed by Toté et al. (2015). For each of the 7 databases we
calculated 5 statistics (i.e. Pearson correlation coe�cient (r), Relative Mean Absolute Error (RMAE), Nash-
Sutcliffe E�ciency coe�cient (Eff) and Bias) that relate each database daily temperature value with an
independent meteorological stations dataset. To that end, we assembled 315 meteorological station data
provided by the National Institute of Agricultural Technology (INTA, acronym in Spanish) and the National
Meteorological Service (SMN, acronym in Spanish) from 1980 to 2016. From each spatially explicit
global database, we selected the cells that contained the meteorological station from which we had data.
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To order the 7 databases for each region we used the sum of the ranking for the 5 statistics. The �nal
ranking was weighed by the area of each region. Finally, we chose the explicit spatial database with the
lowest ranking for all the regions (see appendix D).

For each of the 9 regions, daily temperature was calculated from WFDEI cells containing urban areas
under the assumption that rural electricity consumption in negligible. To de�ne the extent of urban areas
at each region we used monthly average radiance composite images of 2014 using nighttime data from
the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) (Mills et al., 2013). Based on
visual interpretation we assumed that VIIRS pixels with radiance values higher than 12 nanoWatts.cm-

2.sr-1 corresponded to urban areas (Shi et al., 2014). To obtain temperature values for each region we
calculated the daily mean temperature values of WDFEI cells weighted by urban areas in each cell. All
analyses and image processing were done mostly on R (R Core Team, 2018.) and Google Earth Engine
(Gorelick, et al., 2017).

To analyze the T-EC relationship we �tted linear, quadratic, cubic spline and natural cubic spline models
and selected the best one compared by means of the Akaike criterion. We evaluated three attributes to
characterize the T-EC relationships for each region along different periods between 1997 and 2014: (1)
the shape, (2) the TT and (3) the slopes. To decide the shape (U-shaped or hockey stick-shaped) of the T-
EC relationship of each region we calculate the quotient between slopes of the warm temperature regimes
(WTR) and the cool temperature regimes (CTR), if this quotient was higher than 0.5 we considered a U-
shaped relation and less than 0.5 was a hockey stick-shaped relation. TT was determined from searching
when the �rst derivative of the function chosen by the Akaike criterion was equal to zero. For the slopes
we calculated linear models for the T-EC relationship below or above the TT and analyzed the change on
the response to WTR (Wh/cap/°C) and CTR (Wh/cap/°C). Similarly, the temporal changes were evaluated
by assessing the T-EC relationship for two separate periods: initial (1997-2001) and �nal (2011-2014).
Residual EC is shown on a per capita basis to allow comparisons among regions.

Finally, to estimate the response of EC to climate change we used temperature predictions from
Commonwealth Scienti�c and Industrial Research Organisation (CSIRO) (Gordon et al., 2002, 2010)
based on the Representative Pathway Concentration 4.5 and 8.5 (Moss et al. 2010; Pachauri et al. 2014).
These two emission pathways represent an intermediate and an extreme scenario where emissions peak
around 2040 (RCP 4.5) or continue to rise throughout the 21 century (RCP 8.5). As done previously,
regional T predictions for the period 2027-2044 were estimated from urban areas only. Thus, mean daily
temperature for the period 2027-2044 was calculated as (Eq. 2):

 

Where MDTp is the predictive mean daily temperature for scenarios, MMTh is the historical mean monthly
temperature, MMTp is the predictive mean monthly temperature and MDTh the historical mean daily
temperature.
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To quantify the response of EC to climate change we subtracted the per capita residual EC (Wh/cap)
estimated using future expected T according to the different climate change scenarios to the observed
temperature of the 1997-2014 period. We also expressed these results as the ratio between expected
residual EC (under the two RCP scenarios) and observed residual EC. In addition, we analyzed the
difference in EC comparing the difference between mean temperatures from the T scenarios and the
measured T with WFDEI database (see appendix E).

3 Results And Discussion
3.1 How does the electricity consumption-temperature relationship vary along a temperature gradient?

The shape of the T-EC relationship during the period 1997-2014 differed across regions that encompass a
marked temperature gradient (Figure 2 and Table 2). Warm regions such as Centro, Noroeste, Gran
Buenos Aires and Noreste showed a U-shaped pattern while cold regions such as Comahue, Cuyo, Buenos
Aires and Litoral displayed a hockey stick- type where EC increased only with warmer temperatures. No
clear saturation of EC at low or high temperatures was noted. For all regions cubic splines functions
described best the observed T-EC relationship (see appendix F) indicating that the response of EC to
changes in daily temperature are not constant along the temperature range. Given that there was no
signi�cant T-EC relationship in Patagonia we excluded the region from the results –although we included
in Figure 2 (a) for the readers to judge.

