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Abstract 

Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex 

neurodegenerative disease by lack of effective treatments. To date, the challenge to 

establishing effective treatment for ALS remains formidable, partly due to inadequate 

translation of existing human genetic findings into actionable ALS-specific pathobiology 

for subsequent therapeutic development. We developed a network medicine 

methodology via integrating human brain-specific multi-omics data to prioritize drug 

targets and repurposable treatments for ALS. Using human brain-specific genome-wide 

quantitative trait loci (x-QTLs) under a network-based deep learning framework, we 

identified 105 putative ALS-associated genes enriched in various known ALS 

pathobiological pathways, including regulation of T cell activation, monocyte 

differentiation, and lymphocyte proliferation. Specifically, we leveraged non-coding ALS 

loci effects from genome-wide associated studies (GWAS) on brain-specific expression 

quantitative trait loci (QTL) (eQTL), protein QTLs (pQTL), splicing QTL (sQTL), 

methylation QTL (meQTL), and histone acetylation QTL (haQTL). Applying network 

proximity analysis of predicted ALS-associated gene-coding targets and existing drug-

target networks under the human protein-protein interactome (PPI) model, we identified 

a set of potential repurposable drugs (including Diazoxide, Gefitinib, Paliperidone, and 

Dimethyltryptamine) for ALS. Subsequent validation established preclinical evidence for 

top-prioritized repurposable drugs. In summary, we presented a network-based multi-

omics framework to identify potential drug targets and repurposable treatments for ALS 

and other neurodegenerative disease if broadly applied. 



Introduction 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by 

the death of motor neurons in spinal cords and brain resulting in skeletal muscle atrophy 

and eventually paralysis1. ALS with a prevalence rate of 5.2 per 100,000 individuals and 

affecting approximately 200,000 Americans, remains a highly sought-after topic in the 

forefront of both translational and clinical research2. Several potential pathological 

causes of ALS were reported, such as TDP-43 protein aggregation disrupting cell 

functions and leading to neuron death, glutamate excitotoxicity causing motor neuron 

degeneration and neuroinflammation3–5. 

         The underlying genetic factors of ALS have been explored by several national and 

international human genome sequencing projects6. For example, the ALS Consortium of 

the New York Genome Center and Answer ALS have generated multi-omics profiles, 

such as whole-genome sequencing, ATAC-sequencing, and RNA transcriptomics6. 

Furthermore, genome-wide association studies (GWAS) have identified dozens of 

genome-wide significant loci associated with risk of ALS7. With Edaravone, Riluzole and 

Tofersen being the only FDA-approved drugs, the task to translate available genetic and 

multi-omics data into efficacious therapeutics remains formidable, largely due to the 

complex, heterogenous pathobiology of ALS8–10. However, previous attempts of ALS 

therapeutics developments have not fully utilized or integrated the potential of 

genomics, protein-protein interactions, metabolomics, and transcriptomics - techniques 

that constitute the fundamentals of the emerging, interdisciplinary field of network 

medicine.11,12 



          The network medicine approach of understanding ALS involves the recognition 

that complex diseases, can be characterized by a multitude of genetic and 

environmental factors that interact within certain experimentally determined biological 

networks11,12. This approach effectively identifies molecular drivers in the human 

interactome and disturbed the cellular pathways that are involved in the pathogenesis 

and disease progression13–16. We therefore posit that unique integration of human 

genetics and multi-omics findings will offer new strategies to identify potential drug 

targets and repurposable treatments for ALS. Following these lines, we adopted a 

comprehensive, up-to-date, and multi-omics-dependent network topology-based deep 

learning framework12 to predict ALS-associated genes from large ALS GWAS findings 

(see Methods). The fundamental premise of our multi-omics framework was that likely 

risk genes of ALS exhibit distinct functional characteristics compared to non-risk genes 

and, therefore, can be distinguished by their aggregated brain-specific genome-wide 

quantitative trait loci (x-QTLs) features under the human protein-protein interactome 

network. In addition, we also demonstrated that multi-omics framework-predicted genes 

offer potential drug targets for emerging identification of repurposable treatments for 

ALS as validated by various preclinical and clinical models. 

