
Network Resources Optimization through Regional
Computing forVehicular Big Data
Sajid Ullah Khan 

Prince Sattam Bin Abdulaziz University
Afzal Badshah 

Hamdard University
Meshal Alharbi 

Prince Sattam Bin Abdulaziz University
Tahir Saleem 

Khushal Khan Khattak University Karak
Ghani Ur Reman 

Khushal Khan Khattak University Karak
Faheem Khan 

Gachon University

Article

Keywords: Vehicular big data, regional computing, network optimization, ITS

Posted Date: April 30th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-4306263/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-4306263/v1
https://doi.org/10.21203/rs.3.rs-4306263/v1
https://doi.org/10.21203/rs.3.rs-4306263/v1
https://creativecommons.org/licenses/by/4.0/


1

Network Resources Optimization through Regional Computing for

Vehicular Big Data

Afzal Badshah 1, Tahir Saleem 2, Ghani Ur Reman 3, Sajid Ullah Khan 4,∗,

Faheem Khan 5, and Meshal Alharbi 6

1Department of Computing, Hamdard University, Islamabad Campus,

Pakistan

2,3Department of Computer Science & Bioinformatics, Khushal Khan Khattak

University, Karak, Pakistan

4Department of Information systems, College of Computer Engineering and

Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi

Arabia

5 Department of Computer Engineering, Gachon University, South Korea

6Department Computer Science, College of Computer Engineering and

Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi

Arabia

Abstract: The transportation system is shifting toward an Intel-

ligent Transportation System (ITS). Research shows that a single

Autonomous Vehicle (AV) can generate up to 1 Terabyte (TB) data

daily. Data processing occurs in real-time at the vehicle edge to fa-

cilitate navigation. However, some of this data is sent to the cloud

for real-time navigation support for other AVs. Even slight delays

can have significant consequences for these vehicles. All AV data

is also necessary in the cloud for navigation and training purposes.

Unfortunately, the massive volume of Vehicular Big Data (VBD)

congests public networks, making real-time communication unfeasi-

ble. This study proposes Regional Computing (RC) as a solution,

enabling real-time updates and navigation for AVs. Compared to
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edge servers, RC offers sufficient resources and considerably reduced

delays and costs compared to Cloud Computing (CC). RC substan-

tially reduces communication delay, cost, and network congestion.

Keywords: Vehicular big data, regional computing, network optimization, ITS

1 Introduction

Recently, the automotive industry has witnessed unprecedented growth in data

generation due to the proliferation of advanced sensors, onboard computers, and

connected vehicle technologies [1]. This influx of data, as shown in Figure 1,

termed ’Vehicular Big Data’ (VBD) in this paper, presents a unique opportunity

to extract valuable insights and enhance various aspects of the automotive do-

main. Statistics reveal that approximately 1.3 million individuals worldwide die

in road accidents yearly. A staggering 95% of these accidents can be attributed

to human errors [2], Figure 2 shows the forecast of Autonomous Vehicle (AV).

However, the emergence of AVs offers a promising solution by mitigating human

mistakes and enhancing road safety. These vehicles leverage advanced technol-

ogy to analyze road conditions and surrounding environments, reducing costs

and environmentally friendly transportation [3]. Key players in this field, in-

cluding Tesla [4], Waymo [5], Motional [6], and Ford [7], are actively working on

autopilot vehicle development. The number of AVs on the road is anticipated

to exceed predictions by reaching a significant milestone by 2025 [8].

