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Abstract 

The research proposed a clustering formation approach that ensures that the chosen cluster head 

(CH) in D2D communication consumes minimal energy and that the cluster members (CMs) are 

offered good quality of service. In addition, the study investigated various factors influencing 

power consumptions of User Equipment (UE) in Device to Device (D2D) Communication. 

Network and geographic data of the UE were collected within 200m diameter (100m radius) 

around the chosen base station (BS). A term Hardware Sensing Factor (a weighting factor) was 

formulated from the collected network data. The HSF and the distance between the UE and the 

base station were utilized as input data to Self Organizing Map (SOM), an unsupervised machine 

learning algorithm, to form clusters of the UE. A UE with highest value of HSF and minimal 

distance to the BS is chosen as the Cluster Head (CH) for each cluster. It was shown that the 

power consumption of the UE increases as the signal attenuation (which depends on distance) 

increases. In addition, for every transmission/reception between the Cluster Member (CM) and 

the BS through the CH, the CH consumes about 2.5% more than the CM. Also, in addition to the 

effects of signal attenuation, the power consumption of the CH is largely dependent on the 

number of CMs associated with the CH. Furthermore, it is more energy efficient for the CMs to 

communicate with the CH than communicate with the BS, especially for edge cell UE.  

 

Key Words: D2D Communication, Self Organizing Map, Clustering, Power Consumption 

 

1. Introduction 

Device to device (D2D) communication enables proximate devices to have direct 

communication with or without the involvement of the base station (BS). It was first introduced 
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in 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) Release 12 

specification and had been integrated in 4G and 5G networks. D2D helps to reduce traffic 

intensity, latency, saves resources such as power and bandwidth, and assists in offloading traffics 

from the main network. During emergency situation or in the absence of base station, D2D 

enables the proximate devices to communicate directly and shares necessary information such as 

video, text and voice messages [1, 2, 3]. 

 

But the effectiveness of D2D cooperation is largely dependent on key decision processes such as 

cluster formation, mode selection, resource allocation and management of mobility [4]. It was 

further pointed out by [3] that clusters of User Equipment (UE) should be formed to allow 

efficient service utilization. The formation of clusters enables large networks to be divided into 

groups of neighbouring devices, thus allowing optimization of networks, and enhancement of 

social trusts, relationships and interactions. Recent works on 5G indicated that formation of 

clusters helps to reduce network traffics. It also enables better efficiency of energy and spectrum 

[5, 6, 7]. 

When clusters are formed, a device is chosen as the cluster head (CH) in each cluster. The CH 

coordinates inter- and/or intra cluster communications as well as the activities of the cluster 

members (CMs). The CH most often functions as a relay to forward data from the CMs to the 

base station (BS). In this way, the CH assists the CMs at the cell edge or CMs that have poor 

channel conditions to communicate with the base station. Thus, link failure is prevented and 

network coverage is extended [8, 9, 2, 7]. But the CH is optimally selected, because the choice of 

selection of CH influences the stability and reliability of clusters formed. The CH selected 

determines to a great extent the Quality of Service (QoS) and session continuity [4, 3].  

 

There are three major constraints in clustered D2D communications, namely: the mobility 

tendency of the CH, the energy level/power consumption of the CH and the quality of service 

offered by the CH to the associated CMs. The mobility tendency of the CH and/or the energy 

level/power consumption of the CH greatly influence cluster stability or 

association/disassociation of the CMs. According to [4], in terms of mobility and energy 

dissipation, the device chosen as the CH must be reliable. This is to ensure session continuity. If 

the CH has high mobility tendency or high energy dissipation, frequent cluster disassociation and 
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re-clustering occur, thus, the availability or the reliability of the D2D communications is not 

guaranteed. In addition, since the CH coordinates the activities of the CMs as well as acts as 

relay between the CMs and the BS, it is required to be of good hardware status and to have 

optimum channel qualities.  

 

The purpose of the research work is to propose solutions to the constraints in clustered D2D 

communication. The study proposed a clustering approach that ensures that the CH selected per a 

cluster would consume minimal energy and as well guarantees quality of service to the 

associated CMs. In order to achieve D2D cluster formation objectives, the study introduced the 

concepts of Hardware Sensing Factor (HSF). The HSF represents two factors: first, HSF is a 

weight reflecting the hardware status (in particular, the antenna sensitivity) of underlying 

circuitry and second, the network performance or the channel quality of D2D devices involved in 

the cluster formation. In addition, the study took into consideration the concept of selecting a CH 

with least distance to the base station; this ensures minimal energy consumptions of the CH. 

Thus, the two factor criteria adopted in the study work ensured that a UE with best channel 

quality and likelihood of least energy dissipation is selected to serve as the CH for each cluster.  

 

2. Literature review of related work 

Various cluster formation algorithms for D2D communications have been proposed in literatures. 

According to [10], cluster formation algorithms proposed for D2D communications can be 

grouped as: squared error-based algorithm, similarity-based, hierarchical based algorithms, 

density-based clustering algorithms, etc. Recently, machine learning algorithms have been 

applied in D2D communication and in particular to cluster D2D UEs [10, 11]. In addition to the 

choice of algorithm, various cluster data input and criteria had been adopted in literatures to 

cluster the UEs and select the appropriate CH. For instance, K-Means algorithm was adopted by 

[12] using the interference value as the input data and criterion to cluster the UEs. A combination 

of K-Means algorithm and Genetic Algorithm (GA) was proposed by [13]. LEACH and the 

variants were utilized and have been also adopted in literatures [14, 15].  

 

Other approaches or criteria proposed in literatures include the use of distance metric, 

throughput, device mobility, social interactions/or relationship, device energy level, geographic 
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location, throughput and so on [16-20, 21]. The authors in [22] adopted the Chinese Restaurant 

Process (CRP) and its social variant (S-CRP) to model the formation of D2D clusters. The 

proposed scheme incorporated both social interactions and physical (distance) relationship 

among D2D terminals. The proposed clustering algorithm showed better performance in terms of 

throughput, power consumption and energy efficiency than other existing schemes that rely on 

only physical distance between D2D users. According to [16], regardless of approaches adopted, 

cluster formation algorithm should seek to satisfy a set of objectives which include: QoS 

satisfaction, cluster stability, load balancing and social awareness.  