 

  



Results 

A network-based multi-omics framework to predict drug targets for ALS 

We adopted a network-based deep learning network constructed from integration of 

GWAS loci and human brain-specific functional genomics profiles (ref). Specifically, we 

leveraged non-coding ALS loci effects from GWAS on human brain-specific expression 

QTL (eQTL), protein QTLs (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), 

and histone acetylation QTL (haQTL) under the human protein-protein interactome 

network model (cf. Methods). Generation of the network operates on the fundamental 

hypothesis that ALS-associated genes display unique functional attributes distinct from 

non-risk genes based on aggregated genomic features within the human protein 

interactome. As mentioned, we examined GWAS non-coding loci impacts on human 

brain-specific eQTL, pQTL, sQTL, meQTL, and haQTL (Figure 1). The execution of the 

network-based multi-omics framework are divided as follows: (1) sophisticated 

unsupervised deep learning model to partition protein-protein interactions (PPIs) into 

distinct functional network modules, capturing the inherent topological structures within 

the human protein interactome; (2) characterize each of these functional network 

modules by associating its nodes (proteins) with protein annotations derived from the 

Gene Ontology (GO) database17; (3) assess the significance of each node (gene) by 

integrating its functional similarity with genes identified through multiple brain-specific 

gene regulatory evidence (eQTL, pQTL, sQTL, meQTL, and haQTL), which have an 

influence on GWAS loci; (4) prioritize potential risk genes for ALS based on their 

collective gene regulatory features; and (5) predict repurposable drugs as potential 

therapy for ALS by network proximity analysis of multi-omics predicted ALS-associated 



gene-coding targets and existing drug-target networks under the human protein-protein 

interactome network (Figure 1).  

 

A genome regulatory map of ALS GWAS loci 

We examined the gene regulation involved in various ALS GWAS loci with human brain-

specific eQTL, pQTL, sQTL, meQTL, and haQTL (Figure 2). Our analysis identified 

three genes with pQTL (DHRS11, SARM1, and SCFD1), 17 genes with haQTL (e.g., 

SCFD1, MOBP, ERGIC1), 4 genes with sQTL (BAG6, CAMLG, TMEM175, FNBP1), 

109 genes with meQTL (e.g., C9orf72, PTPRN2, SCFD1), 93 genes with eQTL (e.g., 

ATXN3, NEK1, C9orf72). Notably, we identified several regulatory effectors targeting 

multitude of genes identified as ‘ALS loci’ candidates. For instance, Sec1 Family 

Domain Containing 1 (SCFD1), a significant risk factor for ALS patients, exhibits 

overlapping gene regulatory effect with eQTL, pQTL, haQTL, and meQTL18. BAG 

Cochaperone 6 (BAG6), which senses proteolytic fragments and prevents aggregation 

of TDP-43 fragments, exerts regulatory effect on eQTL, meQTL, and sQTL19. Myelin 

associated oligodendrocyte basic protein (MOBP), another prominent ALS risk gene, is 

enriched by eQTL, haQTL, and meQTL20. NIMA-related kinase 1 (NEK1), a 

susceptibility gene identified by GWAS, has gene regulatory influence on eQTL21. 

Overall, mapping of ALS loci into human brain-specific x-QTLs therefore showed the 

feasibility of integrating multi-omics data to identify the gene regulatory processes.  

 

Identification of likely ALS risk genes via multi-omics data integration 



Clustering of PPIs into functional subnetwork modules using a topology-based self-

learning framework (Figure 1 and cf. Methods), identified groups of proteins that 

function together or are involved in similar biological processes. The resulting 

subnetwork modules provide a representation of biological relationships among 

proteins. Our previous work showed that proteins with more gene ontology (GO) terms 

tend to have a) more network clusters in the human PPI interactome16, and b) proteins 

with the same subnetwork module shared more GO annotation and a higher degree 

functional similarity. We integrated the PPI-derived network modules with five types of 

gene regulatory elements (brain-specific eQTL, pQTL, sQTL, meQTL, and haQTL) 

implicated by ALS GWAS Loci to determine to what extent which a specific gene is 

functionally related to the known ALS-associated loci. Taking haQTL as an example, we 

first assigned a predicted score to each gene based on its functional overlap with the 

histones. By evaluating the correlation between the predicted score and the presence of 

histones-linked genes associated with ALS, we are able assess the extent to which a 

specific gene is functionally related to the known ALS-associated loci. Subsequently, we 

generated a comprehensive prediction through integrating all five types of human brain-

specific x-QTLs by summing their individual scores.   

