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Abstract
Background

Despite recent advances in understanding the complex immunologic dysfunction in the tumor
microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma
(HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how
inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective
combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which
has well-established anti-cancer and chemopreventive properties, and its long-term safety as a
phytochemical drug.

Methods

We carried out the western blot and small interfering RNA (siRNA) transfection assay

to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell
cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of
Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to
analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell
immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence,
immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC
receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-
nitroquinoline-1-oxide (4-NQO) oral cancer model.

Results

We found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in
HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion.
Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate
the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-
cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the
expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the
TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of
CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3.

Conclusions

These results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-
level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin
with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.
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Background
Head and neck squamous cell carcinoma (HNSCC), which accounts for more than 6% of all cancers, kills
thousands of people every year worldwide[1–5].Many traditional strategies have been designed to control
cancer invasion, including surgery, chemotherapy, radiation therapy, and targeted therapy[6, 7]. However,
the overall 5-year survival rate has not improved over the past three decades due to the lack of effective
therapeutic options for HNSCC patients with recurrent disease[3, 8, 9]. In addition to traditional standard
strategies including targeted therapy, a better understanding of immune dysfunction in tumorigenesis
and the progression of various cancers including HNSCC has recently led to the promising novel cancer
therapy of immune checkpoint blockade (ICB) with IC inhibitors such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed death ligand-1
(PD-L1)[10, 11]. A few clinical trials have reported favorable results in patients with recurrent/metastatic
HNSCC compared with standard treatment, opening a new avenue for cancer research[12].

Immunotherapies targeting the PD-1/PD-L1 axis have been the most widely investigated and are
approved for various solid tumors including HNSCC[12–15]. Unfortunately, contrary to initial
expectations, anti-PD1/PD-L1 therapy has shown limited response rates[12, 14–16]. Many patients suffer
from primary resistance to IC inhibitors and do not respond to blockade of PD-1/PD-L1 signaling, and
many responders develop acquired resistance after initial responses. Ferris et al.[14] reported that the
overall response rate of anti-PD-1 treatment for recurrent HNSCC with the progression of disease within 6
months after platinum-based chemotherapy setting was 13.3%, although 57.3% of the patients showed
high PD-L1 expression, implying that PD-L1 expression does not guarantee a clinical response. Although
the mechanisms underlying the limited clinical response or resistance are largely unknown, it has been
suggested that compensatory additional inhibitory signaling other than the PD-1/PD-L1 axis is the major
cause of acquired resistance to ICB.

Curcumin, also known as diacetylmethane, belongs to a chemical class of polyphenols derived from the
rhizomes of Curcuma longa L. (turmeric). It has garnered increasing attention in the past two decades
because of its chemopreventive potential due to various bio-functional properties such as anti-oxidant,
anti-inflammatory, and anti-cancer effects; genetic and epigenic modulatory effects[17]; safety and easy
accessibility; and important roles in the prevention and treatment of various illnesses ranging from
cancer to autoimmune[18], neurological[19], and cardiovascular diseases[20], and diabetes[21, 22].
Moreover, recent evidence implies that Curcumin may relieve T-cell-mediated adaptive immune
dysfunction[18, 23], indicating its potential effect on the suppressive tumor microenvironment (TME).

Therefore, we hypothesized that Curcumin has immunomodulatory effects on the HNSCC
microenvironment and investigated how it affects the expression of IC proteins in HNSCC and its
microenvironment.