 

In addition to single and double factor criteria adopted by some authors, authors such as [23] 

proposed three factor criteria to form cluster and select the CH. The factors proposed by the 

authors are: the distance between the UEs, the social relationship between the UEs and the UEs 

energy level. It was shown by the authors that the inclusion of social relationship as one of the 

factors created social trust more than techniques that adopted only distance as the CH selection 

and cluster formation criterion. The study by [24] adopted the method of assigning of metric 

weights to some parameters to determine the choice of CH. The parameters which weights were 

assigned are: the mobility tendency of the CH, the received signal strength, the number of CMs 

to be supported by the CH, the time period a UE can serve as CH and the capability of the 

device. The UE with the least weight becomes the CH. The study showed that the high 

communication rate is achieved using this approach. 

 

The adoption of various cluster formation metrics or criteria adopted in literatures serves specific 

purposes. For instance, the adoption of device mobility or energy level as clustering criteria can 

assist in reducing the rate of cluster disassociation and re-clustering. Similarly, the application of 

social relationships to cluster UEs will ensure that users’ demand for resources and the social 

trust/or tie that exist among the uses can be identified. In addition, the utilization of UE 

geographic data as cluster formation criteria ensures social awareness and stability of the formed 

cluster. The reason is that proximate UEs are likely to have social interests, and distances 

between the UEs are considerably minimized. The considerable short distances existing between 

the UEs would reduce both the energy consumptions of the CHs as well as the CMs [16, 17].  
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In choosing the CH, the distance between it and the BS should be taken into consideration. The 

CH most often acts a relay to forward or receive data to and from the BS, therefore, the distance 

between it and the BS should be minimal. A high transmission distance between the CH and the 

BS imposes energy burden on the CH. But the distance of the CH from the BS depends on its 

location in a cluster as well as the position of the cluster in the cell. The mobility of devices may 

cause random distribution of the UEs around the BS or may cause the UEs to be concentrated far 

from the base station. In essence the distribution of the UEs is influenced by their mobility 

pattern and the separating distance between a UE and the BS influences its energy consumptions.  

 

In this study, the influence of the separating distance (or signal attenuation) on the power 

consumptions of the UEs was investigated. Self Organizing Map (SOM), an unsupervised 

machine learning algorithm was utilized to form clusters of the UEs. The distance between the 

UEs and the base station together with the HSF served as data input to the algorithm and power 

consumptions of the UEs as a function of separating distance (or attenuation) were investigated.  

 

3. Methods 

3.1 Data Collection 

Machine learning algorithms such as SOM need data to perform cluster formation. Some of these 

data can be collected by the UEs themselves, by the Radio Access Network (RAN) or by the core 

network [10]. The data used in this study were collected by the UEs. Data were collected from a 

4G network located in dense urban residential area with tall trees and many rising buildings at 

Owerri (a city in eastern part of Nigeria).  

 

3.2 Primary Data 

The geographic coordinates of the BS were first determined. The latitude and longitude of the BS 

are 5.46726034 and 7.01624092 respectively. The determination of the BS coordinates was 

followed by the collection of the primary data of the UEs for hundred locations within 200m 

diameter (100m radius) of the cell. The primary data of the UE collected at each point were the 

geographic coordinates of the UEs (i.e. the Latitudes and Longitudes) and their network 

information [comprising of Reference Signal Received Power (RSRP), Received Signal Strength 

Indicator (RSSI), and Reference Signal Received Quality (RSRQ)]. The primary data namely the 
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Latitude, Longitude, RSRP, RSRQ and RSSI were collected during walk test (not drive test) at 

100 points within 100m radius of the cell by selectively using four UEs from different 

manufacturers. The UEs types used are Nokia (NC12), Gionee M7 Lite (GM7), Infinix Smart 7 

(IS7) and Tecno Spark 9 (TS9). Their hardware specifications are shown in table 1. 

 

Table 1: Hardware Specifications and Types of UEs Used in the Study 

UE Type RAM CPU Storage  Battery OS 

NC12 2GB Octa-core (4x1.6 GHz Cortex-A55) 64GB 3000 mAh Android 12 

GM7 2GB Quad-core 1.25 GHz Mediatek 16GB 4000 mAh Android 9.0 

IS7 4GB Octa-core (4x1.6 GHz Cortex) 64GB 5000 mAh Android 12 

TS9 4GB Octa-core (4x2.3 GHz Cortex-A53) 64GB 5000mAh Android 12 

 

On each of the four UE brands, two network discovery and data collection application software 

namely LTE Discovery (version 4.42) and G-NetTrack Lite (version 17.3) were installed and 

were used to capture and record the primary data (Latitude, Longitude, RSRP, RSRQ and RSSI) 

at each point. Sample of the captured data using G-NetTrack Lite is shown in figure 1.  

 

Figure 1: A Sample of Captured Primary Data using G-NetTrack Lite Application Software 

3.3 Secondary Data 

The captured data at each random 100 points (sample shown in figure 1) were recorded and were 

used to evaluate the values of the secondary data. Three secondary data were obtained. The 
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secondary data are: the distance (di) of the UE from the BS, the path loss (PLoss) along the link 

and a weighting factor termed Hardware Sensing Factor (HSF). 

 

1) Evaluation of Distance: In this study, Haversine formula was utilized to evaluate the 

distance between the BS and a UE, as well as the distance between UE and another UE. The 

formula is represented in equation (1).  𝑑 = 2. 𝑅. 𝑠𝑖𝑛−1 [√sin (𝜆2− 𝜆12 )2 + 𝑠𝑖𝑛(𝜑2− 𝜑12 )2 . cos(𝜆1) . cos (𝜆2)]  (1) 

From equation (1), if the known Latitude and Longitude of the BS are 𝜆1and 𝜑1 respectively, 

the captured Latitude and Longitude of a UE are 𝜆2  and 𝜑2  respectively, and R is Mean 

Radius of the Earth (6371 km), the separating distance d between the base station and the UE 

can be evaluated using Haversine formula of equation (1).  