        In total, we pinpointed 105 putative ALS-associated genes by applying a Z-score 

cutoff (cf. Methods) which included SCFD1, EIF2AK3, NRG1, UBQLN1, and CHRNA4, 

and others. Among the 105 ALS-associated gene-coding proteins, a total of 273 PPIs 

(termed ALS disease module) from the largest connected components in the human 

PPI (Figure 3) was identified. We next compared the constructed ALS PPI network with 

published ALS-associated genes from DiseNET22, Open Targets23, KEGG PATHWAY 



database, and other ALS patients’ brain transcriptomic data (see Methods). We found 

that the established ALS disease module is significantly enriched in the DisgeNET gene 

set (p = 0.0080, Fisher’s exact test), KEGG PATHWAY database (p = 0.043), as well as 

GWAS Catalog 2023 (p = 0.032). In addition, pathway enrichment analyses 

demonstrated that the 105 predicted ALS-associated genes were significantly enriched 

in a multitude of immune pathways, namely regulation of T cell activation (q = 1.07 x 10-

10), monocyte differentiation (q = 1.15 x 10-5), and lymphocyte proliferation (q = 6.22 x 

10-6). Overall, our results identified several ALS-related pathobiological pathways that 

are affected by the 105 ALS predicted genes.   

 

Network-based discovery of potential repurposable drugs for ALS 

We next assessed the efficacy of drugs predicted by our multi-omics framework and its 

applicability to other published ALS-associated gene databases. We assembled five 

additional ALS risk gene sets from several public sources, namely DisGeNET 

(Disgenet.org), Open Targets (opentarget.org), all ALS-connected genes from ALSoD, 

(alsod.ac.uk), Jensen Disease, and all ALS-associated genes from Refmap (see 

Methods). To screen for high confidence ALS-associated gene sets, we constructed an 

additional cumulative gene list of 155 genes, named “Union” (Figure 5), that includes 

genes that appeared at least twice across the five gene databases. Subsequently, we 

performed network proximity analysis for each of the five literature-supported ALS-

associated gene lists as well as the Union gene list and compared their results with our 

multi-omics framework predicted ALS-associated genes. We found significant 

overlapping between our multi-omics predicted results and known ALS gene database-



predicted drugs. Among those, Diazoxide is significantly enriched in all five individual 

literature gene lists and tops the Union gene list (Z < -2.0, p < 0.01). Dimethyltryptamine 

(DMT) is significantly enriched in Union (Z = -2.165, p = 0.012), DisGeNET (Z = -2.543, 

p = 0.009), Open Targets (Z = -2.032, p = 0.008), Refmap (Z = -2.173, p = 0.014). 

Gefitinib is significantly enriched in DisGeNET (Z = -2.43, p = 0.006), Jensen Disease (Z 

= -2.309, p = 0.016), Refmap (Z = -2.345, p = 0.007). Importantly, our network proximity 

analysis multi-omic data of predicted ALS disease modules also revealed novel findings 

(like Paliperidone) that were not identified in any of the five literature gene lists.  

          We next turned to perform the network proximity analyses of the predicted ALS-

associated genes by calculating the closest distance between a drug’s binding targets 

and the ALS disease module on the human PPI network11,15. We prioritized candidate 

repurposing drugs using: (1) strong network proximity (Z-score < -2.0); (2) ideal brain 

penetration properties; (3) existing experimental evidence from functional studies or 

clinical trials. Using these criteria, we identified a total of 20 prominent candidates. 

Together, nine out of fourteen different classes (e.g., alimentary tract and metabolism, 

blood and blood forming organs, and nervous system) defined in the first level of the 

Anatomical Therapeutic Chemical (ATC) codes were represented across our 20 top 

prioritized candidate drugs. This highlights the potential of our multi-omics framework to 

expand the scope of ALS drug target discovery from large human genetics findings 

beyond existing knowledges.            