Materials And Methods
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Cell lines and reagents

The human HNSCC cell lines SNU1076 (larynx), SNU1041 (hypopharynx), and FaDu (hypopharynx) were
obtained from the Korean Cell Line Bank (Seoul, South Korea). Another HNSCC cell line SCC15 (oral
tongue) was kindly donated by Prof. Kim (Ajou University, Suwon, South Korea). Primary human
fibroblasts (hFB), kindly donated by Professor Lee (Chungnam National University, Daejeon, South Korea),
were used as normal epithelial cells. SNU1076 and SNU1041 cell lines were cultured in RPMI 1640
medium (Gibco, Grand Island, NY, USA). SCC15 cells were maintained in Dulbecco’s modified Eagle
medium/Ham’s nutrient mixture F-12 (DMEM/F12; Gibco). Normal hFB and FaDu cells were cultured in
high-glucose DMEM (Gibco). All cell lines were supplemented with 10% fetal bovine serum (FBS) and 100
U/mL penicillin–streptomycin (Gibco). All cell lines were grown at 37°C under an atmosphere of
humidified air with 5% CO2.

Cell proliferation assay

SNU1041 and SCC15 cells were seeded into 96-well plates at a density of 10,000 cells per well in 100 μL
medium. The next day, the cells were treated with various concentrations of Curcumin (0–100 µM; Sigma-
Aldrich, St. Louis, MO, USA) for 24 h. Cell viabilities were measured using the WST-1 cell proliferation
reagent (Roche Diagnostics Corp., Indianapolis, IN, USA) as previously described[24]. The optical density
of each culture well was measured at 450 nm using an enzyme-linked immunosorbent assay (ELISA)
reader.

Small interfering RNA (siRNA) transfection

Cells were seeded at a density of 2 × 105/well in six-well plates and then cultured overnight to achieve
60–70% confluence. The next day, transient transfection was performed using Lipofectamine RNAi MAX
reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s standard protocol. PD-L1 small
interfering RNA (siRNA) (sc-39699) was a pool of three different siRNA duplexes:sc-39699A: (sense: 5′-
GUA GAG UAU GGU AGC AAU Att-3′; antisense: 5′- UAU UGC UAC CAU ACU CUA Ctt-3′), sc-39699B: (sense:
5′-CAA GCG AAU UAC UGU GAA Att-3′; antisense: 5′- UUU CAC AGU AAU UCG CUU Gtt-3′), sc-39699C:
(sense: 5′-GGA GAA UGA UGG AUG UGA Att-3′; antisense: 5′-UUC ACA UCC AUC AUU CUC Ctt-3′). PD-L2
siRNA (sc-39701) was a pool of three different siRNA duplexes: sc-39701A: (sense: 5′- CAG UAC CAA UGC
AUA AUC Att-3′; antisense: 5′-UGA UUA UGC AUU GGU ACUGtt-3′), sc-39701B: (sense: 5′-CAA GUA CCU
GAC UCU GAA Att-3′; antisense: 5′-UUU CAG AGU CAG GUA CUU Gtt-3′), sc-39701C: (sense: 5′-CUA CUG
CAC UUU ACA GAA Utt-3′, antisense: 5′- AUU CUG UAA AGU GCA GUA Gtt-3′). Galectin-9 siRNA (sc-35444)
was a pool of three different siRNA duplexes:sc-35444A: (sense: 5′-GCU UCA GUG GAA AUG ACA Utt-3′;
antisense: 5′-AUG UCA UUU CCA CUG AAG Ctt-3′), sc-35444B: (sense: 5′- GGA UCC UCU UCG UGC AGU Att-
3′; antisense: 5′-UAC UGC ACG AAG AGG AUC Ctt-3′), sc-35444C: (sense: 5′-CCU CUC UGA CCU UUA ACC
Utt-3′; antisense: 5′-AGG UUA AAG GUC AGA GAG Gtt-3′) or negative control siRNA (#SN-1003) was
acquired from Bioneer (Daejeon, Korea). The medium was changed after 6–8 h, and transfected cells



Page 5/27

were incubated at 37°C for an additional 48 h. Western blotting was performed to evaluate the efficiency
and efficacy of the siRNA knockdown.