2) Evaluation of the Path Loss: If the expression in equation (1) represents the distance 

between a UE and the BS, it can be used to estimate the path loss (PLoss), since PLoss is a 

function of the operating frequency (f) and the separating distance (d) between the transmitter 

and the receiver. In this study, the modified Okumura-Hata path loss model investigated and 

developed by [25] was adopted to estimate the path loss between a UE and the BS, this is 

shown in equation (2).  

 𝑃𝐿𝑜𝑠𝑠 = 127.30 + 33.57 ∗ log 𝑑𝑖     (2) 

where di is the separating distance between a UE and the BS. 

3) Evaluation of Hardware Sensing Factor (HSF): From observations, it is evident that 

cellular devices from different manufactures do not report the same value of a measured 

network parameter, even if both are subjected to the same environment and time. For 

instance, while one device from a manufacturer reports a measured value of RSRP to be -87 

dBm, another device from a different manufacturer located at the same spot as the former 

may report a value of -86 dBm. Similar observation is made even with devices from the same 

manufacturer of the same or different model. In addition, the measurements of a device at a 

location but at different time of the day differ. In this instance, the measurement is not only a 

function of the underlying hardware, but also dependent on the link quality.  
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The variations of measurement of network parameters by same device at same location but at 

three separate periods are depicted in figure 2, while the variations of measurement of 

network parameters by devices from three different vendors at the same location and within 

the same time interval is shown in figure 3.  

 

 

 (a)     (b)    (c)  

Figure 2: Measurement by the same UE, same Location, Different time 

 

 

 (a)     (b)    (c)  

Figure 3: Measurement by different UEs, same Location, same time 

 

The cause of the variations of measured network parameters by the devices of the same vendor 

or devices from different vendors is not far from hardware status. It has been noted in literatures 

that degradation of antenna sensitivity otherwise known as desense limits the receiver’s ability to 

detect signals especially low-level signals. Desense could be attributed to both external and 

internal electromagnetic interferences. Internal interferences are mostly due to noise that comes 

from signal harmonics on patterns of printed circuit board. Such noise couples to the antenna 
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causing degradation in communication quality, thereby decreasing the data rata and overall 

communication range [26 - 28]. Thus, the value of a network quantity measured by a device is 

related to its hardware status. In addition, another cause of the variation is the quality of the 

channel or link between a device and the transmitter. The quantity or quality of a network 

parameter received by a device depicts the state of its link or channel condition. A device with 

better channel quality should have a better measured network quantity. 

 

In this study, in addition to the use of distance between the UEs and the BS as condition or 

criterion for cluster formation, a weighted factor termed Hardware Sensing Factor (HSF) was 

also adopted. The idea is to assign numerical weights to the various ranges of the values of the 

reported Key Performance Indicators (KPIs) (namely RSSI, RSRP, and RSRQ). The concept of 

HSF takes the advantage of the facts that each KPI has ranges of values that depict the quantity 

or quality of the signal being received at any instance or location. Thus, HSF is a factor that 

reflects the hardware status of a UE as well as the overall quantity/quality of the signal receives 

by the device. Table 2 shows the various ranges of KPI values and the numerical weights (index 

factors) assigned to each range in this study.  

Table 2: Weights Depicting Hardware Sensing Factor (HSF) 

 

The weights assigned to each range of the values of the KPI are represented as index factor 

Ri, Si, and Qi. For any observation of these KPIs from a UE, the assigned weights are 

summed, and the summation gives the HSF of a UE at that observation instant. For instance, 

 

Description 

RSRP RSSI RSRQ  

HSF =  

Ri + Si + Ni + Qi 

Range RSRP 

Index 

(Ri) 

Range RSSI 

Index 

(Si) 

Range RSRQ 

Index 

(Qi) 

Excellent >= -80 

dBm 

1.00 > -65 

dBm 

1.00 >= -10 dB 1.00 3.00 

Good -80 dBm 

to -90 

dBm 

0.75 -65 dBm 

to -75 

dBm 

0.75 -10 dB to -

15 dB 

0.75 2.25 

Fair -90 dBm 

to -100 

dBm 

0.50 -75 dBm 

to -85 

dBm 

0.50 -15 dB to -

20 dB 

0.50 1.50 

Poor <-100 

dBm 

0.25 < -85 

dBm 

0.25 < -20 dB 0.25 0.75 
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if during a particular instant of measurement, a device reported the following KPI values: 

RSRP = -87 dBm, RSSI= -59 dBm, RSRQ = -11 dB. Using table 2, the corresponding index 

factors are: Ri = 0.75, Si = 1.00, Qi = 0.75. The HSF of the device at this observation instant 

is the summation of these index factors. That is, HSF = 0.75 + 1.00 + 0.75 = 2.50. From table 

2, it is shown that the maximum value of HSF is 3.00, while the minimum value is 0.75. The 

HSF reflects the status of a UE link or channel quality as well as the status of the underlying 

UE circuitry. These statuses serve as a criterion to cluster the UEs and select the appropriate 

CH per a cluster. The higher value of HSF depicts a device with better performance, while a 

lower value indicates a device with lower performance. The essence of HSF is to select a UE 

with high hardware performance and high channel quality as the CH. The selected CH with 

high performance will assist the UEs whose channel conditions are poor especially those at 

the cell edge to relay packets to and from the BS.  

 

Samples of UEs’ geographic coordinates, the distance of the UEs from the base station, path 

loss, the values of the KPIs and the associated HSF are shown in table 3. The UE geographic 

coordinates are represented by the Latitude and Longitude columns. The distance d is the 

separating distance between the UE and the base station. The evaluated path loss along the 

link and other network parameters are shown in their respective columns. Additional 

columns namely: UE ID (containing positive integers) and UE Type (signifying the ) were 

included to serve as UEs identifications.  