          Diazoxide (Z = -2.81) is a small FDA-approved drug known for activating ATP-

sensitive potassium channels (KATP) present in neurons and glial cells within the 

Central Nervous System (CNS). Studies have shown Diazoxide to play a role in 



protecting dopaminergic neurons from death by reducing astrocyte and microglial 

activation and reducing neuroinflammation associated with activated microglia24. As in 

the context of neuroinflammation involving the release of pro-inflammatory mediators 

that leads to damage and dysfunction in the CNS, diazoxide may help regulate the 

inflammatory response and limit neurotoxicity due to its ability to cross the blood-brain 

barrier25. Our study illustrates the feasibility of above mechanism. For instance, a direct 

druggable target of diazoxide is SLC12A3, a family of transporters involved in reuptake 

of excess glutamate from synaptic cleft, and thus a likely inhibitor of the neurotoxic 

nature that is ALS26. Notably, SLC12A3 is in primary association with HSPA8, one of 

our predicted ALS PPI nodes (Figure 4b). Recent clinical studies have further validated 

the potential of diazoxide in mitigating neuroinflammation and confirmed its primary role 

in neuroprotection mediated by maintenance of mitochondrial homeostasis, reduction of 

oxidative stress, and protection excitotoxicity27. Overall, diazoxide’s anti-inflammatory 

properties and neuroprotective makes it a potential drug candidate in treating 

neuroinflammation in ALS.  

        Gefitinib, primarily recognized for inhibiting epidermal growth factor receptor 

(EGFR) activity in lung cancer treatment, holds a prominent position (Z = -2.026) on the 

list. Notably, it demonstrates a positive impact on rescuing motor neuronal survival in a 

co-culture model of ALS, suggesting its potential neuroprotective effect by impeding the 

pathways responsible for progressive degeneration observed in ALS. Furthermore, 

gefitinib exhibits an enhanced reduction of TDP-43 proteinopathy, a significant hallmark 

of ALS disease onset, leading researchers to propose its modulation of the underlying 

cellular mechanisms involved in ALS. Moreover, gefitinib induces autophagic flux and 



facilitates cellular clearance28. Notably, GAK, or Cyclin G Associated Kinase, is both a 

direct drug target of gefitinib and one of our predicted ALS PPI nodes (Figure 4c). GAK 

is found to regulate autophagy through clearing misfolded and damaged organelles that 

are characteristic in affected neurons. Modulating GAK activity could potentially 

enhance the autophagic clearance of pathological in ALS, such as misfolded SOD1 or 

TDP-437. Lastly, a different study has shown gefitinib to positively facilitate the 

PINK1/Parkin-mediated mitophagy, another hallmark of ALS pathobiology29. Combining 

gefitinib's ability to pass through the blood-brain barrier, its neuroprotective influence on 

motor neurons, impact on astrocytes, TDP-43 regulation, and induction of autophagy, 

together they lend support to the hypothesis that gefitinib could play a therapeutic role in 

treating ALS30.  

       Paliperidone (Z = -2.153) is a drug that primarily treats schizophrenia through 

both the serotonin Type 2 (5HT2A) and the dopamine Type 2 (D2) receptor antagonism. 

It was recently found that paliperidone interacts with the amino acid residue Trp32 in the 

superoxide dismutase 1 (SOD1) protein, of which its mutation leads to unstable 

structures and aggregation, a major contributor to ALS pathogenesis. Specifically, 

paliperidone binds to the beta-strand 2 and 3 regions of the SOD1 protein, regions that 

play a role in scaffolding SOD1 fibrillation, the process by which SOD1 forms abnormal 

aggregates. By binding to these regions, paliperidone may disrupt the formation of 

SOD1 fibrils, potentially inhibiting aggregation7. Moreover, another study suggests that 

paliperidone in young-adult mice prenatally exposed to maternal immune challenge 

elicits a 411preventive anti-inflammatory and antioxidant effect in the frontal cortex. It is 



found to block the neuroinflammatory response and stimulates endogenous antioxidant 

mechanisms in the mice31.  

         Dimethyltryptamine (Z = -2.026) is a naturally occurring hallucinogenic compound 

worked primarily through activating the sigma-1 receptor, a protein that plays a role in 

survival and neuroplasticity. Dimethyltryptamine has been found to protect neurons from 

damage caused by glutamate toxicity, a key process that is through to play a role in the 

pathogenesis of ALS32. A different study found that DMT, through its interaction with the 

S1R receptor, can increase cellular survival by reducing hypoxic stress cultured in 

human cortical neurons, monocyte-derived macrophages, and dendritic cells33. 