Western blot analysis

Cells were rinsed with phosphate-buffered saline (PBS) and lysed in RIPA lysis buffer containing 150 mM
NaCl, 1.0% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM Tris, pH 8.0,
and a protease inhibitor cocktail (pH 7.4; Roche Applied Science, Vienna, Austria). The mixture was
centrifuged at 13,000 rpm for 20 min at 4°C. Then protein concentration was determined using a
bicinchoninic acid assay kit (Thermo Fisher Scientific, Waltham, MA, USA). For immunoblotting, the
proteins were denatured by boiling. Equal amounts of protein were resolved by sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis and electrotransferred onto PVDF membranes (Millipore,
Billerica, MA, USA). The membranes were blocked in 5% skim milk for 1 h at room temperature. After
being washed with Tris-buffered saline, 0.1% Tween 20 (TBST), membranes were incubated with primary
anti-human antibodies (Abs) at 4°C. The next day, after four washes with TBST, the membranes were
incubated with the corresponding horseradish peroxidase (HRP)-conjugated secondary Ab (1:1000; Cell
Signaling Technology Inc, Danvers, MA, USA) for 1 h at room temperature. After another four washes, the
proteins were visualized by enhanced chemiluminescence (Bio-Rad, Hercules, CA, USA).

Cell invasion (transwell) assay

Cell invasion were determined using transwell assay. Briefly, transwell membranes (24-well; Costar,
Cambridge, MA, USA) were coated with Matrigel for 6 h for the invasion assay. SNU1041 and SCC15 cells
were transfected for 48h before the transwell assay. After 48h, control or immune checkpoint proteins
siRNA-transfected cells (2 × 105 in 100 µL serum-free medium) were added to the upper chamber. Next, a
600 µL medium containing 10% fetal bovine serum was added to the lower chamber. The chamber was
then incubated for 24-48 h in 5% CO2 at 37°C. Finally, the cells adhering to the upper surface of the
membrane were removed with a cotton swab. The invasion cells, which adhered to the lower surface,
were stained with 0.1% Crystal Violet and counted in four representative fields by light microscopy (200×
magnification). The experiments were repeated three times. The unpaired Student’s t-test was used for
statistical analysis.

T-cell cytotoxicity assay and measurements of cytokine secretion

Geißler et al.[25] reported that tonsils from patients with chronic tonsillitis harbored more PD-1+ T-cells,
pointing to T-cell exhaustion being due to chronic infection and showing dampened function of T cells
compared to peripheral T cells. Therefore, to better mimic the immunologically suppressive TME of
HNSCC, we designed T-cell cytotoxic assay using tonsil derived T-cells obtained from surgical specimen
of a patient who underwent tonsillectomy for chronic tonsillar hypertrophy at the Department of
Otolaryngology-Head and Neck Surgery of Chungnam National University Hospital instead of T-cell
obtained from peripheral blood mononuclear cells (PBMC). This study was approved by the Institutional
Review Board of Chungnam National University College of Medicine (Jung-Gu Daejeon, Korea, IRB
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number: CNUH 2018-06-021 ). CD8+ T-cells were separated by human CD8+ T-cell Isolation Kit (Miltenyi
Biotec, Bergisch Gladbach, Germany). CD8+ T-cells were activated with CD3 antibody (1 μg/ml), CD28
antibody(1μg/ml) and IL-2 (10 ng/ml). To study the mechanism of combined blockade, SNU1041 cells
were treated with isotype control antibody, Curcumin (20 μM), PD-L1 antibody (clone 29E.2A3[10 µg/ml]),
Curcumin (20 μM) combined with PD-L1 antibody (clone 29E.2A3[10 µg/ml]). After 72h of incubation,
supernatants were harvested and IFN-y and Granzyme B were measured by Human IFN-γ and Granzyme
B ELISA Kit (R&D Systems, Minneapolis, MN) following the manufacturer’s instructions. For the T-cell
cytotoxicity assay, each well was washed with PBS twice to remove T-cells, and then the living tumor cells
were fixed and stained with crystal violet solution. The crystal violet was dissolved with 1% SDS and
absorbance were measured at 540 nm using an ELISA reader to quantify tumor cell viability.

