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Abstract
The application of machine learning (ML) models in emergency departments (EDs) to predict short- and
long-term mortality encounters challenges, particularly in balancing simplicity with performance. This
study addresses this gap by developing models that uses a minimal set of biomarkers, derived from a
single blood sample at admission, to predict both short-term and long-term mortality. Our approach
utilizes biomarkers representing vital organs and the immune system, offering a comprehensive view of
both acute and chronic disease states. Moreover, by integrating explainable machine learning methods,
we ensured that clinicians can easily interpret the model's outputs. Our Analysis included 65,484
admissions from three cohorts at two large Danish university hospitals, demonstrating the models'
e�cacy with high accuracy, with AUC values between 0·87 and 0·93. These results underscore that a
single assessment of routine clinical biochemistry upon admission can serve as a powerful tool for both
short-term and long-term mortality prediction in ED admissions.

Introduction
Effectively identifying patients at low and high risk of adverse outcomes is crucial for optimal resource
allocation and treatment prioritization in healthcare systems. With the global population aging1, the
demand on emergency departments (EDs), is expected to rise signi�cantly2,3. Consequently, this underlies
the urgent need for innovative, personalized care strategies to ensure e�cient resource use and patient
care. However, in advancing these novel strategies, �nding a balance between simplicity and performance
becomes critical. High-performance solutions often come with complexity that may limit their practicality
in dynamic settings like EDs. Addressing this challenge is critical to developing effective yet manageable
tools that can adapt to the fast-paced nature of emergency care.

In clinical practice, predicting all-cause mortality and assessing risk have consistently been crucial
outcomes for clinicians4–9. Various scores and indices based on simple linear relationship have been
proposed and used to predict mortality; however, their accuracy is only moderate4,8,10. In recent years,
applying ML to healthcare data has surpassed these traditional methods, offering enhanced accuracy in
predicting outcomes for various patient groups, including those with conditions like cardiac disease11,
COVID-1912, trauma13, sepsis14, and those in intensive care units (ICU)15. While ML algorithms offer
signi�cant advantages, their integration into clinical practice presents challenges, primarily due to the
incorporation of numerous clinical and non-clinical variables. This complexity poses a challenge for
clinicians in terms of comprehension and practical application within the fast-paced environment of
EDs16. Despite advancements in ML for mortality prediction, signi�cant research gaps persist: most
models are either designed as triage tools for short-term outcomes or as risk assessment tools for long-
term mortality, typically focusing on speci�c patient cohorts. Additionally, there is a lack of models that
address both short- and long-term outcomes simultaneously across a diverse patient population, and few
of these models are interpretable. The effectiveness of ML models in clinical settings is closely linked to
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their transparency and interpretability, highlighting the need for predictive and comprehensible models for
clinicians.

In this study, we aim to develop and externally validate an easily adaptable prognostic machine learning
tool, the Short and Long-Term Mortality Models (SLTM), which are designed to predict both short-term
and long-term mortality among patients acutely admitted to the ED. These models utilize a single blood
sample for routine clinical biochemistry analysis, including biomarkers for vital organs and the immune
system. We also aim to incorporate explainable ML techniques to more clearly explain how the models
use input variables to make predictions, thereby assisting clinicians in understanding the ML model's
predicted outcomes.

Results
Description of the cohorts used in the study.

In this study, we included a total of 65,484 admissions from the EDs of two different Danish hospitals,
the Copenhagen University Hospital Amager and Hvidovre (AHH), and North Zealand University Hospital
(NZH). From AHH we included ED data from both retro and prospective cohorts: 29K (2013–2017) and
RESPOND-COVID (2020–2022), respectively, in our analysis. From NZH, we included ED data from a
prospective cohort, TRIAGE (2013). The hospital and patient characteristics are summarized in Table 1.

For the 29K dataset, there were 51,007 admissions at the ED of AHH involving 28,683 unique patients
during the study period. After excluding 2,166 patient records for missing data, the study cohort consisted
of 48,841 admission from 28,671 unique patients (Fig. 1). The cohort was herof named 29K. Out of these,
34,187 (70%) were allocated as training data, 7,327 (15%) as validation data, and 7,327 (15%) as internal
test data. The median age of 29K patients at admission was 65·6 years (IQR: 48·2–78·5), with 52·3%
being female.

The TRIAGE cohort from NZH included 6,383 admissions in the ED, involving 6,356 unique patients. After
excluding 233 patient records with missing data, the study cohort comprised 6,150 admissions involving
6,124 unique patients (Fig. 1). All TRIAGE data were used for external data validation. The median age of
the TRIAGE patients at admission was 63·0 years (IQR: 46·0–76·0), with 50·6% being female.

The RESPOND-COVID cohort from AHH consisted of 28,210 patient records from 8853 unique patients;
however, only 10,493 admissions from 8,451 unique patients with a suPAR measurement were included.
The median age of RESPOND-COVID patients at admission was 66·0 years (IQR 49·1–78·2), with 51·2%
being female.