Additionally, co-localization of the S1R receptor with the indolethylamine N-

methyltransferase (INMT) in primate and human motor neurons (MNs) may provide 

protections in ALS. INMT is an enzyme involved in the biosynthesis of DMT. The 

presence of both S1R and INMT in MNs suggests that DMT may exert its protective 

effects in ALS through specific mechanisms that are yet to be discovered. Lastly, it was 

found that through enzyme activity of methylation of thiols and trace metals, DMT can 

reduce oxidative stress, a process known to contribute to the pathogenesis of ALS34. 

 

Discussion 

In this study, we applied a network-based deep learning framework combined with large 

ALS GWAS loci and human brain-specific x-QTL findings to identify potential candidate 

drugs for ALS (Figure 1). Our study provides evidence that leveraging human brain-

specific x-QTL data and combined with protein-protein interactome, is effective in 

inferring potential ALS drug targets and candidate repurposable treatments. Of note, we 



identified diazoxide, gefitinib, dimethyltryptamine, and paliperidone as potential ALS-

repurposable therapeutics. Of critical importance is that, all four candidates can pass 

through the blood-brain barrier and have been shown to alleviate key ALS-

pathobiological hallmarks such as neuroinflammation, supporting their potential efficacy 

in ALS treatment. 

      Recent human genomic technologies have witnessed several advances in the 

field of ALS-associated genetics, epidemiology, and therapy development that further 

enhances, and even reshapes, our current understanding about ALS pathobiology. One 

study focused on the characterization of missense variants in 24 ALS risk genes and 

found that these variants were enriched in a number of structural regions of proteins, 

such as beta-sheets and alpha-helices. These enrichments of variants in genes with 

high and medium expression level particularly within the brain, which provided insights 

into pathogenicity of missense variants in ALS and distinguish them from variants 

traditionally associated with neurodegenerative diseases38. Another study investigating 

the genetic overlap between Alzheimer’s disease (AD), Parkinson’s disease (PD), and 

ALS unveiled causal variants between ADRD and ALS at the TSPOAP1 locus, and 

between PD and ALS at the NEK1 and GAK/TREM175 loci35. Via comprehending the 

role of missense variants and shared underlying mechanisms, there is potential for 

significant implications in the development of targeted therapies and interventions that 

could benefit multiple neurodegenerative diseases simultaneously. This deeper 

understanding of the genetic basis and pathobiology of ALS enhances the prospects for 

the advancement of effective treatment strategies, offering hope for improved outcomes 

not only for ALS but also for related neurodegenerative disorders.  



           We acknowledged the limitation of this study being dependent on computational 

predictions and network analysis, which requires further experimental validation. While 

our multi-omics framework provides a comprehensive approach to identifying ALS risk 

genes and potential drug candidates, the true efficacy and safety of these drugs need to 

be further investigated in preclinical and clinical studies. Additionally, the study relies on 

the availability and accuracy of multi-omics data and protein-protein interaction 

networks. Any limitations or biases in these data sources could affect the reliability of 

the predictions. Further research is therefore needed to explore the therapeutic potential 

of the identified drugs and to understand their precise mechanisms of action in the 

context of ALS.  

       Despite these limitations, the study represents a significant step forward in the 

search for ALS treatments. By leveraging the power of network medicine and deep 

learning methodologies, it provides a systematic approach to identify ALS risk genes 

and repurposable drugs11,12. The identification of the four novel drug candidates 

highlights the potential of repurposing existing FDA-approved drugs for ALS treatment. 

Furthermore, the comparison with published findings validates the reliability of our multi-

omics predictions and uncovers additional drug candidates that were not identified in 

previous studies. These findings open new avenues for therapeutic exploration and may 

contribute to the development of more effective treatments for ALS. 