Table 3 Sample Tabulation of Cluster Formation Data 

UE 

ID 
UE Type Latitude Longitude 

Distance 

(m) 

Path 

Loss 
RSSI RSRP RSRQ HSF 

1 NC12 5.46708208 7.01618360 20.81 70.85 -69 -97 -20 1.75 

- - - - - - - - - - 

22 NC12 5.46652287 7.01627270 82.08 90.85 -49 -77 -7 3.00 

- - - - - - - - - - 

99 IS7 5.46719088 7.01664787 45.7 82.31 -67 -95 -10 2.00 

100 IS7 5.46717114 7.01679653 62.29 86.83 -68 -96 -17 1.75 

 

3.4 Cluster Formation Method 

Self Organizing Map (SOM), an unsupervised machine learning algorithm was adopted as the 

clustering algorithm. SOM has the ability to determine competitively the cluster of a data set. 
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First, SOM determines a winner neuron, which is a neuron that has weight most similar to the 

data sample. This is followed by the updating of the weights of neighbor neurons, which ensures 

that clusters of neurons with similar weights are formed. Two functions called the learning rate [𝛼(𝑡)] and the neighborhood function [ℎ𝑐𝑗(𝑡)] are utilized in updating the weight vectors. The 

value of learning rate is between 0 & 1. While the Gaussian type of the neighborhood function is 

given as: ℎ𝑢𝑗(𝑡) = 𝑒𝑥𝑝 (− 𝑑𝑢𝑗22𝜎2(𝑡)) , here, 𝑑𝑢𝑗2  is the distance between the winner neuron u and the 

excited neuron j. The radius of the neighborhood at iteration t is represented by the parameter 𝜎. 

A simple algorithm representing SOM’s algorithm is as follows:  

Determine the number of cluster, represented by the number of output neuron ‘n’.  
Initialize the output neuron’s weight vector 

 

Set the values of the learning rate [𝛼(𝑡)] and the neighborhood function [ℎ𝑐𝑗(𝑡)]  
While stopping condition is not met 

 For each input x 

Update the weight vector 𝑤𝑗(𝑡 + 1)  of the nearest output neuron and the 

neighboring neurons as: 

 𝑤𝑗𝑖(𝑡 + 1) =   𝑤𝑗𝑖(𝑡) +  𝛼(𝑡)ℎ𝑐𝑗(𝑡)[𝑥(𝑡) −  𝑤𝑗𝑖(𝑡)]          (3) 

End for 

Learning rate is reduced 

Neighborhood parameter is reduced 

End while 

 

The study utilized two parameters as inputs to clustering algorithm. The inputs are the distance di 

(between the BS and the UEs) and the values of HSF. The condition of selecting a CH per a 

cluster is based on two criteria. First, it is based on the CH with highest value of HSF. Second, it 

is based on the UE that has minimal distance to the base station. SOM can only cluster data set, 

but it is not equipped to determine a UE that should serve as the CH in a cluster. To achieve this, 

codes were included that would select the appropriate CH in a cluster and to determine the 

number of CMs in the cluster. The cluster formation algorithm is shown in table 4, while the 

flow chart is represented in figure 4.  
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Table 4: Cluster Formation using SOM Algorithm 

Input: HSF, UE distance di & dev ID 

// Initialize dimension for SOM  

Dimension1 = 3 

Dimension2 = 3 

// Create the SOM dimension (in this case 3x3) 

Net = selforgmap([dimnsion1 dimension2]) 

Train the neural network 

Plot SOM topology, SOM Hits, etc 

Extract data & cluster number for each data 

//Sort data based on cluster data indices 

UE_ID = dev_id(indices); HSF = HSF(indices), di = dist(indices) 

Convert sorted cluster data into table variables 

Initialize cluster number to 1: i = 1 

While i is less than or equal to number of clusters 

 Switch i 

  Case i 

   Determine the UEs in cluster i 

   Determine the UE that has maximum HSF and minimum di 

                                    Set the UE that satisfied the condition above as the CH for cluster i 

   Evaluate the number of CMs in cluster i 

  End 

// Repeat for each i 

Increment i 

End  

Output = {cluster number, UE_ID, CH values, number of CMs} 

 

In this study, SOM hexagonal topology was adopted because it displays greater neighborhood 

size variance. Furthermore, 3x3 SOM architecture was utilized. This implies that there are nine 

(9) neurons or clusters used to cluster the data sets. In addition, it implies that out of 100 UEs, 
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nine (9) CHs will be selected for every cluster; the remaining 91 UEs become the CMs which are 

distributed in each cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                         No 

 

 

                                                                                     Yes 

 

 

 

 

Figure 4: The Flow Chart of Cluster Formation Algorithm 

3.5 Channel & Link Models 

The clustering environment described a situation where the CHs connect to the BS using the 

conventional cellular links while the CMs communicate with one another and with the CHs using 

the D2D links. Thus, two distinct links were considered, namely CH-BS links and CM-CH links. 

Due to the existence of dual mobility of UEs over CM-CH links, various existing channel models 

were adapted by 3GPP. For outdoor-to-outdoor shadowing, Log normal model is specified [29]. 

The path loss is a random variable distributed randomly in log-domain and is given as:  

 𝑃𝐿𝑜𝑠𝑠𝐿𝑁(𝑑𝐵) = 𝑃𝐿𝑜𝑠𝑠𝐹𝑆 +  10𝑛𝑙𝑜𝑔 ( 𝑑𝑑0) +  𝑋𝜎    (4) 

Start 

Determine the UEs’ 
locations & network values 

Form clusters based on the 

values of the distances & HSFs 

Evaluate the Condition for 

CH Selection 

Is CH selection 

Criteria Satisfied?  

CH Selected 

Chose as CMs 

End 

Evaluate the HSF & distance 

between each UE and the 

BS 
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where d is the distance between the UE and BS, 𝑑0 is the reference distance (1m to 10m for 

micro cell), n is the path loss exponent, 𝑋𝜎 is the standard deviation (σ), and 𝑃𝐿𝑜𝑠𝑠𝐹𝑆 is Free 

Space Path Loss.  