Patients from the two AHH cohorts (29K and RESPOND-COVID) were slightly older (p < 0·0001), had a
higher proportion of females (p < 0·01), and exhibited higher mortality rates (p < 0·0001), 4·0% and 4·4%,
respectively, compared to patients from NZH, who had a mortality rate of 2·9% (Table 1). In general,
distributions of all variables were signi�cantly different in the three datasets. Patients excluded based on
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missing data from the 29K and TRIAGE datasets showed no signi�cant differences compared to those
included. However, in the RESPOND-COVID cohort, the excluded patients were predominantly older, mostly
female, and showed a lower mortality rate at 10 to 365 days. 
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Table 1
Patient baseline characteristics and mortality rates

  Retrospective Prospective Prospective P-value

  AHH

(29K)

2013–2017

NZH

(Triage)

2013

AHH

(RESPOND-
COVID)

2020–2022

 

Number of unique
patients

28671 6124 8451  

Number of admissions 48841 6150 10493  

Variables        

Age 65·6 (48·2–78·5) 63·0 (46·0–76·0) 66·0 (49·1–78·2) P < 
0·0001*

Sex (female), n (%) (52·3%) (50·5%) (51·2%) P < 0·0001

ALAT (U/L) 21·0 (15·0–33·0) 20·8 (14·8–31·5) 23·0 (16·0–35·0) P > 0·05

Albumin (g/L) 34·0 (30·0–37·0) 37·2 (33·5–39·8) 34·0 (30·0–37·0) P < 
0·0001a,c

Alkaline Phosphatase
(U/L)

75·6 (63·0–94·0) 84·2 (69·3–
105·9)

79·0 (63·0–
103·0)

P < 
0·0001*

Bilirubin (µmol/L) 7·0 (5·0–10·1) 7·9 (5·7–11·2) 8·0 (5·0–11·0) P < 
0·0001*

BUN (mmol/L) 5·1 (3·8–7·2) 5·2 (4·0–7·1) 5·3 (3·9–7·7) P < 
0·0001b,c

Creatinine (µmol/L) 77·0 (62·0–97·0) 71·0 (59·0–88·0) 77·0 (62·0–98·0) P < 
0·0001*

CRP (mg/L) 7·0 (2·0–39·0) 5·2 (2·9–23·2) 12·0 (2·6–54·0) P < 
0·0001*

HB (mmol/L) 8·1 (7·2–8·9) 8·4 (7·6–9·0) 8·2 (7·3–9·0) P < 
0·0001*

INR 1·0 (1·0–1·1) 1·0 (0·9–1·1) 1·0 (1·0–1·1) P < 
0·0001*

Potassium (mmol/L) 3·9 (3·6–4·2) 4·0 (3·8–4·3) 3·9 (3·6–4·2) P < 
0·0001*

KF2710 0·9 (0·8–1·0) 0·9 (0·8–1·1) 0·8 (0·7–0·9) P < 
0·0001*
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  Retrospective Prospective Prospective P-value

  AHH

(29K)

2013–2017

NZH

(Triage)

2013

AHH

(RESPOND-
COVID)

2020–2022

 

LDH (U/L) 186·0 (169·0–
214·0)

182·6 (157·6–
217·3)

214·0 (184·0–
260·0)

P < 
0·0001b,c

Leukocytes (x 10^9 /L) 8·7 (6·9–11·3) 8·2 (6·5–10·6) 8·7 (6·6–11·8) P < 
0·0001*

Lymphocytes (x 10^9 /L) 1·7 (1·1–2·3) 1·6 (1·2–2·0) 1·4 (0·9–2·1) P < 
0·0001a,b

Monocytes (x 10^9 /L) 0·7 (0·5–0·9) 0·6 (0·5–0·8) 0·7 (0·5–0·9) P < 0·0001

Neutrophils (x 10^9 /L) 5·8 (4·1–8·3) 5·7 (4·0–7·9) 6·0 (4·1–8·9) P < 0·0001

suPAR (ng/mL) 3·3 (2·3–5·0) 4·5 (3·5–6·4) 4·1 (2·9–5·9) P < 0·0001

Thrombocytes (x 10^9
/L)

247·0 (201·0–
302·0)

238·0 (196·0–
288·0)

248·0 (196·0–
310·0)

P < 0·0001

Eosinophils (x 10^9 /L) 0·1 (0·0–0·2) 0·2 (0·1–0·4) 0·1 (0·0–0·2) P < 0·0001

eGFR (mL/min) 80·0 (60·0–90·0) 86·3 (67·6–90·0) 77·0 (58·0–84·5) P < 0·0001

Sodium (mmol/L) 139·0 (136·0–
141·0)

139·0 (136·9–
140·6)

138·0 (135·0–
140·0)

P < 
0·0001b,c

Mortality rate 10 days, n
(%)