 

  



Methods and Materials 

Description of a multi-omics framework 

NETTAG included 3 steps. In the first step, we created a graph neural network 

(GNN)-based overlapping community detection methods to capture the PPI’s topology                            

             𝑅𝑒𝐿𝑈%𝐺𝐶𝑁!!	" )𝐴, 𝑅𝑒𝐿𝑈%𝐺𝐶𝑁!#	" (𝐴, 𝑋)/0/, 𝑤𝑖𝑡ℎ	𝐺𝐶𝑁!$	" =	∑ 𝐴8#𝑋𝑊#,%&
#'(            (Eq.1)  

Here: 𝐴8( = 𝐼, 𝐴8) =	𝐴8 = 𝐷*)/&𝐴𝐷*)/&, 𝐴8&	is the elementwise square of and the 

sub/super-script 𝑙 is the layer index. A is the adjacency matrix of the PPI, D is the 

corresponding diagonal degree matrix, while X signifies the node feature matrix in 

general. Finally, the dimension of the final output layer interprets the clustering number. 

The output matrix is then feed into Bernoulli-Poisson model (Eq.2.1) to learn PPI’s 

topology (Eq.2.2). The output matrix has N (number of total nodes in PPI) rows and C 

(clustering numbers) columns. The final clustering number was determined as the one 

with lowest akaike information criterion (AIC) value (Eq.2.3). The loss explained itself as 

an overlapping-clustering method: if two nodes have multiple commonly shared 

clusters (is large), then there should exist an edge connecting each other ( is close to 1) 

and vice versa. 

                                            𝑃,-(𝑐) = 1 − exp	(−𝐹,. ∙ −𝐹-.)                                          (2.1) 

(𝐿𝑜𝑠𝑠 −𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁄ )	𝐿 = 	−	∑ log O1 − 𝑒𝑥𝑝 O𝐹,RRR⃗ ∙ 	𝐹-/RRRR⃗ TT +	(1,2)	∈	6 ∑ 	𝐹,RRR⃗ ∙(1,2)	∈	6

	𝐹-/RRRR⃗ 																																																																																																																																																																	(2.2)  

                                              	𝐴𝐼𝐶 = 	 7

8×(8*))/&	
+	 :

8
																																																																			(2.3) 

In the second step, we utilized clustering similarity to score each node with respect to 

each QTL. For example, assuming that we have 5 discovered ALS genes associated 



with eQTL, i.e. SCFD1, CHRNA4, EIF2AK3, NRG1 and UBQLN1. Then for any given 

node, its score (Eq.3) based on eQTL is defined as: 

																																																						𝐹;<∗ = V1, 𝑖𝑓	𝐹;< ≥	Y−log	(1 − 1 𝑁)⁄
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               (Eq.3) 

We repeated this procedure for all QTLs, therefore for each gene we have 5 different 

scores, and the final predicted score for each gene is the sum of all these 5 scores. 

Finally, in order to improve the robustness and stability of the clustering results, we run 

NETTAG with 10 different seeds and used ensembled prediction results as the final 

gene prioritization results (Table S1). 

 

Integration of human brain-specific functional genomic features 

We assembled a total of 1,047,489 SNPs detailing various genetic components from the 

GWAS catalog36, including Amyotrophic Lateral Sclerosis. We then gathered regulatory 

elements data from five databases, namely Ensembl Regulatory Build, ENCODE, 

GTEx, and Roadmap and utilized the web-ready platform SNPnexus to annotate SNPs 

from the GRCh Build 38 human genome (GRCh38). In total, five gene regulatory 

elements (eQTL, pQTL, spliceosome, open chromatin, meQTL) were selected for 

assessment of ALS-associated genes (Table S2). Specifically, the process involves: 

first, we grouped together ALS SNPs detailed in GWAS Catalog with SNPs 

corresponding to each regulatory element, e.g., eQTL; second, the respective genes for 

each ALS-associated SNPs were pinpointed by the “MAPPED GENE(S)” column on 

GWAS catalog. Lastly, remaining SNPs with no matched ALS genes but are curated in 

other categorized genes (REPORTED GENE(S) column in GWAS) were mapped to its 

reported genes. For both Ensembl Regulatory Build and ENCODE, we only selected 



brain and normal karyotype and neuron tissues epigenetic components. For 

downstream analysis, we exclusively considered significant eSNPs (q < 0.05, LD r2 < 

0.1) that were linked to eGenes when mapping eQTLs using the GWAS Catalog. These 

identified eSNPs were utilized as input features, although only one most significant 

eQTL feature were counted when multiple SNPs corresponding to the same eGene.  