Hata path loss model for urban area described by [30] was adopted for CH-BS links and is given 

as:  

    𝑃𝐿𝑜𝑜𝑠𝑢𝑟𝑏𝑎𝑛(𝑑𝐵) = 69.55 + 26.16 𝑙𝑜𝑔(𝑓) − 13.82 𝑙𝑜𝑔(ℎ𝑡𝑥) − ∝ ℎ𝑟𝑥 

    +[44.9 − 6.55 𝑙𝑜𝑔(ℎ𝑡𝑥)]𝑙𝑜𝑔 (𝑑)     (5) 

where f is the frequency in MHz, d is the distance in km, the UE antenna height is given as ℎ𝑟𝑥 in 

meters, and BS antenna height in meters is represented as ℎ𝑡𝑥 . The variable ∝ ℎ𝑟𝑥  has the 

expressions for different terrain. For large city, it is given as: 

     ∝ ℎ𝑟𝑥 = 3.2[𝑙𝑜𝑔 (11.75ℎ𝑟𝑥)]2 −  4.97;  f > 300MHz 

     ∝ ℎ𝑟𝑥 = 8.29[𝑙𝑜𝑔 (1.54ℎ𝑟𝑥)]2 −  1.1;  f ≤ 300MHz  (6) 

For both CM-CH and CH-BS links, Shannon wireless channel capacity 𝐶𝑟  is represented in 

equation (7):  

      𝐶𝑟 = 𝐵. 𝑙𝑜𝑔2(1 + 𝜂)      (7) 

where B is the channel Bandwidth, 𝜂  is the Signal to Interference and Noise Ratio (SINR). 

According to [31], 𝜂 is expressed as:  

      𝜂 =  𝑃𝑟𝑥 𝑁𝑜𝐵⁄        (8) 

where the noise spectral density is 𝑁𝑜, 𝑃𝑟𝑥 is the received power and B is the channel bandwidth. 

By substituting equation (8) into (7), the transmission rate becomes:  

      𝐶𝑟 = 𝐵. 𝑙𝑜𝑔2(1 + 𝑃𝑟𝑥 𝑁𝑜𝐵⁄ )      (9) 

As described by [31], the linear expression of the received power of Okumura-Hata model is 

given as:  

 𝑃𝑟𝑥 =  𝑃𝑡𝑥  . 𝐾 𝑑𝛾⁄         (10) 

In decibel, it is represented as:  

     𝑃𝑟𝑥(𝑑𝐵) =  𝑃𝑡𝑥(𝑑𝐵) +  10𝑙𝑜𝑔10𝐾 − 10𝛾𝑙𝑜𝑔2(𝑑)    (11) 

where 𝑃𝑟𝑥 is the transmission power, 𝑑 is the transmission distance, K is the constant path loss 

factor, and 𝛾 represents the path loss exponent. The received signal strength finds relationship 

with the path loss through the effective isotropic radiated power (EIRP). The expression that 

shows this relationship is described by [32] and is shown in equation (12): 
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      𝑃𝐿𝑜𝑠𝑠(𝑑𝐵) = 𝐸𝐼𝑅𝑃 −  𝑃𝑟(𝑑𝐵𝑚)      (12) 

here 𝑃𝑟 represents the received power in (𝑑𝐵𝑚). Thus, the Received Signal Strength Indicator 

(RSSI) could be substituted for 𝑃𝑟 and the expression becomes:  

      𝐸𝐼𝑅𝑃 =  𝑃𝐿𝑜𝑠𝑠(𝑑𝐵) +  𝑅𝑆𝑆𝐼(𝑑𝐵𝑚)     (13) 

Equation (13) implies that the transmission power requirement (Pt) should not be less than the 

sum of the path loss and received power, i.e.:  

      𝑃𝑡 ≥  𝑃𝐿𝑜𝑠𝑠(𝑑𝐵) +  𝑅𝑆𝑆𝐼(𝑑𝐵𝑚)     (14) 

But RSSI is given as:    𝑅𝑆𝑆𝐼 = 𝑅𝑆𝑅𝑃 + 10𝑙𝑜𝑔10(12 ∗ 𝑁)    (15) 

where RSRP is the Reference Signal Received Power, N is the number of Resource Blocks 

(RBs). For a bandwidth of 10 MHz, the RB is 50. The minimum value of RSRP as specified by 

3GPP [33] is -112 dBm. Thus:  

    𝑅𝑆𝑆𝐼𝑚𝑖𝑛 =  𝑅𝑆𝑅𝑃𝑚𝑖𝑛 +  10𝑙𝑜𝑔10(12 ∗ 𝑁)    (16) 

This shows that for bandwidth of 10 MHz, the minimum RSSI is -84.22 dBm. Thus equation (14) 

becomes:  

 𝑃𝑡 ≥  𝑃𝐿𝑜𝑠𝑠(𝑑𝐵) − 84.22 (𝑑𝐵𝑚)      (17) 

Therefore, the transmission power requirements for CM-CH and CH-BS links are given as 

follows:  

 𝑃𝑡𝑥,𝐶𝑀−𝐶𝐻  ≥  𝑃𝐿𝑜𝑠𝑠𝐿𝑁(𝑑𝐵) − 84.22 (dBm)     (18) 

 𝑃𝑡𝑥,𝐶𝐻−𝐵𝑆  ≥  𝑃𝐿𝑜𝑜𝑠𝑢𝑟𝑏𝑎𝑛(𝑑𝐵) − 84.22 (dBm)    (19) 

Thus, by equation (11), the received power (in dB) for CM-CH and CH-BS links is given as:  

 𝑃𝑟𝑥,𝐶𝑀−𝐶𝐻(𝑑𝐵) =  𝑃𝑡𝑥,𝐶𝑀−𝐶𝐻 +  10𝑙𝑜𝑔10𝐾 − 10𝛾𝑙𝑜𝑔2(𝑑𝐶𝑀−𝐶𝐻)   [20]  

      𝑃𝑟𝑥,𝐶𝐻−𝐵𝑆(𝑑𝐵) =  𝑃𝑡𝑥,𝐶𝐻−𝐵𝑆 +  10𝑙𝑜𝑔10𝐾 − 10𝛾𝑙𝑜𝑔2(𝑑𝐶𝐻−𝐵𝑆)  [21] 𝑑𝐶𝑀−𝐶𝐻 and 𝑑𝐶𝐻−𝐵𝑆 are the separating distances over each link.  