1252 (4·4%) 177 (2·9%) 341 (4%) P < 
0·0001*

Mortality rate 30 days, n
(%)

2338 (8·2%) 284 (4·6%) 712 (8·4%) P < 
0·0001a,c

Mortality rate 90 days, n
(%)

3394(11·8%) 475 (7·8%) 1052 (12·4%) P < 
0·0001*

Mortality rate 365 days,
n (%)

4677 (16·3%) 729 (11·9%) 1560 (18·5%) P < 
0·0001*

Table 1. Results are expressed as median (IQR, interquartile range) for continuous variables. For
categorical variables, results are expressed as number of participants (percentage). ALAT: Alanine-
aminotransferase; BUN: Blood urea nitrogen; CRP: C-reactive protein; eGFR: estimated glomerular �ltration
rate; HB: Hemoglobin; INR: Prothrombin Time and International Normalized Ratio; KF2710: coagulation
factors 2, 7, 10; LDH: Lactate dehydrogenase; suPAR: soluble urokinase plasminogen activator receptor.
29K: Emergency Department at the Copenhagen University Hospital Amager and Hvidovre (AHH), 2013–
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2017. TRIAGE: Emergency Department at North Zealand University Hospital (NZH), 2013. RESPOND-
COVID: Emergency Department at AHH, 2020–2022. * P-value: signi�cant difference between all datasets;
a between 29K dataset and TRIAGE dataset; b between 29K dataset and RESPOND-COVID dataset; c
between RESPOND-COVID dataset and TRIAGE dataset.

Model performance
Figure 2 illustrates the predictive performance of the LightGBM models, assessed by the AUC, for
mortality predictions at 10, 30, 90, and 365 days. Additional performance metrics are detailed in Table 2.
For the 29K test dataset, the LightGBM model demonstrated high predictive accuracy, exhibiting an AUC
of 0·93 (95% CI: 0·92–0·94) for 10-day mortality predictions and an MCC of 0·30 (95% CI: 0·28–0·32).
The model maintained high performance for 30-day mortality predictions with an AUC of 0·92 (95% CI:
0·90–0·92) and an MCC of 0·40 (95% CI: 0·38–0·42). For 90-day mortality, the AUC was 0·91 (95% CI:
0·90–0·92) alongside an MCC of 0·51 (95% CI: 0·49–0·53), and for 365-day mortality, the AUC was 0·91
(95% CI: 0·91–0·91) with an MCC of 0·53 (95% CI: 0·51–0·55).

In the RESPOND-COVID dataset, the AUCs were 0·88 (95% CI: 0·86–0·89) for 10-day, 0·88 (95% CI: 0·87–
0·89) for 30-day, 0·87 (95% CI: 0·86–0·88) for 90-day, and 0·88 (95% CI: 0·86–0·90) for 365-day mortality
predictions. The MCC values corresponded to 0·22 (95% CI: 0·20–0·24), 0·32 (95% CI: 0·30–0·33), 0·38
(95% CI: 0·36–0·40), and 0·43 (95% CI: 0·41–0·45), respectively. Lastly, for the TRIAGE dataset, the AUCs
were 0·87 (95% CI: 0·85–0·89) for 10-day mortality, 0·88 (95% CI: 0·86–0·90) for 30-day, 0·88 (95% CI:
0·86–0·90) for 90-day, and 0·90 (95% CI: 0·89–0·91) for 365-day mortality. The MCCs were 0·25 (95% CI:
0·23–0·27), 0·34 (95% CI: 0·32–0·36), 0·40 (95% CI: 0·38–0·42), and 0·43 (95% CI: 0·41–0·45),
respectively. 
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Table 2
Results from test data for predicting short- and long- term mortality.

  N AUC Sensitivity Speci�city PPV NPV MCC

10-day
Mortality

             

29K 7·327
(272)

0·93
(0·92–
0·94)

0·90
(0·86–
0·93)

0·82
(0·81–
0·83)

0·12
(0·11–
0·14)

1·0 (1·0–
1·0)

0·30
(0·28–
0·32)

RESPOND-
COVID

10·493
(341)

0·88
(0·86–
0·89)

0·88
(0·84–
0·91)

0·70
(0·69–
0·71)

0·09
(0·08–
0·10)

0·99
(0·99–
1·0)

0·22
(0·22–
0·24)

TRIAGE 6·150
(177)

0·87
(0·85–
0·89)

0·72
(0·65–
0·79)

0·84
(0·84–
0·85)

0·12
(0·10–
0·14)

0·99
(0·99–
0·99)

0·25
(0·22–
0·29)

30-day
mortality

             

29K 7·327
(537)

0·92
(0·90–
0·92)

0·89
(0·86–
0·91)

0·83
(0·82–
0·83)

0·23
(0·21–
0·24)

0·99
(0·99–
0·99)

0·40
(0·38–
0·42)