 

Constructing the human protein-protein interactome 

To construct the most up-to-date and comprehensive human PPI, we assembled data 

from commonly used bioinformatics databases consisting of five experimental assays 

based on experimental evidence: (i) binary PPIs predicted by high-throughput yeast-

two-hybrid (Y2H) systems; (ii) physical, binary PPIs from tertiary protein structures from 

the Instruct knowledgebase37 (iii) kinase-substrate interactions evidenced by literature-

derived high-throughput and low-throughput assays; (iv) signaling networks evidenced 

by literature-derived high-throughput and low-throughput experiments from the 

SignaLink2.038. (v) literature-curated protein complex data predicted by affinity 

purification-mass spectrometry (AP-MS), or by other literature-derived low-throughput 

assays. Genes on the PPI network was mapped using their respective ENTREZ ID from 

the NCBI database. In total, our constructed human PPI network consists of 17,706 

distinctive proteins with 351,444 PPIs. This study utilizes only the largest-connected 

components of our dataset, or 17,456 proteins and 336,549 PPIs.  

Literature-derived ALS-associated genes 

To better assess the efficacy and applicability of our NETTAG-predicted therapeutics in 

comparison to published prominent findings, we compiled five additional lists of ALS risk 



genes from reputable sources, each selected based on specific criteria (Table S3). 

These sources included DisGeNET (top 100 genes with the highest disease-gene 

association score), Open Targets (genes with an overall association score ≥ 0.10), all 

ALS-connected genes from ALSoD, JensenLab Diseases (genes with a Z-score ≥ 4.7), 

and all ALS-associated genes from Refmap22,23,39–41. To identify more significant results, 

we created a cumulative gene list called "Union". This list comprises 155 genes that 

appeared in at least two of the five gene lists mentioned above (Table S3). By 

combining these gene lists, we aimed to enhance the sensitivity and reliability of our 

analysis in identifying potential ALS risk genes. 

 

Network proximity analysis for drug prediction 

     In this study, FDA-approved and clinically investigated molecules were collected 

from the DrugBank database, which, combines with NETTAG-predicted ALS disease 

module, allowing us to perform the network proximity analysis with mechanisms below 

(Table 4). 

𝐷.%>?@?A(𝑋, 𝑌) = 	 )

‖C‖D‖E‖
(∑ min 𝑑(𝑥, 𝑦) +	F∈C ∑ min𝑑(𝑥, 𝑦))	G∈E          (Eq.4) 

In our study, we used the notation d(x, y) to represent the shortest path length between 

protein x and protein y, belonging to the protein sets X and Y, respectively. Specifically, 

X represents the disease module obtained from NETTAG, while Y represents the set of 

drug targets associated with each drug, represented as proteins or genes. To assess 

the statistical significance of the proximity between these protein sets, we transformed 

the computed network proximity into a Z score using the following formula:  

ZH%&'()(* =	 H%&'()(*		*		I+J+
           (Eq.5) 



In our analysis, we utilized permutation tests with 1,000 random experiments to 

estimate the mean (μd) and standard deviation (σd). For each random experiment, we 

constructed two subnetworks, Xr and Yr, in the protein-protein interaction (PPI) network. 

These subnetworks were designed to have the same number of nodes and degree 

distribution as the original subnetworks, X and Y, respectively. The purpose of this 

approach was to mitigate any potential literature bias that may arise from well-studied 

proteins. 

 

Enrichment Analysis 

We performed pathway and disease enrichment analyses using various databases. 

Specifically, we utilized GWAS Catalog 2023 and DisGeNET from the online platform 

Enrichr42 (Table S5). The combined score, as defined in Enrichr, was calculated by 

multiplying the logarithm of the p-value from the Fisher's test with the Z score, which 

quantifies the deviation from the expected rank. The GWAS Catalog served as a 

valuable and easily accessible database of SNP-trait associations that have been 

identified through literature research. On the other hand, DisGeNET integrated 

information about genes associated with diseases. This comprehensive platform 

combines disease-associated genes from multiple sources, including expert-curated 

repositories, animal models, and scientific literature. 
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Figure Legends 

 

Figure 1. A flowchart describing the network-based multi-omics interaction 

workflow to infer drug targets and repurposable treatments for Amyotrophic 

Lateral Sclerosis (ALS). First, we employed an advanced machine learning technique 

to analyze the intricate network formed by protein-protein interactions (PPIs). This 

network was segmented into several smaller, interconnected clusters. We then found 

that these clusters could serve as predictors for protein roles as per the annotations in 

the Gene Ontology (GO) database. Moving forward, we identified potential genes 

associated with Amyotrophic Lateral Sclerosis. These genes share functional 

characteristics with previously known genes regulated by various genomic elements, 

such as methyl quantitative trait loci (meQTLs) and protein quantitative trait loci 

(pQTLs). In the final step, we focused on repurposing certain drugs (for example, 

gefitinib) that may be effective in treating Amyotrophic Lateral Sclerosis.  