Our results have some similarities with the �ndings of Bessec & Fouquau (2007, 2008) who also showed
that warm regions, like Southern European countries, had a U-shaped relationship between T and EC and
a hockey stick-shaped relation at cold regions like Northern European countries. However, their hockey
stick shape implied that EC increased at cold temperatures, just opposite to our hockey stick shape, which
increased only at high temperatures. We hypothesize that this contrasting result stems from three main
differences between European countries and Argentina: temperature range, relative prices of alternative
energy sources and heating devices. On average European countries are colder than Argentina and winter
temperatures are particularly colder. In addition, since 1947 –when large natural gas reserves were found
at Loma de la Lata �elds (Neuquén, Argentina) - the use of natural gas has increased markedly due to
infrastructure development and relatively low prices. Residential heating in Argentina has generally relied
on natural gas, as electrical heating devices are not widespread used. In colder regions, such as
Comahue, the availability of network gas according to the 2001 and 2010 census exceeds 80% of the
population (INDEC, 2012). The opposite happened in warmer regions where the availability of network
gas was below 20-25 % (e.g Noreste, Noroeste and Litoral) (INDEC, 2012) (Table 3). Nevertheless,
Margulis (2014) analyzed the association between EC and natural gas availability among different
regions of Argentina and found that the lack of availability of natural gas through networks for heating in
Noreste and Noroeste represents a 10 % decrease in EC. While a thorough explanation of the causes of
household heating choices is out of the scope of the study, the �ndings of Bessec & Fouquau (2007,
2008) are consistent with our hypothesis because, at country level, their results implies the extensive use
of electric devices for heating and favorable electricity prices compared to other energy sources.
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Additional support comes from a study by Auffhammer (2013) where the lack of response of EC to low
temperatures in California was associated to the generalized use of natural gas for heating. Overall, these
results coarsely suggest that low summer temperatures restrain European countries from a general U
shape pattern while in Argentina it is due to a mixture of availability of natural gas at low prices together
with the extensive use of gas fed heating devices.

Connected to the overall shape of the T-EC described above, we found that EC increased when daily
temperatures were higher than the TT (i.e. WTR) at every region while the opposite did not occur. EC in
cold regions with higher access to natural gas –i.e. Comahue, Cuyo and Buenos Aires- did not increase
while in warm regions without access to natural gas it did increase. Given this confounded effects, here
on we will focus on the response of EC to WTR. The slope of the linear relationship between EC and WTR
–a simple estimator of the response- ranged from 40 to 126 Wh/cap/ºC -that is more than a twofold
variation- between cold and warm regions. This variability in the response of EC to warm daily
temperatures together with the lack of a saturation threshold -i.e. daily temperature above which EC does
not increase- suggest that future increases in temperature may have signi�cant and heterogeneous
impacts on electricity demand. Clearly, a one-degree increase in daily temperature will not translate into
similar per capita electricity consumptions across regions of Argentina. Whether this increase occur in a
warm or cold region, with extensive availability of electric cooling devices will be key to anticipate future
demand. This is key given the ongoing adoption of residential electrical equipment (Margulis 2014),
particularly since 2018 (Table3). In addition, access to alternative energy sources for heating will also
play a signi�cant role, as the increase in cooling demand will not be balanced by a decrease in the
heating demand of electricity.

The temperature threshold (TT) for the country was on average of 17ºC but varied between 14 and 20°C
closely matching the mean daily temperature (MDT) range –from 12.7°C to 21.6°C- across regions (Table
2). Indeed, we found a positive linear relation between MDT and TT (Eq. 3):

 

This relation has the ability to predict an aspect of the T-EC relationship behavior with climatic data. It
suggests an adaptive and predictable behavior, where people´s perception of what is cold or warm is
context dependent. Intuitively, people that live in warm regions apparently sense hot conditions at higher
temperatures than people that live at colder regions and vice versa. In addition, this behavioral adaptation
had seemingly occurred to the modal situation, that is, the MDT. Only in Noreste, Buenos Aires and
Comahue regions TT differed by more than 1°C from MDT. Additionally, as could be expected from the T-
EC shape, TT could be found at a single or at range of daily temperatures. In conjunction, these results
agree with the �ndings of Santamouris et al. (2015) comparing �fteen Northern hemisphere countries (i.e.
average TT=18°C and varied between 12ºC and 23ºC) and Bessec & Fouquau (2008) (i.e. average
TT=16.1°C, and varied between 22.4 °C for warm countries and 14.7 °C for the cold countries).
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3.2 How did the electricity consumption-temperature relationship change in time?