Immunohistochemistry

The 4-μm paraffin-embedded tissue samples were soaked first in xylene to remove the paraffin wax and
then sequentially in solutions of 100%, 90%, 80%, and 70% ethanol for rehydration, then heated in 1x
sodium citrate buffer, PH 6.0 for antigen retrieval. For single immunostaining, endogenous peroxidase
activity was blocked in a 1% hydrogen peroxide solution (Sigma-Aldrich, St. Louis, MO, USA) in PBS with
0.3% Triton X-100 for 30 min at room temperature. Nonspecific binding (2% BSA) was blocked. The
sections were incubated with the indicated antibodies at 4°C in a humidified box and then incubated with
the corresponding horseradish peroxidase-conjugated secondary antibody. Finally, 3,3′ diaminobenzidine
(DAB; DAKO) was used to detect these labeled antibodies. The nucleus was stained with hematoxylin.
After rinsing with PBS, the samples were mounted using PermountTM Mounting Medium (Fisher Chemical,
Fair Lawn, NJ, USA).

Immunofluorescence

The paraffin-embedded tissue samples were deparaffinized, rehydrated, and heated in antigen retrieval
Citra solution (pH 6; BioGenex Laboratories, San Ramon, CA, USA). After blocked with 2% bovine serum
album in PBS buffer for 1 hour, the slides were stained with the CD8 (Biorbyt, San Francisco, CA), PD-1
(Thermo Fisher, Waltham, MA, USA), TIM-3 (Bio-Rad, Hercules, California, USA) primary antibody at
4℃overnight. The next day, incubated the slides with fluorochrome-conjugated secondary antibodies
(Alexa 594 anti-rabbit, Alexa 488 anti-mouse, Alexa 647 anti-Rat, Invitrogen, Carlsbad, CA, USA). After
rinsing with PBS, slides were mounted with Vectashield antifade mounting medium with 4’, 6-diamidino-
2-phenylindole (DAPI).

Abs and flow cytometry

Spleen and blood samples were harvested from mice, and single-cell suspensions were stained with the
following conjugated Abs: CD3-APC/Cyanine 7, CD4-PerCP, PD-1-PE, TIM-3-Brilliant Violet 421, CD25-APC
(all from Biolegend, San Diego, CA, USA), CD8-FITC (BD, Bioscience, San Jose, CA, USA), FoxP3-FITC
(Invitrogen, Carlsbad, CA, USA).Intracellular staining of FoxP3 was performed as follows: cells from the
spleen were first stained with surface marker Abs, and then fixed in fixation/permeabilization buffer
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(eBioscience, San Diego, CA, USA), washed, and finally stained for intracellular antigens in 1X
permeabilization buffer. Cells were analyzed on a BD LSRFortessaTM X-20 (BD Biosciences, San Jose, CA,
USA), and data analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Xenograft tumor models

Six-week-old male nude mice were obtained from Orient Bio (Seongnam, South Korea). Mice were used in
accordance with the guidelines of the Institutional Animal Care and Use Committee of Chungnam
National University, which approved of the animal research (Daejeon, South Korea). Mice were injected
subcutaneously with SCC15 cells (1 × 107 in 100μl PBS). After tumors reached 40mm3 (day 0), Curcumin
(0, 50 mg/kg) was administered every other day through intraperitoneal injections. After 22 days, the mice
were sacrificed, and the tumor was harvest. Tumor volumes were calculated according to the following
formula: tumor volume (mm3) = (length) × (width)2 × 0.5, and the tumor weights were recorded.