Hence by equation [7], the transmission rate/or capacity for each link is represented as:  

 𝐶𝑟(𝐶𝑀−𝐶𝐻) = 𝐵. 𝑙𝑜𝑔2 (1 +  Prx,𝐶𝑀−𝐶𝐻 𝑁𝑜 . 𝐵⁄ )     (22)  

 𝐶𝑟(𝐶𝐻−𝐵𝑆) = 𝐵. 𝑙𝑜𝑔2 (1 +  P𝑟𝑥,𝐶𝐻−𝐵𝑆 𝑁𝑜 . 𝐵⁄ )    (23) 

3.6 Power Consumption Model 

The power consumption of a UE during transmission ( 𝑃𝑡,𝑐𝑜𝑛 ) is the combined effects of 

transmission power (𝑃𝑡𝑥 ) and the power consumed by the UE analog and digital circuitry 

subsystems (𝑃𝑡𝑐). Therefore, (𝑃𝑡,𝑐𝑜𝑛) can be expressed as:  
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 𝑃𝑡,𝑐𝑜𝑛 =  𝑃𝑡𝑥 + 𝑃𝑡𝑐         (24) 

The term 𝑃𝑡𝑐, is given as:  

      𝑃𝑡𝑐 = 𝑃𝑜𝑛 +  𝑃𝑡𝑎     (25) 

where the power consumed by the UE’s cellular subsystems (CPU, graphic displays, etc) is 

represented as 𝑃𝑜𝑛 and 𝑃𝑡𝑎  is the power consumed when the transmitter is active (i.e. 

transmitting). By substituting equation (23) into equation (22), 𝑃𝑡,𝑐𝑜𝑛 becomes:  

 𝑃𝑡,𝑐𝑜𝑛 =  𝑃𝑡𝑥 + 𝑃𝑜𝑛 +  𝑃𝑡𝑎        (26) 

Using similar procedure, the equivalent received power consumption (𝑃𝑟,𝑐𝑜𝑛) is expressed as:  

 𝑃𝑟,𝑐𝑜𝑛 =  𝑃𝑟𝑥 +  𝑃𝑜𝑛 +  𝑃𝑟𝑎        (27) 

where, 𝑃𝑟𝑥 is the received power, 𝑃𝑟𝑎  is the power consumed when the receiver is active (i.e. 

receiving). It was noted by [34] and [35] that for a 4G LTE device, the value of 𝑃𝑜𝑛 = 853mW, 𝑃𝑡𝑎  = 29.9mW, and 𝑃𝑟𝑎 = 25.1mW.  Therefore, the total power consumed by UE when 

transmitting and receiving a packet is given as:  

 𝑃𝑇𝑜𝑡,𝑐𝑜𝑛 = 𝑃𝑡,𝑐𝑜𝑛 +  𝑃𝑟,𝑐𝑜𝑛      (28) 

 𝑃𝑇𝑜𝑡,𝑐𝑜𝑛 = 𝑃𝑜𝑛 + (𝑃𝑡𝑥 + 𝑃𝑡𝑎) +  (𝑃𝑟𝑥 +  𝑃𝑟𝑎)     (29)  

When the CMs communicate with the BS through the CH, the CMs transmit and receive from 

CH while the CH transmits and receives both from the BS and the CMs. This situation imposes 

energy burden on the CH. The total power consumed by a CM is given as 𝑃𝐶𝑀,𝑡𝑜𝑡 and the total 

power consumed by a CH is given as 𝑃𝐶𝐻,𝑡𝑜𝑡. The two are expressed in equations (30) and (31).  

 𝑃𝐶𝑀,𝑡𝑜𝑡 =  𝑃𝑜𝑛 +  𝑃𝐶𝑀,𝑡𝑥 +  𝑃𝐶𝑀,𝑟𝑥     (30) 

 𝑃𝐶𝐻,𝑡𝑜𝑡 =  𝑃𝑜𝑛 +  𝑃𝐶𝐻,𝑡𝑥 +  𝑃𝐶𝐻,𝑟𝑥       (31) 

From equation (30), 𝑃𝐶𝑀,𝑡𝑥 =  𝑃𝐶𝑀−𝐶𝐻,𝑡𝑥 + 𝑃𝐶𝑀−𝐶𝐻,𝑡𝑎  and  𝑃𝐶𝑀,𝑟𝑥 =  𝑃𝐶𝑀−𝐶𝐻,𝑟𝑥 +  𝑃𝐶𝑀−𝐶𝐻,𝑟𝑎  

Therefore,   𝑃𝐶𝑀,𝑡𝑜𝑡 = 𝑃𝑜𝑛 + (𝑃𝐶𝑀−𝐶𝐻,𝑡𝑥 + 𝑃𝐶𝑀,𝑡𝑎) + (𝑃𝐶𝑀−𝐶𝐻,𝑟𝑥 + 𝑃𝐶𝑀,𝑟𝑎 )  (32) 

Similarly, from equation (31), CH transmits and receives to and from the BS and CMs, therefore,  

 𝑃𝐶𝐻,𝑡𝑥 =  𝑃𝐶𝐻−𝐵𝑆,𝑡𝑥 + 𝑃𝐶𝐻−𝐶𝑀,𝑡𝑥 +  𝑃𝐶𝐻,𝑡𝑎 and 𝑃𝐶𝐻,𝑟𝑥 =  𝑃𝐶𝐻−𝐵𝑆,𝑟𝑥 +  𝑃𝐶𝐻−𝐶𝑀,𝑟𝑥 +  𝑃𝐶𝐻,𝑟𝑎 