AVs heavily rely on a multitude of sensors and high-resolution cameras

for detecting and avoiding obstacles, resulting in the generation of massive

amounts of big data [9]. According to statistics, an average AV produces around

1Terabyte (TB) data daily [10]. While the vehicle’s onboard powerful computer

processes a significant portion of this data, specific information must be commu-

nicated with external servers . These vehicles require access to high-resolution



3

Environmental
and Operational

Data

Diagnostic and
Maintenance

Data

Vehicular Big
Data

Sensor Data

Telemetry and
Performance

Data

Location and
Navigation Data

Communication
and Interaction

Data

Figure 1: Vehicular Big Data

maps of the area, road conditions, infrastructure details, and data from other

vehicles regarding road and location-specific information [11]. Additionally, nav-

igation data and local government road policies and regulations are necessary

for optimal functioning. However, the communication of this data with distant

cloud servers can introduce potential delays in services or hinder the ability of

vehicles to upload their sensor-generated big data to remote servers [12].

AVs and Advanced Driving Assistance System (ADAS)s rely on real-time

communication with the cloud for navigation. According to recent reports,

these systems utilize various sensors, such as high-resolution cameras, radar,

lidar, ultrasonic sensors, and GPS, resulting in significant data generation, up

to 4 GB per second [13]. This vast amount of data poses a barrier to the

widespread adoption of autonomous cars. The high-resolution map, metadata,
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(a) Autonomous vehicles market size (b) Autonomous vehicle forecast

Figure 2: Autonomous vehicle statistics

and other vehicle reports must be downloaded to the car’s system. At the

same time, the vehicle-generated data must be uploaded to cloud servers for

navigation and training of other vehicles [14]. Table 1 show the acronyms used

in the article.

Table 1: Acronym Employed in the Article

Symbol Representation Symbol Representation

CC Cloud Computing EC Edge Computing

RC Regional Computing

ITS Intelligent Transport
System

AV Autonomous Vehicle

VBD Vehicular Big Data

ADAS Advanced Driving As-
sistant System

GPS Global Positioning Sys-
tem

BS Base Station HD High Definition

RSU Road Side Units IoV Internet of Vehicles

VANETs Vehicular Ad Hoc Net-
works

DC Data Center

Therefore, the major challenges for the future of autonomous vehicles are:

• The current network infrastructure poses constraints on the efficient mi-

gration, storage, and processing of the vast volumes of data generated by

autonomous vehicles.
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• The anticipated proliferation of autonomous vehicles and their accompany-

ing data streams raise concerns regarding network congestion, particularly

during peak hours. The transmission of identical datasets to the cloud via

public networks may exacerbate this issue.

• Autonomous vehicles necessitate minimal latency to mitigate the risk of

accidents. However, the integration of cloud-based services and Vehicle-to-

Cloud communication introduces additional latency, potentially impeding

the real-time responsiveness crucial for safe autonomous driving.

AVs and ADASs play a central role in shaping the future generation, so they

receive extensive investigation in academia and the market. Despite significant

progress, further exploration is necessary, particularly in handling Vehicular Big

Data (VBD). Western markets are expected to witness the sale of approximately

31 million vehicles equipped with forward-facing cameras by 2025, resulting in

a daily data generation of up to 10 Exabytes that will require processing by

off-board resources [15].

Therefore, the main objectives of this article remain as follows:

• To proficiently handle the voluminous vehicular big data generated by

vehicles on regional servers.

• To transfer the vehicular big data to the cloud during off-peak hours, fa-

cilitating navigation and training for other vehicles without overburdening

the public network.

• To maintain minimal response times for external queries about roads and

relevant information, notwithstanding the significant data output by ve-

hicles.

AVs and ADASs pose an incredible level of complexity, seamlessly connecting

with cloud platforms to create high-definition (HD) maps and store data. They
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Figure 3: Regional computing for Vehicular Big Data (VBD)

integrate various technologies, including sensing, localization, perception, and

decision-making [16].

This article presents the following proposals:

• Implementing regional computing, as shown in Figure 3, to minimize de-

lays between regional servers and vehicles. These servers, strategically

placed within a specific region, cover the entire area [17]. Regionally lo-

cated computing servers will process data within their region, eliminating

the need to transmit high-resolution graphics data to the cloud.