RESPOND-
COVID

10·493
(712)

0·88
(0·87–
0·89)

0·89
(0·86–
0·91)

0·68
(0·68–
0·69)

0·18
(0·17–
0·19)

0·99
(0·98–
0·98)

0·32
(0·30–
0·33)

TRIAGE 6·150
(284)

0·88
(0·86–
0·90)

0·76
(0·71–
0·81)

0·84
(0·83–
0·85)

0·18
(0·16–
0·21)

0·99
(0·98–
0·99)

0·34
(0·30–
0·37)

90-day
Mortality

             

29K 7·327
(982)

0·91
(0·90–
0·92)

0·84
(0·82–
0·86)

0·85
(0·84–
0·86)

0·38
(0·36–
0·40)

0·98
(0·98–
0·98)

0·51
(0·49–
0·53)

RESPOND-
COVID

10·493
(1052)

0·87
(0·86–
0·88)

0·84
(0·82–
0·86)

0·73
(0·72–
0·74)

0·28
(0·26–
0·29)

0·97
(0·97–
0·97)

0·38
(0·36 − 
0·40)

TRIAGE 6·150
(475)

0·88
(0·86–
0·90)

0·77
(0·73–
0·81)

0·84
(0·83–
0·85)

0·30
(0·27–
0·32)

0·98
(0·97–
0·98)

0·40
(0·37 − 
0·43)

365-day
mortality

             

29K 7·327
(1812)

0·91
(0·91–
0·91)

0·87
(0·86–
0·88)

0·79
(0·79–
0·79)

0·47
(0·46–
0·48)

0·97
(0·96–
0·97)

0·53
(0·51–
0·55)

RESPOND-
COVID

10·493
(1569)

0·88
(0·86–

0·85
(0·83–

0·78
(0·77–

0·45
(0·44–

0·96
(0·96–

0·43
(0·42–
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0·90) 0·87) 0·79) 0·47) 0·97) 0·45)

TRIAGE 6·150
(729)

0·90
(0·89–
0·91)

0·87
(0·84–
0·89)

0·75
(0·74–
0·76)

0·32
(0·30–
0·34)

0·98
(0·97–
0·98)

0·43
(0·41–
0·45)

Table 2. N denotes the total number of admissions in the RESPOND-COVID and TRIAGE cohorts, and the
number of test admissions in the 29K cohort, with the number in parentheses indicating the number of
deaths. Results are based on the calibrated models, presented as the mean with 95% con�dence
intervals. AUC: area under receiver operating curve based on test data. PPV: Positive predictive value,
NPV: Negative predictive value, MCC: Matthews Correlation Coe�cient.

The calibrated LightGBM models, showed varying levels of sensitivity and speci�city across the datasets
for mortality prediction intervals (Table 2). In the 29K dataset, sensitivity for predicting mortality ranged
from 84–90%, while speci�city was between 79–83%. Within the RESPOND-COVID dataset, model
sensitivity was between 84–88%, with speci�city ranging from 70–78%. For the TRIAGE dataset,
sensitivity varied from 72–87%, and speci�city showed a narrow range of 75–84%.

In this analysis, we utilized Explainable Arti�cial Intelligence (XAI) techniques, particularly using
estimated SHAP values, to analyze the LGBM model's predictions of 10-day mortality risk for two speci�c
patient cases within the TRIAGE cohort. These plots were based on the calibrated model 3a. Case 1: a
notable case of an elderly male patient who was admitted to the Emergency Department at North
Zealand Hospital. X-axis: Displays the percentage contribution of biomarkers taken at the ED to the
prediction of mortality risk. Below, these biomarkers are categorized by function: in�ammatory, infection-
related, liver, and kidney markers. 3b. Case 2: This case involves an elderly female patient who presented
at an Emergency Department in TRIAGE with a suspected infection. The model estimated a relatively low
10-day mortality risk of 4.2% for her. In case 1 and 2 variable sex is not shown (value 0.002) 3c.
Calibration plots on TRIAGE cohort. X-axis: Mean Predicted Probability; Y-axis: Observed Frequency. The
diagonal dash-line stretching from the bottom left to the top right represents perfect agreement between
predicted probabilities and actual outcomes. The blue line is the model´s predicted probabilities and
actual outcomes.