The shape of the T-EC relationships was quite stable between periods with only two regions –i.e.
Noroeste and Litoral- changing from the initial hockey stick-shaped response to a U- shaped at the �nal
period (Figure 3 and Table 4). That is, in recent years both regions showed higher sensitivity of EC to low
temperatures than in the initial period. This �nding is consistent with the low (ca. 25% of households)
access to the natural gas network at these regions (INDEC, 2012) whereas electricity would represent the
major energy source for heating. Implicit in the higher sensitivity of EC to low temperatures that we found
is the increase in electrical heating devices availability such as heating or cooling air conditioners (ACs).

At regions where the shape of the T-EC relationship did not change the main difference between 1997-
2001 and 2011-2014 was the intensi�cation of the U-pattern. That is, the response of EC to warm or cold
temperatures increased between periods. In particular, the slope for WTR in 1997-2001 ranged from 20 to
75 Wh/cap/ºC and in 2011-2014 ranged from 54 to 177 Wh/cap/ºC, a 2 to 3 fold increase (Table 3). We
associate this increase in the EC with warm temperatures to the increase development and adoption of
electric devices –a concept named as extensive margin in the literature- and particularly of ACs. After the
Argentinian 2001 economic crisis, there was a marked increase in sell of ACs in part due to pro-internal
market policies and frequent summer daily temperature records among other causes (Table 3). In fact,
according to the National Survey of Household Expenditures (ENGHo) in 2012 in almost every region
more than 30% of households had air conditioners and in 1996/97 only 4% had (Chévez et al., 2018).
Alternatively, the intensive margin –i.e. the increase in the use of already available electric devices when
temperature increases– could be put forward as an explanation. However, the magnitude of the increase
in the sensitivity of EC to warm days and the fact that the intensive margin has a limit -the use of electric
devices cannot be increased in�nitely- suggest that its impact, though not irrelevant, would be limited. In
another developing country –Mexico- Davis & Gertler (2015) found residential EC increases of up to 3.2%
per month for each day with temperatures above 32°C compared to one baseline day of 19°C. While not
directly comparable, Davis & Gertler (2015) and our results highlight potential sensitivity of EC to climate
change in the developing countries where population income is expected to increase and thus the
extensive margin.

The threshold temperature (TT) changed between periods at every region (Figure 3 and Table 4). These
differences were, in general, positive meaning that TT at the �nal period was higher than at the initial
period, with the exception of a cold region, Comahue. Differences ranged from 0.03ºC to 3.2ºC at Litoral
and Buenos Aires respectively, but mostly every region increased around 1ºC. However, when TT was
plotted against MDT the slope of this relationship was not signi�cantly different between periods. That is,
a unitary increase in MDT translates into a similar increase in TT along the MDT gradient. In other words,
the increase of EC when MDT increases by, for example, 1°C would be similar irrespectively of a change
from 18 to 19°C or from 35 to 36°C. This may suggest a context dependent acclimation of human
behavior to changes in temperature. For example, if there were physiological limits to temperature
acclimation, surpassing such thresholds would translate into a more than proportional increase in EC.
However, the lack of such thresholds points to a relative perception of ambient temperature, where
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changes in behavior may be triggered more by the comparison to a reference situation than to an
absolute temperature.

3.3 How will future temperature translate into EC across different region of Argentina?

Climate change will likely increase EC in Argentina. This issue is central to decision making because the
country should increase the electrical power if the T predictions of the RCP 4.5 scenario are accomplish.
Both scenarios, RCP 4.5 (Table 5) and RCP 8.5 (see Table 7 appendix) had similar results. From now on,
assuming a stabilization for GHG emissions we will focus only the RCP 4.5 scenario results. In the RCP
4.5 scenario the predicted country average for 2027-2044 increase in temperature will be of 0.5°C ranging
between -3.2°C and 3.0°C at Cuyo and Centro regions respectively (Table 5). Combining the expected
warming of the RCP 4.5 scenario with our T-EC models results into an average increase of 109.8 Wh/cap
in the mean daily residual EC oscillating from -41.5 Wh/cap in Noroeste and 302.5 Wh/cap in Litoral. This
means that EC would grow or be reduced by a factor of -2 to 26.8 depending on the region. Translated
into power facilities, the increase in EC only due to the expected warming would demand a small power
plant of 150 Mw. However, this is a conservative calculation, as we did not take into account the expected
population increase and neither income growth among other variables known to impact energy
consumption. Future research should carry out the study as Franco & Sanstad (2008) to estimate the
additional annual electricity expenditures that global warming would generate for Argentina.