• Storing raw data generated by vehicle sensors initially on regional servers,

which can then be transferred to the vehicular cloud during off-peak hours

for AVs and ADASs navigation and training.

• Enforcing traffic regulations and rules within the Vehicles Regional Com-

puting framework. This server would house collective data and analysis,

ensuring adherence to traffic norms and facilitating efficient operations.

The remaining sections cover the following:

Section 2 provides a comprehensive review of the relevant literature and projects.
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Section 3 introduces an innovative solution: regional computing, specifically tai-

lored to tackle the aforementioned challenges. Section 4 evaluates the effective-

ness of the proposed solution. Section 5 discusses the implementation challenges

associated with the model. Finally, section 6 concludes the work, summarizing

the key findings and implications.

2 Background

Previous studies have predominantly focused on big data analytics, with fewer

discussions on big data transmission and processing. Particularly, processing

and storing of this data for vehicle navigation purposes have received limited

attention. The literature shows that the vehicle produces a massive amount of

data, about 4 TB of data per day [15]. This data is processed in real-time in

the vehicle computers and communicated with Roaside Units (RSU)s and the

cloud.

Exploring the intricate relationship between the Internet of Vehicles (IoV)

and Big Data within vehicular environments, recent research investigates how

IoV facilitates the management of vast data volumes generated by connected

vehicles. Recent research, as highlighted in a study by [18], delves into the in-

tricate relationship between the Internet of Vehicles (IoV) and Big Data within

vehicular environments. This investigation not only explores how IoV enables

the management of vast data volumes generated by interconnected vehicles but

also delves into the benefits of leveraging Big Data for IoV characterization, per-

formance assessment, and communication protocol design. Furthermore, efforts

by [19] to classify vehicular big data and prioritize its handling, as evidenced in

[20], underscore the critical importance of effectively managing and prioritizing

such data to optimize IoV functionality and performance.

Autonomous vehicle data communication predominantly relies on Vehicular
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Ad Hoc Networks (VANETs). However, VANETs encounter challenges in man-

aging large-scale data. To address this, machine learning techniques are utilized

to analyze measurement data from VANETs, aiming to identify unfavorable

communication scenarios [21]. Alternatively, researchers in [22] propose a novel

data movement approach that leverages vehicles themselves for data transfer,

rather than solely relying on the underlying infrastructure. Their findings indi-

cate that this method significantly reduces carbon emissions.

Likewise, in [23], authors propose a big data analytical architecture tailored

for vehicular data. Their approach advocates for a distributed architecture ac-

commodating data processing, storage, and analysis to effectively handle the

immense data volumes. Similarly, another study by authors in [24] challenges

the conventional vehicular communication paradigm involving Roadside Units

(RSUs) and cloud infrastructure. Instead, they advocate for the deployment of

edge computing along roads for communication purposes. This strategy har-

nesses 5G internet connectivity to expedite communication and circumvent de-

lays associated with cloud-based solutions. Similarly, authors in [25] exploit

parked vehicle resources for data processing and transmission, contributing to

the optimization of vehicular data management.

Addressing the challenges of vehicular data management, another investiga-

tion highlighted in [26] reveals that edge servers may not be the most suitable

solution for vehicles, particularly considering their high-speed travel over long

distances. Consequently, there is a growing consensus that the data required

for autonomous vehicles should be distributed regionally. Similarly, [27] pro-

poses an innovative approach that leverages parked vehicles as roadside units,

facilitating collaborative data processing, transformation, and storage between

vehicles and road infrastructure.

In the study conducted by [28], the emphasis was placed on the big data
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generated by vehicles and their communication with the cloud. Employing THz

band technology, the researchers tackled this substantial data volume. Their

findings indicated that this approach enhances adaptability in the communi-

cation environment, offering supplementary traffic information to nearby au-

tonomous vehicles. Additionally, using millimetre waves, as investigated by [29],

facilitates the transportation of larger data quantities compared to traditional

waves.