Hence,  𝑃𝐶𝐻,𝑡𝑜𝑡 = 𝑃𝑜𝑛 + (𝑃𝐶𝐻−𝐵𝑆,𝑡𝑥 + 𝑃𝐶𝐻−𝐶𝑀,𝑡𝑥 + 𝑃𝐶𝐻,𝑡𝑎 ) + (𝑃𝐶𝐻−𝐵𝑆,𝑟𝑥 + 𝑃𝐶𝐻−𝐶𝑀,𝑟𝑥 + 𝑃𝐶𝐻,𝑟𝑎)   (33) 

Thus, the total power consumed to transmit and receive data from the BS through the CH is 

given as: 

      𝑃𝑡𝑜𝑡 =  𝑃𝐶𝑀,𝑡𝑜𝑡 +  𝑃𝐶𝐻,𝑡𝑜𝑡      (34) 



17 

 

The energy expended by CM is given by: 

 𝐸𝐶𝑀 =  𝑃𝐶𝑀,𝑡𝑜𝑡  × (𝐷𝑐 𝑅𝐶𝑀−𝐶𝐻⁄ )     (35) 

Similarly, the energy expended by CH over CH-CM and CH-BS links are expressed as follows:  

 𝐸𝐶𝐻−𝐶𝑀 =  𝑃𝐶𝐻,𝐶𝑀  × (𝐷𝑐 𝑅𝐶𝐻−𝐶𝑀⁄ )      (36) 

 𝐸𝐶𝐻−𝐵𝑆 =  𝑃𝐶𝐻,𝐵𝑆  × (𝐷𝑐 𝑅𝐶𝐻−𝐵𝑆⁄ )     (37) 

Where 𝐷𝑐 is the packet content size, R is the rate of data transmission over the respective link.  

 

4. Results and discussion 

4.1 Cluster Formation Outputs 

The values of the UEs’ distances from the BS and the HSFs were employed as input data to 

SOM algorithm. The clustering was implemented in MATLAB® environment. The study 

utilized SOM 3x3 topology and hence there are nine clusters. Table 5 shows the statistics of the 

CHs selected for each cluster. The details of table 5 comprise the unique identity number of the 

CH (CH ID), the HSF value of the CH, the distance between the CH and the BS and the number 

of the associated CMs. The SOM clustering outputs indicating the number of UEs (both CMs 

and CH) per a cluster are displayed in figure 5.  

Table 5: Cluster Statistics 

Cluster 

Number. 
CH ID HSF 

Distance 

(m) 

Number 

of CMs 

1 99 2.00 45.7 11 

2 84 2.00 99.66 10 

3 24 2.50 86.64 10 

4 71 2.25 89.12 10 

5 38 2.00 59.56 10 

6 4 3.00 34.47 10 

7 60 2.00 55.31 10 

8 52 2.00 40.34 10 

9 16 3.00 68.43 10 

 

            Figure 5: Outputs of Cluster Formation 

It was stated previously that literatures have adopted various approaches or criteria to cluster 

UEs in D2D communication. In addition, it was noted that regardless of the criteria employed, 
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the clustering algorithm should satisfy a set of objectives, namely: quality of service offered to 

the CMs, the stability of the clusters formed, load balancing and social awareness. The criteria 

adopted to cluster the UEs in this study satisfied a greater number of this set of objectives. The 

combination of HSF and distance of the UE to the BS as cluster formation criteria guaranties 

quality of service and minimal energy consumption. With regard to QoS satisfaction, the 

algorithm guaranteed that a CH selected in a cluster must have the highest value of HSF. This 

implies that the CH channel qualities and its hardware status in particular the antenna sensitivity 

have the greater assigned weights and hence it is in position to offer good QoS to the associated 

CMs.  

 

In addition, figure 5 and table 5 show the nine clusters formed by the algorithm and the 

distribution of the UEs per a cluster. It is shown that the UEs are evenly distributed among the 

clusters. There is a minimal difference between the number of CMs in one cluster and another 

cluster. The even distribution of the CMs among the cluster would guaranty that traffic loads are 

evenly shared among the CHs.  

 

Furthermore, the two major factors affecting the stability of a cluster are the mobility tendency 

and power consumption of a CH. A CH with high mobility tendency and/or high energy 

consumption would lead to cluster dissolution. Though the scope of the study did not include the 

mobility tendency of the CH, but the use of the selection of a CH with least distance to a BS 

would guaranty that the power consumption of the CH is minimal, thus cluster stability is 

ensured.  

 

4.2 Analysis of UEs Power Consumptions 

The power consumption model established in this study pointed out that the UEs’ power 

consumption is dependent on the transmitting distance (a factor contributing to signal 

attenuation). The cluster formation depicts a scenario where the CMs communicate with the BS 

through the CH. The CH forwards packets to and from both the BS and the CMs.  

 

The power consumed by the UEs (CMs & CH) when connected to the BS through the CH is 

defined in equation (32), while the energy expended by the CMs and CH are respectively 
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represented by equations (33), (34) and (35). To analyze power consumptions when CMs 

transmit/receive data from the BS through the selected CH in the 100m radius of the study area, 

cluster 2 of figure 5 was utilized. Cluster 2 of figure 5 has 11 UEs (10 CMs and a CH). The 

locations of CMs in cluster 2 and their distances from CH are displayed in table 6 while the 

statistics of the selected CH are displayed in table 7. 