4-NQO-induced oral tumorigenesis model

The carcinogen 4-nitroquinoline 1-oxide (4-NQO) (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in
DMSO at 50 mg/ml to create a stock solution, which was stored at -20°C and diluted to a final
concentration of 50 µg/ml. To avoid decomposition of 4-NQO, light was avoided.. For the malignant
transformation of the oral mucosa model, a total of 44 female C57BL/6 mice (Narabiotech, Korea), six-
week-old, and weighing 18 to 20 g were used for the studies with 4-NQO. For the drinking water method,
the 4-NQO stock solution was diluted in the drinking water for mice. Fresh 4-NQO water was supplied
every week. After 16 weeks, the drinking water was switched to distilled water, and then the mice were
beginning to treat with corn oil or Curcumin 50 mg/kg by oral gavage for consecutive 6 weeks. The mice
were analyzed for oral lesions and weighed at different times for up to 22 weeks. All the experiments were
conducted in accordance with the approval of the Institutional Animal Care and Use Committee (IACUC)
at Chungnam National University (Daejeon, South Korea).

Statistical analysis

Statistical analyses were performed using SPSS 22 (version 22.0.0.0, International Business Machines,
Armonk, NY, USA) and GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA). The unpaired Student’s
t-test or one-way ANOVA was used for statistical analysis. Data from three independent experiments were
expressed as the mean ± standard deviation. P < 0.05 was considered to indicate a statistically
significant difference. (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001). 

Results
Curcumin reduces the expression of IC proteins (PD-L1, PD-L2, and Galectin-9) which promote cell
viability and cell invasion in HNSCC cell lines
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To investigate the involvement of IC proteins on the anti-cancer effect of Curcumin, we first examined the
expression of IC proteins in HNSCC cell lines. Cell lysates were prepared from human fibroblast-cells
(hFB) and four HNSCC cell lines (FaDu, SNU1041, SNU1076, and SCC15). The expression of IC proteins
PD-L1, PD-L2, and Galectin-9 was upregulated in HNSCC cell lines compared with the human fibroblasts
(Fig. S1A). We initially sought to evaluate the effect of Curcumin on cell viability on HNSCC cell lines.
SNU1041 and SCC15 cells were treated with increasing doses of Curcumin for 24h and cell viability was
analyzed by WST-1 assay. Data analysis revealed that Curcumin inhibited the cell viability of SNU1041
and SCC15 cell line in a dose-dependent manner (Supplementary Fig. S1B, C). Next, to determine the
influence of Curcumin on IC proteins, SNU1041 and SCC15 cells were treated with different
concentrations of Curcumin for 24h. The treatment of HNSCC cells with Curcumin resulted in dose and
time-dependent decreases in IC protein expression in both cell lines (Fig. 1A-D). The finding that the
expression of IC proteins was higher in HNSCC cell lines than in normal cell lines led us to hypothesize
that these IC proteins may drive cell growth. To test this hypothesis, we performed a proliferation assay
after downregulation of IC proteins in SNU1041 and SCC15 cell lines. PD-L1, PD-L2, and Galectin-9
knockdown cells showed markedly decreased cell viability in both cell lines, indicating the contribution of
IC proteins to HNSCC cancer cell viability (Fig. 1E-G). Cell invasion is crucial step in tumor metastasis. To
investigate whether IC proteins affected the malignant behavior of HNSCC, we did the transwell assay.
Significant inhibition of invasion was observed after knockdown of IC proteins by siRNA compared with
the control group (Fig. 1H-J). These results clearly show that IC proteins PD-L1, PD-L2, and Galectin-9
positively promote the invasion of HNSCC cells. The epithelial-mesenchymal transition (EMT), which
refers to changes in cell phenotype from epithelial to mesenchymal morphology, is an essential process
during the initiation and progression of tumorigenesis and metastasis[26]. To investigate whether IC
proteins regulate the EMT, we examined EMT-related proteins (E-cadherin, N-cadherin, Vimentin, and Slug)
by western blotting. Knockdown of IC proteins by siRNA significantly suppressed the EMT, as evidenced
by upregulating the expression of epithelial marker (E-cadherin) and downregulating the expression of
mesenchymal marker (N-cadherin, Vimentin), transcription factor (Slug) (Fig. 1K-M). Together, these data
imply that IC proteins PD-L1, PD-L2, and Galectin-9 regulate cancer cell metastasis by affecting the
actions of EMT-related genes.