The evolution of big data within the expansive Internet of Vehicles (IoV)

framework has ushered in unprecedented opportunities for unified transport

management and the development of intelligent transport systems. Addressing

this paradigm shift, the authors of [30] underscore the associated challenges and

propose security requirements alongside a basic system model for the secure col-

lection of big data within the Internet of Vehicles. Moreover, the transformation

of this data’s security presents an ongoing challenge. In response, authors in [31]

put forward a secure system wherein only vehicles registered to the cloud can

transmit or receive data, safeguarding vehicular data from unauthorized access.

Similarly, authors in [32] introduce a software architecture grounded in the

observer mode, with the goal of establishing regional cloud computing data

centers. This architecture prioritizes registering computing resources to a central

registry and employing the registry as the system coordinator. By adopting this

approach, all vehicles gain consistent access to optimal computing resources from

the registry, facilitating efficient data transfer and processing while upholding

real-time performance and stability.

3 Proposed Model

The Intelligent Transportation System (ITS) becomes smarter if we add every

vehicle learning to the joint system. Uploading every vehicle’s data to the cloud
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Base Station-1 Base Station-2 Base Station-N
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D_tran= l/TR

D_pro = D/ TrS D_Hover = R / (V × SINR)

Figure 4: Delay faced by the data communication, WhereDtran is Transmission
Delay, L is the data and TR is the Transmission Rate; Dpr is propagation delay,
D is the distance and TrS is the transmission speed. DHover is hand over delay
of base station, R is acceptable signal quality level for the handover decision,
V denotes the vehicle velocity. SINR refers to the Signal-to-Interference-plus-
Noise Ratio

servers is necessary. However, every vehicle may generate one TB of data per

day, which is impossible for the existing system to transport, process, and store

[33]. As shown in Figure 4, the proposed system aims to process/store the

VBD near the road infrastructure to minimize the delay and cost and laterally

transfer this data to the cloud in off-peak hours. This will cause a minimum

load on the network, as we usually see that the network gets congested in peak

hours and underutilized in off-peak hours.

The proposed method works on three layers: The vehicular Edge Computing

Layer, the Regional Computing Layer, and the Cloud Computing Layer.

The edge computing layer is the vehicle’s server processing the sensor data

in real-time. Regional computing layer process and store the VBD before trans-

ferring it to the cloud. The cloud computing layer store this big data and

coordinate among all vehicles.
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3.1 Vehicular Edge Layer

The vehicle Layer includes the vehicle’s sensors, processing, actuators, and stor-

age system. It also includes the local edge servers and vehicle communication

to surrounding vehicles, RSUs, pedestrians, etc. During driving and obstacle

detection and avoidance, this internal system is used. The sensors, e.g., Li-

dar, Radar, Sonar, cameras, and navigation system, give input to the system.

Along with the internal system, the surrounding vehicles and RSUs also help

the vehicle’s navigation. The internal computers process the data with powerful

algorithms using the already-built data and Artificial Intelligence and direct the

actuators that keep the vehicle on the road.

AVs need 5G internet connections to upload their internal data to the cloud

or regional servers or get the navigation, road status, and other particular spots

and congestion data from the cloud servers. The vehicle is connected to the

base station, communicating its data to the regional layer.

Dt = Dtran +Dprop +Dproc +Dque +Dhovr (1)

Where Dtran represents the transmission delay, Dprop stands for the propa-

gation delay, Dproc signifies the data processing delay, Dque denotes the queuing

delay, and Dhovr corresponds to the handover delay.