Machine Learning Predictions Application
From our prospective cohort dataset TRIAGE at NZH, upon which we tested the prediction model, we
analyzed a case of an elderly male patient, with a history of cardiovascular and neurological conditions
(Fig. 3a). This patient was brought to the ED with symptoms suggesting an infection in the respiratory
system. Upon arrival, the patient was categorized as with moderate urgency based on the triage (Early
Warning Score). Laboratory tests revealed elevated levels of in�ammatory markers, indicating a bacterial
infection. The patient was treated with standard outpatient antibiotics and discharged the same day.
Unfortunately, the patient’s condition deteriorated, leading to the patient's passing a few days later. The
short-term mortality model, predicting 10-day mortality, had estimated a high mortality risk of 97·5% for
this patient. The contribution plot created using Explainable Arti�cial Intelligence (XAI), depicted in Fig.
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3a, provides insights into how the patients impaired organ-speci�c biomarkers contributed to the model's
overall output of mortality risk. In this case, the most important contributors to mortality risk prediction
were identi�ed as markers of in�ammatory response to the infection (27%), markers of immune system
(14%), markers of liver function (21%), and kidney function (17%). These insights shed light on the
speci�c factors driving the elevated risk for this patient. With this knowledge, this patient should have
been hospitalized. Subsequent independent reviews by two specialists suggested that a hospital
admission might have been necessary for this patient.

Moving to a different scenario, in another case, we examined an elderly female patient, with a history of
cardiovascular conditions and metabolic disease, presenting also with symptoms indicative of an
infection in the respiratory system (Fig. 3b). The patient was categorized as urgent upon triage.
Laboratory tests indicated signs of infection, with elevated in�ammatory markers and abnormal blood
cell counts. Other notable lab results included imbalances in electrolytes and liver enzymes. Despite these
�ndings, the LGBM model, analyzed through XAI, predicted a lower 10-day mortality risk of just 4·3%. The
patient was hospitalized and treated with IV antibiotics for three days. However, subsequent reviews by
specialists suggested that hospital admission might have been unnecessary.

Discussion
In this study, we utilized routine clinical biochemistry data from a single time point upon admission,
representing vital organ and immune system function, to predict mortality risk in acutely admitted
patients. By incorporating explainable ML methods, we ensured that the model's outputs could be
interpreted, thereby aiding clinicians in understanding the predicted ML outcomes. Our results, for both
Short and Long-Term Mortality Models demonstrated very good to excellent performance metrics,
achieving high AUC values ranging from 0·87 to 0·93. Although a small decline in AUC values in the
TRIAGE and RESPOND-COVID datasets was observed compared to the 29K dataset, this was anticipated
due to signi�cant differences in patient characteristics and mortality rates across cohorts. Performance
metrics, especially AUC and MCC, showed overlapping con�dence intervals for the RESPOND-COVID and
TRIAGE datasets. This overlap indicates that the models performed similarly across these datasets.
Nonetheless, we observed variability in the models' sensitivity and speci�city across the different cohorts.

Overall, the models demonstrated low PPVs ranging from 9–47%, indicating a large proportion of false
positives, while showing very high NPVs ranging from 96–100%. A trend of increase in PPV and MCC
values was observed from short-term to long-term mortality prediction, indicating a higher probability to
predict the outcome over the length of time. The low PPV, in short-term mortality prediction, could be
attributed to the low mortality prevalence in the studied patient populations. Additionally, it is possible
that the model identi�es patients (false positive) as being at high risk of mortality, but upon readmission
and/or subsequent treatment after their initial discharge, these patients survive. As regards the high NPV,
the results should be interpreted considering the dataset's overall low mortality rate, or conversely, its high
survival rate.
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In clinical practice, screening tools that offer high sensitivity and high NPV are preferred and well-
justi�ed17,18, as these tools align with clinicians' needs for safely excluding individuals at low risk of
adverse outcomes in the future. This approach is preferred due to the low pretest probability, and the goal
of the diagnostic test will be “ruling out” the condition, emphasizing high sensitivity where a negative
result effectively excludes the condition. This is in contrast with diagnostic tools, where a high pretest
probability of a condition leads to the goal of “ruling-in” the condition, emphasizing high Speci�city and
PPV, as a positive result effectively con�rms the condition.

Our ML models embody this clinical principle, providing reliable decision support that matches the
preferences of healthcare practitioners. This alignment with clinical practices not only supports the
models' utility but also sets a foundation for their potential development and application in healthcare
settings.

Comparing our models with existing ML models, in terms of short-term mortality prediction, our models
achieved an AUC of 0·87 to 0·93 for 10-day mortality predictions across the studied cohorts. This
performance, when compared to other promising models, seems to be either on par or clearly superior, as
explained below. Nevertheless, it's crucial to acknowledge that comparing results from data across
diverse populations can be complex, given the multifaceted nature of socioeconomic, health factors, and
other variables. Furthermore, mortality rates can be different in each population. Despite these
complexities, when reviewing the literature, we �nd notable results. For instance, Trentino et al. conducted
a study analyzing data from three adult tertiary care hospitals in Australia19. This study achieved a
remarkable AUC of 0.93 for predicting in-hospital mortality among all admitted patients, regardless of
whether their cases were medical or surgical. The predictive model used in this study incorporated
various variable, including demographic, diagnosis code, administrative information and Charlson
comorbidity Index. Similarly, an ED triage tool, the Score for Emergency Risk Prediction (SERP), to predict
mortality within 2 to 30 days for ED patients was initially applied in a cohort from a Singaporean ED and
subsequently underwent external validation in a South Korean ED20,21. These studies demonstrated AUCs
of 0·81 − 0·82 for in-hospital mortality and 0·80 − 0·82 for 30-day mortality prediction. The SERP scores
incorporate variables, including age, vital signs, and comorbidities. Additionally, in a study conducted on
hospitalized patients in the U.S. by Brajer et al., reported an AUCs between 0·86 and 0·89 based on 57
electronic health record data variables22. In contrast, our models, performed competitively, achieving
comparable or superior results for short-term mortality prediction using just 15 biomarkers measured
from a single routine blood sample collected upon arrival in the ED. For 30-day mortality, our models
consistently maintained high AUCs (0·88–0·92) in both internal and external evaluations. Likewise, the
Long-Term Mortality models showed near-excellent performance, with AUCs ranging from 0·87 to 0·91 for
90-day mortality prediction and 0·88 to 0·91 for 365-day mortality prediction. The performance of this
model is either superior or comparable to similar studies in the �eld.

