1 Pui, C. H. & Evans, W. E. Acute lymphoblastic leukemia. N Engl J Med 339, 605-615, doi:10.1056/NEJM199808273390907 (1998).
2 Mrozek, K., Harper, D. P. & Aplan, P. D. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am 23, 991-1010, v, doi:10.1016/j.hoc.2009.07.001 (2009).
3 Roman-Gomez, J. et al. Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia 20, 1445-1448, doi:10.1038/sj.leu.2404257 (2006).
4 Wong, N. C. et al. A distinct DNA methylation signature defines pediatric pre-B cell acute lymphoblastic leukemia. Epigenetics 7, 535-541, doi:10.4161/epi.20193 (2012).
5 Nordlund, J., Milani, L., Lundmark, A., Lonnerholm, G. & Syvanen, A. C. DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission. PLoS One 7, e34513, doi:10.1371/journal.pone.0034513 (2012).
6 Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472-479, doi:10.1038/nature12750 (2013).
7 Song, C. X. & He, C. Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci 38, 480-484, doi:10.1016/j.tibs.2013.07.003 (2013).
8 Bhutani, N., Burns, D. M. & Blau, H. M. DNA Demethylation Dynamics. Cell 146, 866-872, doi:10.1016/j.cell.2011.08.042 (2011).
9 Cooke, M. S. et al. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 574, 58-66, doi:10.1016/j.mrfmmm.2005.01.022 (2005).
10 Pronier, E. & Delhommeau, F. Role of TET2 mutations in myeloproliferative neoplasms. Curr Hematol Malig Rep 7, 57-64, doi:10.1007/s11899-011-0108-8 (2012).
11 Imbesi, S. et al. Oxidative stress in oncohematologic diseases: an update. Expert Rev Hematol 6, 317-325, doi:10.1586/ehm.13.21 (2013).
12 Yang, Y. et al. Determinants of urinary 8-hydroxy-2'-deoxyguanosine in Chinese children with acute leukemia. Environ Toxicol 24, 446-452, doi:10.1002/tox.20447 (2009).
13 Nordlund, J. & Syvanen, A. C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 51, 129-138, doi:10.1016/j.semcancer.2017.09.001 (2018).
14 Tasian, S. K. & Hunger, S. P. Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. Br J Haematol 176, 867-882, doi:10.1111/bjh.14474 (2017).
15 Shurtleff, S. A. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9, 1985-1989 (1995).
16 Gackowski, D. et al. Accurate, Direct, and High-Throughput Analyses of a Broad Spectrum of Endogenously Generated DNA Base Modifications with Isotope-Dilution Two-Dimensional Ultraperformance Liquid Chromatography with Tandem Mass Spectrometry: Possible Clinical Implication. Anal Chem 88, 12128-12136, doi:10.1021/acs.analchem.6b02900 (2016).
17 Rozalski, R., Gackowski, D., Siomek-Gorecka, A., Banaszkiewicz, Z. & Olinski, R. Urinary Measurement of Epigenetic DNA Modifications: A Non-Invasive Assessment of the Whole-Body Epigenetic Status in Healthy Subjects and Colorectal Cancer Patients. Chemistryopen 5, 550-553, doi:10.1002/open.201600103 (2016).
18 Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663-669, doi:10.1038/onc.2012.67 (2013).
19 Li, W. & Liu, M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011, 870726, doi:10.4061/2011/870726 (2011).
20 Jin, S. G. et al. 5-Hydroxymethylcytosine Is Strongly Depleted in Human Cancers but Its Levels Do Not Correlate with IDH1 Mutations. Cancer Research 71, 7360-7365, doi:10.1158/0008-5472.Can-11-2023 (2011).
21 Lian, C. G. et al. Loss of 5-Hydroxymethylcytosine Is an Epigenetic Hallmark of Melanoma. Cell 150, 1135-1146, doi:10.1016/j.cell.2012.07.033 (2012).
22 Cimmino, L., Abdel-Wahab, O., Levine, R. L. & Aifantis, I. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9, 193-204, doi:10.1016/j.stem.2011.08.007 (2011).
23 Sun, J. et al. SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell 23, 355-369 e359, doi:10.1016/j.stem.2018.07.018 (2018).
24 Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389-393, doi:10.1038/nature15252 (2015).
25 Yin, R. C. et al. Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in Mammals. J Am Chem Soc 135, 10396-10403, doi:10.1021/ja4028346 (2013).
26 Minor, E. A., Court, B. L., Young, J. I. & Wang, G. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem 288, 13669-13674, doi:10.1074/jbc.C113.464800 (2013).
27 Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222-226, doi:10.1038/nature12362 (2013).
28 Figueroa, M. E. et al. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J Clin Invest 123, 3099-3111, doi:10.1172/JCI66203 (2013).
29 Olinski, R., Jaruga, P., Foksinski, M., Bialkowski, K. & Tujakowski, J. Epirubicin-induced oxidative DNA damage and evidence for its repair in lymphocytes of cancer patients who are undergoing chemotherapy. Mol Pharmacol 52, 882-885, doi:10.1124/mol.52.5.882 (1997).