The transmission delay (Dtran) accounts for the time taken to transmit

data to the transmission medium. It is influenced by factors such as workload

(W ), channel bandwidth capacity (B), signal-to-noise ratio (SNR), modulation

efficiency (ME), and error rate (ER). The calculation is given by:

Dtran =
W × SNR×ME

B × ER
(2)

The propagation delay (Dprop) represents the time for data to travel on the
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transmission medium from source to destination. It depends on distance (Dis)

and transmission speed (trs), and is calculated as:

Dprop =
Dis

trs
(3)

Data processing delay (Dproc) reflects the time taken for the system to pro-

cess the data. It is determined by the size of the data (S) and the processing

rate of the machine (Pr). The formula is:

Dproc =
S

Pr

(4)

Queuing delay (Dque) indicates the time data spends waiting in a queue for

processing. This delay depends on packet length (L), arrival rate of packets (a),

and packet processing rate (R). The equation is given by:

Dque =
L× a

R
(5)

Handover delay (Dhovr) represents the delay in connecting to the next base

station due to signal strength. It is influenced by acceptable signal quality level

(R), vehicle velocity (V ), and Signal-to-Interference-plus-Noise Ratio (SINR).

The calculation is expressed as:

Dhovr =
R

V × SINR
(6)

These individual components collectively contribute to the overall delay (Dt)

experienced by the data during its journey to the edge server.

Similarly, the data communication cost also increases as the distance the

size of the data increases; we know that.
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Ct = Ctran + Cprop (7)

The equation represents the total cost (Ct) experienced by data to reach the

edge server, which is the sum of transmission cost (Ctran) and propagation cost

(Cprop).

3.2 Regional Layer

Regional servers within a specific region process and store vehicle data. They

act as local hubs for collecting information from vehicles in their vicinity. Each

vehicle within the region sends its data to the regional servers. This data may

include parameters such as GPS location, speed, acceleration, sensor readings,

video, and other relevant information about the vehicle’s status and surround-

ings.

The regional servers process the received vehicle data to extract useful in-

formation. This can involve analyzing traffic patterns, road conditions, and

congestion levels and identifying potential road issues or hazards. The regional

service can provide guidance and information to other regional vehicles based on

the processed data. This can include real-time updates about road conditions,

traffic congestion, accidents, or any relevant information to help drivers make

informed decisions.

The VBD is temporarily stored on this server in peak hours and sent to

the cloud in off-peak hours to minimize the congestion on a public network.

Furthermore, as we can see from equation 1, the delay (Dt) depends on the

distance (D) and workload (L). So, if this big data is processed and stored

locally in peak hours, this minimizes the total delay, and the vehicle will get a

real-time response. Similarly, the public network is not overburdened.

The regional vehicular big data management algorithm, referenced as Algo-
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Algorithm 1 Regional Vehicular Big Data Management Algorithm

Input: Vehicular big data from the region’s vehicles
Output: Decision on data processing and migration
if Network condition is normal AND Network is highly utilized then

Process and store the data at regional servers

end

else

if Data is received during off-peak hours then

if Local processing at regional servers is sufficient then
Process and store the data locally at regional servers

end

else
Transfer the required data to the cloud for processing and analysis
during off-peak hours

end

end

else
Transfer the required data to the cloud for processing and analysis

end

end

if Data is needed for training in another region then
Transfer the data to the cloud for further migration

end
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rithm 1, is designed for autonomous vehicles and accepts inputs such as video,

RADAR, LIDAR, SONAR, GPS, and other sensor data. This algorithm makes

decisions on whether to store and process the data at the regional servers or

transfer it to the cloud for further processing and analysis.

If the network is operating under normal conditions and is highly utilized,

the algorithm proceeds to store and process the data locally at the regional

servers. However, in scenarios where the network conditions deviate from nor-

mal or experience high utilization, the algorithm assesses the timing of data

reception. During off-peak hours, the data is processed and stored at the re-

gional servers, minimizing delay and optimizing real-time response for vehicles.

If local processing is insufficient during off-peak hours, the required data is then

transferred to the cloud for comprehensive processing and analysis.