The Random Forest models developed by Sahni et al. achieved an AUC of 0·86 for 1-year mortality
predictions23. Their model incorporated various variable, including demographic, physiological,
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biochemical factors, and comorbidities. Similarly, Woodman et al. developed a ML model trained on a
patient cohort aged > 65 years. Their model achieved an AUC of 0·76, incorporated variables including
demographic, BMI, anticholinergic risk score, biochemical markers, and a comprehensive geriatric
assessment.

In this study, we have adopted a streamlined biomarker approach that aligns with the latest
recommendations for AI deployment in healthcare settings, prioritizing consistency and reduced error
susceptibility24. This approach, which is centered on a single blood sample routinely analyzed for a select
set of standard vital organ and immune system biomarkers, presents signi�cant advantages. Unlike
existing tools that primarily focus on triage, our models extend its utility to encompass resource
allocation, treatment planning, discharge, and potentially preventing overtreatment and ensuring that care
aligns with the patient's preferences and recovery potential. Speci�cally, it provides a stable and chronic
disease-oriented perspective, which is crucial for uncovering underlying pathologies that might not be
apparent with other data types.

In stark contrast to other models that depend on various inputs—such as continuous vital sign
monitoring, administrative variables, medical history, comorbidities, and medication pro�les—our model’s
simplicity integrates more �uidly into clinical work�ows and mitigates the 'black box' nature that often
accompanies complex AI systems, where the intricacy of ML models and the use of non-clinical features
can make it challenging to understand the rationale behind the model output. Our methodology, with its
deliberately limited parameters, enhances the models’ output transparency and interpretability, thereby
building con�dence and trust among clinicians in AI-assisted decision-making.

Limitations
The exclusion of speci�c patient groups from the cohorts, including children, and obstetric patients, limits
the trained model applicability of our models to these populations. Furthermore, the retrospective design
of our cohort introduces inherent limitations, such as the potential for selection and information biases.
These biases can impact the validity of our �ndings and their applicability to broader, more diverse
populations. There are also several limitations to SHAP values. SHAP values are used for interpreting
predictions of ML models, speci�cally by quantifying the contribution of each feature to a particular
prediction. However, they do not provide causal insights. This means that while SHAP values can tell us
which variables were important in the model's decision-making process, they do not imply a cause-and-
effect relationship between these variables and the prediction. Lastly, the models were primarily validated
within the same geographical region and governing clinical jurisdiction. While they were evaluated across
different cohorts, this regional focus might constrain the generalizability of our �ndings.

Future research
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The present models are only meant as a proof-of-concept study. Re�ning and validating these models
with diverse datasets remain a priority. Future research should focus on enhancing the PPV and
incorporating more comprehensive patient data before implementation in clinical practice.

Conclusion
In this study, we have successfully developed and externally validated machine learning models that
predict both short-term and long-term mortality in acutely admitted patients based on single set of routine
blood tests. With AUC scores ranging from 0·87 to 0·93, we have demonstrated that a simpli�ed approach
can achieve su�cient high predictive accuracy, with the potential to warrant investigation into its
applicability as an additional tool in clinical decision-making.

Methods

Study Design and Settings
In this study, we evaluated data from three study cohorts. First, the retrospective 29K cohort study from
the ED at the Copenhagen University Hospital Amager and Hvidovre (AHH), Denmark was included. The
29K cohort included all patients admitted to the Acute Medical Unit with an available blood sample. The
29K cohort consisted of 51,007 patient records from ED admissions between 18 November 2013 and 17
March 2017. The Acute Medical Unit at the ED receives patients across all specialties, except children
(patients under 18 years), gastroenterological patients, and obstetric patients. Second, a prospective
observational cohort, the TRIAGE Study, from the ED at North Zealand University Hospital (NZH),
Hilleroed, Denmark was included25. The TRIAGE cohort included all patients admitted to the ED with an
available blood sample and consisted of 6,383 patient records from ED admissions between 5 September
2013 and 6 December 201325. Children and obstetric patients were excluded. Third, a prospective
observational cohort from the specialized COVID-19 Unit of the ED at AHH was included. This RESPOND-
COVID cohort (Respiratory Emergency Surveillance and suPAR Outcome in COVID and Non-COVID
Disease) included patients admitted with respiratory symptoms, suspected of having COVID-19. The
RESPOND-COVID cohort consisted of 28,210 patient records from admissions between 10 March 2020
and 31 March 2022. The follow-up data were retrieved from the Central public server at Statistics
Denmark and The Danish Civil Registration System. During the study period, patients who left the country
had their last admission data censored.