The large differences in the expected EC increase can be traced to two intertwined variables: the average
change in the expected daily temperature and the shape of the T-EC relationship. As calculated here, the
average change in the expected temperature will de�ne the shift in the daily temperature distributions,
together with the sensitivity of EC to daily temperature -that is, the shape of the T-EC relationship- will
determine the expected EC. Thus, the larger the increase in average daily temperature at regions where the
T-EC relationship has a hockey stick shape -with a steep WTR slope- the larger the EC increase will be (eg.
Litoral region- see Figure 2 (h) and Table 2). In addition, due to the size of the CAMMESA residual mean
EC some ratios show very high values however this disappear when we expressed these results as a
difference in EC.

The marked differences in the expected residual EC among regions reported here suggest that site-
speci�c policies will be needed to secure future electricity access. However, policy interventions require
more information than the one provided here and thus these results should be taken with caution. Future
EC not only depends on the expected temperature but also on many other factors such as future
population size and wealth. A recent global comprehensive study (van Ruijven et al., 2019) reported small
-less than10%- energy demand increases for Argentina mainly due to increases in the northern regions in
partial agreement with our �ndings (Noreste region has the highest EC increase factor of 26.8). In any
case, our results, bundled with other studies, point to an increase in the EC due to climate change; the
magnitude of which may represent a signi�cant challenge to some Argentinean regions.

4. Conclusions
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Using a time series approach we analyzed the relationship between T and EC across space and time. Our
study provided a qualitative and quantitative description of three parameters of the T-EC relationship with
important implications for energy planning. We found large increases in electricity consumption in warm
days, -a pattern that has intensi�ed in time- with a region speci�c response to cold days. Moreover, the
temperature at which electricity consumption is minimum (i.e. TT) differed among regions closely tightly
associated to the mean daily temperature gradient, and increased similarly in time as mean daily
temperature also increased. These results point to an extensive change in behavior with remarkable
consequences in electricity consumption. Our �ndings suggest that the shape of the T-EC relationship
varied across regions depending on the temperature range, relative prices of alternative energy sources
and electric heating devices availability. Future temperature scenarios will translate into an average
increase of 109.8 Wh/cap [by a factor 7.2] in residual EC with contrasting relative importance between
regions of Argentina.

Energy planning deals with the anticipation of energy demand. Forecasting energy demand due to
changes in temperature can coarsely be approached by substituting time for space. That is, modeling the
T-EC relationship to infer future trajectories of electricity consumption at a site from contemporary spatial
patterns. This approach, frequently used in ecological studies (Blois et al., 2013), assumes that drivers of
the T-EC relationship in space holds when considered in time. Our results suggest that this assumption is
valid for TT but not for the response of EC to cold days. Intuitively, the drivers of human behavior when
temperature change seem more consistent in space and time than those that control electricity use such
as income and adoption of electric devices. Nevertheless, these results highlight the importance of a
speci�c site approach to anticipate the impacts of global warming on EC and thus improve energy
planning in Argentina. Further, the linear relation model between TT and MDT might be an approach to
predict an aspect of the T-EC relationship and anticipate the EC for speci�c sites with expected change in
temperature

Finally, our results should be used with caution. We are aware that our data encompasses all electricity
uses and not only residential. However, in Argentina 80% of the EC is mostly residential and commercial
(Mastronardi et al., 2016) except for Patagonia -the region not included in our analyses- where industrial
EC was more important than the residential and commercial sectors. Additionally, we might have not
removed completely other effects in addition to daily temperature on EC, though the use of a time-series
approach that accounts for abrupt changes due to, for example, economic crises or changes in
regulations, must have minimized these confounding effects.
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Figure 1

Argentine Wholesale Market Administrator Company (CAMMESA acronym in Spanish) regions (a) and
box plot monthly average temperature for each region for all the period (black point) and the initial (full
line) and �nal (dash line) periods (b). Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 2

Relationship between per capita residual electricity consumption (Wh/cap) and temperature (ºC) for nine
regions of Argentina for 1997-2014 (grey points, red line is the best model adjusted). Vertical line
represents the mean daily temperature of the region. The order of the �gures follows from lower to higher
mean daily temperature. In panel j, U shaped regions are depicted in green and hockey stick shaped
regions in purple and Patagonia was not included.
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Figure 3

Relationship between per capita residual electricity consumption (Wh/cap) and temperature (ºC) for each
region for two different periods: 1997-2001 (red points) and 2011-2014 (blue points) (colored by period,
lines are the best model adjusted). Vertical line represents the mean temperature for the complete period
(1997-2014) of the region. The order of the �gures follows from lower to higher the mean temperature of
the regions.
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