Additionally, the algorithm accounts for situations where the data is needed

for training in another region. In such cases, the algorithm ensures the seamless

migration of the required data to the cloud, facilitating training processes in a

different geographical context.

Algorithm 2 Vehicular Cloud Processing

Input: Vehicular big data
Output: Real-time insights
if Urgency is high then

Prioritize immediate processing and delivery

end

else
Preprocess data for quality Apply analytics for insights Perform traffic
analysis, road monitoring, and anomaly detection Optimize data storage
and retrieval Collaborate with regional servers and edge computing Pro-

vide real-time updates to vehicles and traffic systems Facilitate data shar-
ing for broader applications Monitor and Manage system performance
Implement mechanisms for data retention and compliance

end
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3.3 Cloud Layer

The regional layer plays an active role in autonomous driving and real-time

operations, while the cloud layer operates passively. The regional layer depends

on the cloud for computing resources and transfers its data to the cloud during

off-peak hours to leverage the cloud’s capabilities for processing and analysis.

Compared to the regional layer, the cloud possesses a vast amount of VBD

from AV worldwide. It serves as a repository for processing and storing this

extensive dataset.

Tcloud =
W

R
(8)

Equation 8 represents the processing time (Tcloud) for collectively processing

all vehicular workload at cloud servers. The variables are defined as follows:

Tcloud is the processing time, W is the total amount of vehicular workload to

be processed, and R is the processing rate of the cloud servers, indicating the

amount of data processed per unit of time.

The total vehicular workload (W ) is calculated as the summation of the

amount of data produced by each vehicle (Wi) from 1 to n, as shown in Equation

9:

W =

n∑

i=1

Wi (9)

Examining equation number 1 reveals that the roundtrip to the cloud will

incur more delay than anticipated. The increased delay is attributed to the cloud

having to process a substantial volume of vehicular big data (W ). Additionally,

the propagation delay and queuing delay experience escalation in tandem with

the growing workload and distance.

From the above working, we can see that cloud analyzes the data to gain



3.3 Cloud Layer 17

insights into traffic patterns, congestion, and road conditions. This informa-

tion can be used to optimize traffic flow and provide real-time updates to au-

tonomous vehicles regarding alternative routes or potential hazards. The cloud

employs machine learning and artificial intelligence algorithms to extract valu-

able information from the data. This enables development and improvement

of autonomous driving algorithms, predictive maintenance models, and other

intelligent systems.

The cloud leverages the vehicular data to enhance safety and security mea-

sures. It can identify and mitigate potential risks, detect anomalies or malicious

activities, and provide early warnings to vehicles and authorities. By analyzing

the data, the cloud can identify areas for improvement in ADAS, such as fuel

efficiency, route planning, and vehicle performance. This optimization can lead

to cost savings and enhanced overall performance. The cloud’s vast dataset

is a valuable resource for researchers, engineers, and developers to study and

innovate in autonomous driving. It enables the exploration of new algorithms,

technologies, and applications to advance the capabilities of autonomous vehi-

cles. This data may also be used to train the autonomous driving styles.

Energy Calculation

Similar to delay, energy consumption is directly proportional to distance, im-

pacting operational costs for data transfer. The energy consumption in the

autonomous vehicles’ communication environment is computed as follows:

Etran =
n∑

i=1

Etran(i, i+ 1) (10)

Here, Etran(i, i+ 1) represents the power consumption between consecutive

stages, with power consumption increasing as the stages progress.
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Where

Etran(i, i+ 1) =
Di,i+1 · Pi

Ti,i+1

(11)

Where Di,i+1 is the distance, Pi is the power and Ti,i+1 is the time. The

above equations show that as the distance increases the energy consumption

increases, which is directly proportional to cost.

Eother = Epro + Estor + Ecol + k (12)

Similarly, Eother represents energy consumption in other activities, including

processing (Epro), storing (Estor), and cooling the data centres (Ecol).