This study was reported in accordance with the transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) statement26. The research conducted in this study was in
strict compliance with both regional and national guidelines and received the necessary approvals from
the appropriate Danish authorities. The Danish Data Protection Agency (29K: HVH-2014-018, 02767;
TRIAGE: J. 2007-58-0015) and the Danish Health and Medicines Authority (29K: 3-3013-1061/1; TRIAGE:
31-1522-102) approved the studies and analyses. Furthermore, the Legal O�ce at the Capital Region of
Denmark, speci�cally the Team for patient medical records, issued a permit with reference numbers R-
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22041261 and R-20064514 for the usage and management of healthcare data within the region. The
study adhered to all relevant ethical and legal standards required for research within Denmark.

Medical Records
Information regarding hospital admissions and discharges for the 29K cohort was extracted from the
Danish National Patient Registry (NPR). In the RESPOND-COVID and TRIAGE cohorts, information related
to patients' health conditions, vital signs, triage, events in-hospital requiring continued care at the ED, and
duration of hospital stay was retrieved from the patient´s health records in OPUS Arbejdsplads (version
2.5.0.0 Computer Sciences Corporation [CSC]) and “Sundhedsplatformen” (Epic). The TRIAGE study also
involved the review of each patient record by two experts in internal or emergency medicine, who
evaluated whether each admission was necessary or could have been avoided. An admission was
deemed unnecessary only if both specialists agreed on this assessment. These reviewers were blinded to
their own roles as either primary or secondary evaluator of each case and to the other reviewer's
decisions. An unnecessary admission was de�ned as one where the patient's condition could have been
adequately managed by a general practitioner or in an outpatient setting within 1–2 weeks. For all three
cohorts, blood test results were obtained from the LABKA II national database27. Using each person’s
unique personal identi�cation number from the Danish Civil Registration System, we linked the data,
encompassing biochemistry, diagnoses, records of hospital admissions, readmissions, and mortality.

Biomarkers
For all three cohorts, blood samples were collected upon admission to the ED, and routine whole blood
counts along with clinical biochemistry were analyzed by AHH’s and NZH’s respective Departments of
Clinical Biochemistry28. The results were extracted from the LABKA database. The admission blood tests
included C-reactive protein (CRP), soluble urokinase plasminogen activator receptor (suPAR), alanine
aminotransferase (ALAT), albumin (ALB), International Normalized Ratio (INR), coagulation factors 2, 7,
10 (KF2710), total bilirubin (BILI), alkaline phosphatase (ALP), creatinine, lactate dehydrogenase (LDH),
blood urea nitrogen (BUN), potassium (K), sodium (NA), estimated glomerular �ltration rate (eGFR),
hemoglobin (HB), and counts of leukocytes, lymphocytes, neutrophils, monocytes, thrombocytes,
eosinophils, and basophils. All procedures were executed following the appropriate guidelines and
standards.

Outcomes
In this study, the outcomes were 10-, 30-, 90-, and 365-day mortality after admission at the ED. We de�ne
short-term mortality as death within 30 days, intermediate-term mortality as death within 90 days, and
long-term mortality as death within 365 days.

Data preparation
A standard format was applied to all data. Patient admissions with over 50% data (routine clinical
biochemistry results) missing were dropped. The median percentage missing blood biochemistry results
for each study was: 29K: 2.6%; TRIAGE: 3.0%, and RESPOND-COVID: 2.4%, with an overall interquartile
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range (IQR) ranging from 1.6–7.7%. The 29K cohort was split into training and test sets. To avoid
information leakage, as some patients were readmitted multiple times, we ensured that the same patient
ID did not appear in both training and test sets. The TRIAGE and RESPOND-COVID datasets were
exclusively used as test data. To handle missing values, we employed iterative imputations from the
Python scikit-learn package29. Training sets and test sets were �tted and handled separately. To handle
class-imbalance in our target outcome, we used the random oversampling technique from the
Imbalanced-Learn Package (Python)30 during training.