30 Zhang, Y. F., Qi, C. B., Yuan, B. F. & Feng, Y. Q. Determination of cytidine modifications in human urine by liquid chromatography - Mass spectrometry analysis. Anal Chim Acta 1081, 103-111, doi:10.1016/j.aca.2019.07.002 (2019).
31 Wang, Y. C. & Chiang, E. P. Low-dose methotrexate inhibits methionine S-adenosyltransferase in vitro and in vivo. Mol Med 18, 423-432, doi:10.2119/molmed.2011.00048 (2012).
32 Vezmar, S., Schusseler, P., Becker, A., Bode, U. & Jaehde, U. Methotrexate-associated alterations of the folate and methyl-transfer pathway in the CSF of ALL patients with and without symptoms of neurotoxicity. Pediatr Blood Cancer 52, 26-32, doi:10.1002/pbc.21827 (2009).
33 Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622-627, doi:10.1126/science.1190614 (2010).
34 Cooke, M. et al. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 574, 58-66, doi:10.1016/j.mrfmmm.2005.01.022 (2005).
35 Schiesser, S. et al. Mechanism and Stem-Cell Activity of 5-Carboxycytosine Decarboxylation Determined by Isotope Tracing. Angew Chem Int Edit 51, 6516-6520, doi:10.1002/anie.201202583 (2012).
36 Munzel, M. et al. Improved Synthesis and Mutagenicity of Oligonucleotides Containing 5-Hydroxymethylcytosine, 5-Formylcytosine and 5-Carboxylcytosine. Chem-Eur J 17, 13782-13788, doi:10.1002/chem.201102782 (2011).
37 He, Y. F. et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science 333, 1303-1307, doi:10.1126/science.1210944 (2011).
38 Maiti, A. & Drohat, A. C. Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine POTENTIAL IMPLICATIONS FOR ACTIVE DEMETHYLATION OF CpG SITES. J Biol Chem 286, 35334-35338, doi:10.1074/jbc.C111.284620 (2011).
39 Olinski, R., Starczak, M. & Gackowski, D. Enigmatic 5-hydroxymethyluracil: Oxidatively modified base, epigenetic mark or both? Mutat Res-Rev Mutat 767, 59-66, doi:10.1016/j.mrrev.2016.02.001 (2016).
40 Franchini, D. M. et al. Processive DNA Demethylation via DNA Deaminase-Induced Lesion Resolution. Plos One 9, doi:ARTN e9775410.1371/journal.pone.0097754 (2014).
41 Franchini, P., Fruciano, C., Frickey, T., Jones, J. C. & Meyer, A. The Gut Microbial Community of Midas Cichlid Fish in Repeatedly Evolved Limnetic-Benthic Species Pairs. Plos One 9, doi:ARTN e9502710.1371/journal.pone.0095027 (2014).
42 Grin, I. & Ishchenko, A. A. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res 44, 3713-3727, doi:10.1093/nar/gkw059 (2016).
43 Olinski, R. et al. Urinary measurement of 8-oxodG, 8-oxoGua, and 5HMUra: A noninvasive assessment of oxidative damage to DNA. Antioxidants & Redox Signaling 8, 1011-1019, doi:10.1089/ars.2006.8.1011 (2006).
44 Chen, M. L. et al. Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/Quadrupole TOF Mass Spectrometry. Clinical Chemistry 59, 824-832, doi:10.1373/clinchem.2012.193938 (2013).
45 Dworzak, M. N. et al. Standardization of Flow Cytometric Minimal Residual Disease Evaluation in Acute Lymphoblastic Leukemia: Multicentric Assessment Is Feasible. Cytom Part B-Clin Cy 74b, 331-340, doi:10.1002/cyto.b.20430 (2008).
46 Rozalski, R. et al. Urinary 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine as potential biomarkers in patients with colorectal cancer. Biomarkers 20, 287-291, doi:10.3109/1354750X.2015.1068860 (2015).
47 Gackowski, D. et al. Accurate, Direct, and High-Throughput Analyses of a Broad Spectrum of Endogenously Generated DNA Base Modifications with Isotope-Dilution Two-Dimensional Ultraperformance Liquid Chromatography with Tandem Mass Spectrometry: Possible Clinical Implication. Anal Chem 88, 12128-12136, doi:10.1021/acs.analchem.6b02900 (2016).
48 Starczak, M. et al. In vivo evidence of ascorbate involvement in the generation of epigenetic DNA modifications in leukocytes from patients with colorectal carcinoma, benign adenoma and inflammatory bowel disease. J Transl Med 16, doi:ARTN 20410.1186/s12967-018-1581-9 (2018).
49 Dziaman, T. et al. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin Epigenetics 10, doi:ARTN 72 10.1186/s13148-018-0505-0 (2018).
50 Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28, 1248-1250, doi:10.1038/nbt1210-1248 (2010).
51 Dagur, P. K. & McCoy, J. P., Jr. Collection, Storage, and Preparation of Human Blood Cells. Curr Protoc Cytom 73, 5 1 1-5 1 16, doi:10.1002/0471142956.cy0501s73 (2015).