Therefore, the total energy consumption of communication is calculated as

follows:

Etotal = Etran + Eother (13)

Here, Etotal indicates the total power usage, while Etran denotes the total

power consumption on data transfer, encompassing wires, switches, routers, and

other devices.

It is also acknowledged that,

Costoper ∝ E (14)

The power consumption (E) is directly proportional to the operational cost

(Costoper); hence, operational costs increase with rising power consumption.
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4 Evaluation

Cloud-Analytic is a widely utilized simulation tool for simulating cloud net-

works, enabling calculations related to delay and cost assessments. In our pre-

liminary research, we employed this tool to evaluate the impact of VBD on

network performance while considering both cloud and regional computing.

Figure 5: Cloud Layers Delay for Vehicular Big Data

Figure 6: Regional Layers Delay for Vehicular Big Data

4.1 Experimental Setup

The proposed structure of this work consists of two scenarios:

1. In the first, we calculate the delay and cost associated with transferring,

storing, and processing VBD on cloud computing servers.

2. In the second scenario, we examine the delay and cost of transferring,

storing, and processing VBD on regional computing servers.



20 4 EVALUATION

In the first scenario, a Data Center (DC) was established in North America

(Region 1), while AVs were located in various regions worldwide. A workload

of 100 MB was generated to simulate the scenario, and the upload process from

the AVs to the cloud server was initiated.

Each Data Center (DC) was equipped with 204,800 MB of RAM, 100,000,000

MB of storage, 1,000,000 MB of bandwidth, 4 CPUs, and a processing speed of

10,000 Million Instructions Per Second (MIPS). Within the DC were five virtual

machines (VMs) utilizing the available resources. For the simulation, the peak

hours were defined as 01:00 AM to 09:00 PM, while the off-peak hours were set

from 01:00 AM to 09:00 AM. During peak hours, 1,000 AVs sent their requests

to the server concurrently, whereas during off-peak hours, 100 AVs requested

resources simultaneously.

We conducted ten iterations of this experiment, each lasting 60 minutes, and

calculated the average communication delay and cost. The results indicate that

the delay also increases as the distance between autonomous vehicles (AVs) and

the cloud servers increases, as illustrated in Figure 5. Specifically, the delay

varies across different geographical regions, with the highest delay observed in

Africa (499 ms) and Asia (499 ms), followed by Europe (200 ms) and Australia

(200 ms). North America experiences the lowest delay at 50 ms, while South

America encounters a delay of 100 ms. Similarly, the cost escalates with greater

distances, as depicted in Figure 7. The cost values for each region are as follows:

North America ($0.065), South America ($0.192), Australia ($0.228), Europe

($0.192), Asia ($0.196), and Africa ($0.196). These findings underscore the

impact of geographical distance on communication delay and cost in cloud-based

autonomous vehicle systems.

In the second plot, regional cloud servers were established in each corre-

sponding region, and the regional workload was executed on these servers. Each
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Figure 7: Cloud Layers Cost for Vehicular Big Data

Figure 8: Cloud Layers Cost for Vehicular Big Data

Data Center (DC) was equipped with 204,800 MB of RAM, 100,000,000 MB of

storage, 1,000,000 MB of bandwidth, 4 CPUs, and a processing speed of 10,000

Million Instructions Per Second (MIPS). Five virtual machines (VMs) utilized

the available resources within each DC. As in the first scenario, the peak hours

for this simulation were extended from 01:00 AM to 09:00 PM, while the off-

peak hours were defined as 01:00 AM to 09:00 AM. During the peak hours, 1,000

AVs simultaneously sent their requests to the server, while during the off-peak

hours, 100 AVs concurrently requested resources.