To reduce the impact of magnitude on the variance, we normalized the values of all variables in the data
by z-score. This process was applied to the training data. For the test data, normalization was based on
the mean and standard deviation estimated from the training data. To achieve a normal distribution
approximation for our variables, we employed the Yeo-Johnson transformation31 to the training data. For
the test data, the transformation was based on the estimates derived from the training set. These
preprocessing steps signi�cantly enhanced the model's performance on the validation set.

Model Construction
All models were crafted using Python (version 3.8.0). We employed the classi�cation module from
PyCaret (version 2.2.6)32 to develop models using four distinct algorithms predicting 10-,30-, 90-. And
365-day mortality. PyCaret is a low-code machine learning library that streamlines the entire machine
learning process. To optimize hyperparameters during cross-validation, we utilized a random grid search
with 100 iterations within PyCaret and AUC as metric to evaluate the hyperparameter tuning.

Algorithm selection and performance measures
Fifteen machine learning algorithms were trained and evaluated using PyCaret through 10-fold cross-
validation ((Random Forest (RF), SVM-Radial Kernel (RBFSVM), Extra Trees Classi�er (ET), Extreme
Gradient Boosting (XGBOOST), Decision Tree Classi�er (DT), neural network (MLP), Light Gradient
Boosting Machine(LIGHTBM), K Neighbors Classi�er (KNN), Gradient Boosting Classi�er (GBC), CatBoost
Classi�er (CATBOOST), Ada Boost Classi�er (ADA), Logistic Regression (LR), Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Naive Bayes(NB))33. These models were
developed using �fteen biomarkers (ALAT, ALB, ALP, BUN, creatinine, CRP, eosinophils, KF2710,
leukocytes, LDH, lymphocytes, neutrophils, platelets, sodium, suPAR) from a single routine blood test
along with age and sex as additional variables. The best machine learning algorithm (Light Gradient
Boosting Machine [LIGHTGBM]) was �ne-tuned and evaluated through a 10-fold cross-validation on the
29K cohort, then tested on an unseen test sample of the same cohort, and on TRIAGE and RESPOND-
COVID data. Model selection was based on the area under the receiver operating characteristic curve
(AUC). Additionally, sensitivity, speci�city, positive predictive value (PPV), negative predictive value (NPV),
and Matthew's correlation coe�cient (MCC) for the complete data, were estimated for the validation and
test data and evaluated between them. To evaluate the reliability of our predictive model's performance,
we used a bootstrap resampling technique to calculate con�dence intervals (CIs) for key metrics



Page 17/23

including accuracy, AUC, sensitivity, speci�city, PPV, NPV and MCC. We performed 1000 bootstrap
iterations.

Calibration
To increase the accuracy of our predictive model in estimating probabilities that accurately re�ect actual
outcomes, we implemented probability calibration using isotonic regression from the scikit-learn package
(version 1.4) in Python29. The data used for the calibration process was unseen test data. To evaluate the
model's precision, we employed the Brier score as an accuracy metric, comparing its values both before
and after the calibration process. After Calibration, the Youden Index for 29K dataset was employed for
all outcomes as a method to empirically determine the optimal dichotomous cutoff post-calibration,
allowing us to assess the model's sensitivity, speci�city, positive predictive value, and negative predictive
value.

Explaining Model Predictions
We used TreeExplainer34, a method based on the approximation of the set of trees to calculate the
SHapley Additive exPlanations (SHAP)35 values, to interpret our machine learning models’ predictions,
quantifying the impact of each variable on individual predictions. SHAP values were calculated using the
SHAP library package in Python, which helped assess variable contributions in terms of magnitude and
direction. To visualize these contributions, we employed waterfall plots. These plots illustrated the
in�uence of individual variables on individual model prediction.

Statistical analysis
Statistical analyses were performed using R (version 4.1.0) and Python (version 3.8.0). Categorical
variables are presented as frequencies (N) and percentages (%), whereas continuous variables are
represented by their median values and IQR. To evaluate the differences between datasets, we employed
the Student's t-test, setting our signi�cance level at 5% for continues variables, and the chi-squared test
for categorical variables.
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Figure 1

Flowchart of data training, validation, and testing using two machine learning algorithms.

Patient medical records originated from three cohorts at two Danish hospitals: 1) 29K: Emergency
Department at the Copenhagen University Hospital Amager and Hvidovre (AHH), 2013-2017, 2) TRIAGE:
Emergency Department at North Zealand University Hospital (NZH), 2013, and 3) RESPOND-COVID:
Emergency Department at AHH, 2020-2022. N= Number of admissions.
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Figure 2

Area under the receiver operating characteristic curve (AUC) performance for predicting 10-day (green
shaded circles), 30-day (peach-shaded circles), 90-day (dark yellow shaded circles), and 365-day (light
yellow shaded circles) mortality in each of the three cohorts, 29K, TRIAGE, and RESPOND-COVID,
examined.
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Figure 3

The Light Gradient Boosting Machine (LIGHTBM) model's individualized predictions of 10-day mortality
risk for two speci�c patient cases in the prospective TRIAGE cohort.
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