Table 6: Locations of CMs in Cluster 2 

UE ID Latitude Longitude 

Distance (m) 

from CH 

82 5.46714068 7.01650761 69.00 

88 5.46712101 7.01654373 64.98 

81 5.46710163 7.01664715 53.58 

83 5.46719868 7.01694947 21.74 

78 5.46715123 7.01699312 15.54 

85 5.46708757 7.01633615 88.04 

79 5.46710109 7.01637179 84.05 

80 5.46717991 7.01647504 72.85 

87 5.46712850 7.01685715 30.29 

86 5.46710701 7.01641080 79.71 

 

Table 7: Statistics of CH of Cluster 2 

UE_ID Lat Lon HSF Distance from BS (m) 

84 5.46712355 7.01713075 2.00 99.66 

 

As depicted in figure 6, the power consumptions of the UEs in a cluster depends on the path loss 

[PL(di)] or signal attenuation along the links (CM-CH and CH-BS links). In addition, the power 

consumption of the CH depends on the signal attenuation on these links as well as on the number 

of the associated CMs.  

 

          CM1               PL(d1) 

         CM2   PL(d2) 

  ..       PL(dCH1)    PL(dCH2)     PL(dCHn) 

  .. 

        CMn          PL(dn) 

Figure 6: Factors Influencing Power Consumptions of the UEs in a Cluster 

 

BS CH 
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Using the mathematical models formulated previously, for CM-CH-BS links, the power 

consumed by only the CH to transmit/receive a packet to and from a CM and the BS is 

represented in Figure 7. It is observed that as the separating distance between a CM and the CH 

increases, the CH consumes more power during transmission/reception.  

 

Figure 7: Power Consumption of CH over CM-CH-Bs links 

Similarly, the power consumed by both the CM and CH to transmit/receive a packet over CM-

CH-BS links is shown in figure 8. This is the combined power consumption of both a CM and 

the CH when a CM transmits and receives from BS through the CH.  

 

Figure 8: Power Consumption of CM & CH over CM-CH-BS links 

Figure 7 represents the power consumes by only the CH over CM-CH-BS links, while figure 8 is 

the display of the power consume both the CMs and CH over CM-CH-BS links. Using these 

figures, comparison of the power consumptions of the CM and CH shows that for every 

transmission and reception of the CM from the base station through the CH, the CH consumes an 

average power of 2.5% more than the CM. The extra power consumed by the CH is due to the 

separating distance between the CH and the base station. Thus, the power consumption of the 

CH is dependent on the separating distance between the CH and CM as well as the distance 

between the CH and the BS. 

 

Furthermore, when the BS is not involved, (probably, the BS is unavailable), the CMs 

communicates with the CH over CM-CH links. Figure 9 displays the combined power of both 
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the CM and the CH to transmit and receive from each other in a cluster when the base station is 

not involved.  

 

Figure 9: Power Consumptions of CM & CH in Cluster 2 over CM-CH links 

A comparison of figure 8 and figure 9 indicates that the power consumption of the CMs when 

they communicate with the BS through the CH is greater than when they communicate with the 

CH. The additional energy is due to the power consumption of the CH over CH-BS link. Thus, 

when the UEs are farther from the base station (especially the edge cell UEs) it is more power 

efficient for the UEs to communicate with the CH than to communicate with the BS.  

 

Furthermore, the UEs in cluster 1, 2, 4, 5 and 9 were used to illustrate the power consumptions of 

the UEs with various CH-BS distances. The distances over the CM-CH links in each cluster were 

determined along with the distances over the CH-BS links. The plot of the power consumption in 

each cluster is shown in figure 10.  

 

Figure 10: Cluster Power Consumptions for Various CH-BS distances 
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It is observed that the distance over CH-BS links contribute largely to the power consumes in a 

cluster. A cluster with large CH-BS distance consumes more energy than a cluster with less CH-

BS distance.  

 

In addition, figure 6 indicates that the power consumption of CH depends not only on the signal 

attenuation due to distance but also on the number of the associated CMs. Figure 7 is a 

representation of power consumption of CH in cluster 2 when the associated 10 CMs are 

communicating with the CH. But all the CMs may not be communicating with the CH at the 

same time. The power consumptions of the CH of cluster 2 when it is transmitting and receiving 

from 4, 5 and 7 CMs are displayed in Figure 11.  

 

Figure 11: Power Consumption of the CH of Cluster 2 with Varying number of CMs 

A comparison of figure 7 with figure 11 reveals that the power consumption of CH varies with 

varying number CMs. As the number of CMs with large CM-CH link distance increases, the CH 

power consumption increases.  

 

5. Conclusion 

The study was conducted to proffer efficient cluster formation solution that would ensure that the 

CH in D2D communication consumes minimal energy and that the CMs are offered good quality 

of service. In addition, the research investigated physical factors that affect the UE power 

consumptions in clustered D2D communication. The utilization and the combination of the novel 

concept of HSF and distance between the UE and BS as cluster input data used in this study 

ensures that a CH with high hardware status, good channel quality and less energy consumption 

is selected for each cluster. These features of the selected CH would ensure that good quality of 
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service is offered to the associated CMs. In addition, the power consumption of the CH is 

minimized and this will contribute to the reliability of D2D links. It was shown that in addition to 

the power consumes by the UE’s underlying circuitry, the signal attenuation along the link and 

the number of associated CMs play a great role in its power consumption.  

 

Table 6: Parametric Assumptions 

Parameter Assumption 

Cellular Diameter 1 km 

Number of UE 100 

Bandwidth 10 MHz 

Required transmission power, 𝑃𝑡 ≥ 𝑃𝐿𝑜𝑠𝑠(𝑑𝐵) +  𝑅𝑆𝑆𝐼𝑚𝑖𝑛(𝑑𝐵𝑚) 

Power consumed by the UE’s cellular subsystem, 𝑃𝑜𝑛 853 mW 

Power consumed when the transmitter is active, 𝑃𝑡𝑎 29.9 mW 

Power consumed when the receiver is active, 𝑃𝑟𝑎 25.1 mW 

Frequency  2600 MHz 

Cellular link path loss model Hata model  

D2D link path loss model Log Normal model 

Path loss exponent for cellular link 3.67 

Path loss exponent for D2D link 3.5 

Standard deviation, σ 9 

Constant path loss factor (K) 0.0070 

Noise Power Spectrum Density (N0) -174 dBm/Hz 

Packet Size 200 bytes 
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