To ascertain the average communication delay and cost, we employed a 100

MB workload and executed ten iterations of each regional cloud experiment,

each lasting 60 minutes. The outcomes reveal that having servers located within

the same region significantly reduces both the delay and costs compared to a

centralized cloud server. This reduction in delay and costs can be attributed

to decreased data transmission distances. Specifically, when the data is com-



22 5 DISCUSSION

municated from North America, the delay varies across different regions, with

South America experiencing the lowest delay at 45 ms, followed closely by North

America itself at 50 ms. Australia encounters a delay of 55 ms, while Europe

experiences a delay of 50 ms. Asia and Africa both encounter higher delays,

at 60 ms and 65 ms respectively. Similarly, the cost varies across regions, with

South America, North America, and Europe having the lowest cost at $0.065,

and Australia having a slightly higher cost of $0.07. Asia and Africa experi-

ence the highest costs, at $0.065 and $0.075 respectively. These findings are

illustrated in Figures 8 and 6, demonstrating the results of the second scenario.

5 Discussion

The findings from our study highlight the significant impact of geographical

distance on cloud computing performance for autonomous vehicles (AVs). As

demonstrated by the results, cloud computing from regions such as North Amer-

ica, South America, Europe, Asia, Australia, and Africa incurs varying degrees

of delay and cost. For instance, our analysis reveals that regions closer to the

AVs, such as North America and South America, exhibit lower delays and costs

compared to regions farther away, such as Asia and Africa. This aligns with

the existing literature, which suggests that proximity to regional servers reduces

delay and costs significantly [17].

Overall, our results underscore the importance of considering regional com-

puting as a viable alternative to centralized cloud computing for AVs. By lever-

aging regional computing resources, AVs can experience improved performance

in terms of delay and cost, thereby enhancing their reliability and attractiveness

as a computing option.

However, specific challenges still need to be addressed within the proposed

framework instead of positively impacting delay and cost. The leading chal-
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Table 2: Comparison of Vehicular Edge Computing, Regional Computing, and
Cloud Computing

Parameters Vehicle Edge

Computing

Regional

Computing

Cloud Com-

puting

Vehicles Limited to a
single vehicle

Regional cover-
age

Vehicles around
the world

Area Limited to the
immediate sur-
roundings of the
vehicle

Covers a spe-
cific region or
locality

Global coverage

Delay Very low la-
tency

Medium-level
latency

High-level
latency

Data Data generated
by individual
vehicle

Aggregated
data from re-
gional vehicles

Data from vehi-
cles worldwide

Computation Power Limited com-
putational
capabilities

Moderate com-
putational
capabilities

High computa-
tional capabili-
ties

Storage Limited storage
capacity

Moderate stor-
age capacity

High storage ca-
pacity

Server Mobility Movable (De-
ployed on the
vehicle)

Immovable
(fixed location)

Immovable
(fixed location)

Resource Scalability Low scalability Medium scala-
bility

High scalability

lenges are;

• Firstly, the ownership cost presents a challenge as the Vehicular Industry

must invest significant capital in deploying and operating regional com-

puting servers [34].

• Secondly, regional servers’ data processing at the terminal level raises

security and privacy concerns that must be addressed [35].

• A third challenge is the variation of cyber rules across different regions,

requiring the implementation of region-specific management strategies for

these issues [36].
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Based on the experimentation above and the literature, we comprehensively

compared regional computing and cloud computing for VBD across various pa-

rameters such as delay, area, vehicles, data, servers’ mobility, computational

power, and capacity. The detailed comparison is presented in Table 2.

6 Conclusion

In this article, we introduce the concept of Regional Computing (RC) as a viable

solution for managing Vehicular Big Data (VBD) by shifting the focus from

cloud computing servers to regional infrastructure, particularly during peak

hours. This novel approach not only relieves pressure on the public network

but also enhances real-time response capabilities and optimizes the utilization

of VBD for vehicle training and communication purposes. Our findings under-

score the substantial reduction in workload on the primary network and the

consequent improvement in vehicular communication performance, highlighting

the potential of RC in addressing the challenges posed by VBD management.
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