 

Figure 2. Gene regulatory landscape of ALS GWAS loci. Overview of genetic loci 

linked to Amyotrophic Lateral Sclerosis (ALS) identified through genome-wide 

association studies, distributed among various chromosomes and analyzed in relation to 

five genomic regulatory factors: expression quantitative trait loci (eQTL), histone 

modifications, protein interactions, spliceosome components, and DNA methylation 

patterns. 

 

Figure 3. Network-based visualization of 105 predicted ALS-associated genes.  



Prioritized ALS-associated genes are colored with various evidence. Yellow genes are 

the ones identified by GisGeNET with an association score ≥ 0.1. Blue genes are the 

ones enriched in KEGG pathway. Purple geens are the ones detailed in Diseases 

JansenLab database with a Z-score ≥ 3. Red Genes are the ones identified by 

enrichment analysis from other ALS-relavant literature.  

 

Figure 4. Network Proximity-predicted drugs for six existing gene sets from 

literatures and the predicted ALS-associated genes. Z-score between -4 to 0 is 

depicted by the gradient from red to blue. Drugs are categorized by colors according to 

the primary codes of the Anatomical Therapeutic Chemical (ATC) classification system. 

Three candidate drugs and their target genes using our drug-target network analysis. 

Blue genes are predicted ALS PPI nodes only, green genes are druggable targets that 

are in direct proximity with predicted ALS PPI nodes, yellow genes are both an ALS PPI 

node and a druggable target. 

 
 



Figures

Figure 1

A �owchart describing the network-based multi-omics interaction work�ow to infer drug targets and
repurposable treatments for Amyotrophic Lateral Sclerosis (ALS). First, we employed an advanced
machine learning technique to analyze the intricate network formed by protein-protein interactions (PPIs).
This network was segmented into several smaller, interconnected clusters. We then found that these
clusters could serve as predictors for protein roles as per the annotations in the Gene Ontology (GO)
database. Moving forward, we identi�ed potential genes associated with Amyotrophic Lateral Sclerosis.



These genes share functional characteristics with previously known genes regulated by various genomic
elements, such as methyl quantitative trait loci (meQTLs) and protein quantitative trait loci (pQTLs). In
the �nal step, we focused on repurposing certain drugs (for example, ge�tinib) that may be effective in
treating Amyotrophic Lateral Sclerosis.

Figure 2



Gene regulatory landscape of ALS GWAS loci. Overview of genetic loci linked to Amyotrophic Lateral
Sclerosis (ALS) identi�ed through genome-wide association studies, distributed among various
chromosomes and analyzed in relation to �ve genomic regulatory factors: expression quantitative trait
loci (eQTL), histone modi�cations, protein interactions, spliceosome components, and DNA methylation
patterns.

Figure 3



Network-based visualization of 105 predicted ALS-associated genes. Prioritized ALS-associated genes
are colored with various evidence. Yellow genes are the ones identi�ed by GisGeNET with an association
score ≥ 0.1. Blue genes are the ones enriched in KEGG pathway. Purple geens are the ones detailed in
Diseases JansenLab database with a Z-score ≥ 3. Red Genes are the ones identi�ed by enrichment
analysis from other ALS-relavant literature.

Figure 4

Network Proximity-predicted drugs for six existing gene sets from literatures and the predicted ALS-
associated genes. Z-score between -4 to 0 is depicted by the gradient from red to blue. Drugs are



categorized by colors according to the primary codes of the Anatomical Therapeutic Chemical (ATC)
classi�cation system. Three candidate drugs and their target genes using our drug-target network
analysis. Blue genes are predicted ALS PPI nodes only, green genes are druggable targets that are in
direct proximity with predicted ALS PPI nodes, yellow genes are both an ALS PPI node and a druggable
target.
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