Combination of Curcumin and PD-L1 Ab potentiates the cytotoxic effect of CD8+ T-cells and has an
additive effect on IFN-γ and Granzyme B secretion of T cell

Curcumin treatment enhances the ability of effector T cells to kill cancer cells[23]. To determine whether
Curcumin can enhance the impact of CD8+ T cells on immune-mediated cytotoxicity, CD8+ T cells were
isolated from tonsil tissue. CD8+ T-cells were activated by CD3, CD28 and IL-2 (Fig. 2A) and incubated
with SNU1041 cells pretreated with Curcumin for 24 h. Activated CD8+ T-cell and SNU1041 cells were co-
cultured for another 3 days. Although activated CD8+ T cells could inhibit tumor cell growth in the
absence of Curcumin, Curcumin-treated groups showed significant inhibitory effects on tumor growth.
Simultaneously, the combination of Curcumin with PD-L1 Ab showed additional treatment efficacy
compared with control, Curcumin treatment, or PD-L1 Ab group (Fig. 2B). These results showed that the
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combination of Curcumin with PD-L1 Ab potentiates the effect of CD8+ T-cells-mediated cancer cell
killing. Moreover, combined PD-L1 blockade and Curcumin treatment resulted in increase the secretion of
IFN-γ, Granzyme B compare with the other three groups (Fig. 2C). To avoid confusion between Curcumin’s
anti-tumor growth effect, PD-1/PD-L1 mediated tumor immune escape, and CD8+ T cell killing effect, we
calculated the difference between these groups. These results show that the combination of Curcumin
with PD-L1 Ab potentiates the effect of CD8+ T cells-mediated cancer cell killing and increased the
secretion of IFN-γ and Granzyme B.

Administration of 4-NQO induces an aggressive oral squamous carcinoma and overexpression of PD-1
and TIM-3 in peripheral lymphatic tissue in vivo

To evaluate the effect of the Curcumin on the anti-tumor immunity response in vivo, we established the 4-
NQO-induced carcinogenesis model in immunocompetent C57BL/6 mice. The 4-NQO oral cancer model is
well-established and mimics the pathology of human oral cancer[27-29]. In this study, to induce
tumorigenesis in the mouse oral cavity, C57BL/6 mice were given 4-NQO (50 μg/mL) in drinking water for
16 consecutive weeks (or water in the absence of 4-NQO as a control) and then regular water until week
22 (Fig. 3A). The size and number of these lesions continued growing progressively even after 4-NQO
withdrawal. Representative pictures of oral lesions and hematoxylin and eosin (H&E) staining showed
that at week 22, all 4-NQO-treated mice (100%) developed at least one or more large oral squamous cell
carcinoma, supporting the usefulness of this chemical carcinogenesis model for investigating the
development of oral cancer (Fig. 3B, C)[30]. We first examined the potential role of the
immunosuppressive PD-1 and TIM-3 signaling in oral carcinogenesis model in immunocompetent
C57BL/6 mice. Flow cytometry analysis of the spleen and blood from 4-NQO-treated mice revealed that
the expression of PD-1 and TIM-3 were upregulated on both CD4+ T-cells and CD8+ T-cells compared to
the control group (Fig. 3D, E). Regulatory T-cells (Tregs) are a subpopulation of T-cells that suppress the
immune response in cancer cells. Flow cytometry analysis of the spleen showed that the percent of Tregs
in HNSCC mice was increased in the 4-NQO-treated group (Fig. 3F). At the same time, the percentage of
PD-1+ and TIM-3+ Treg was also upregulated in the 4-NQO-treated group (Fig. 3G). These data imply that
overexpression of PD-1 and TIM-3 on CD4+ T-cells, CD8+ T-cells and Tregs may positively enhance the
immunosuppressive activity of tumors.

Curcumin reduces tumor formation and growth in 4-NQO oral carcinogenesis model and inhibits IC
proteins (PD-L1/PD-L2/Galectin-9) in xenograft mouse model

To investigate the impact of Curcumin on immunocompetent mice, C57BL/6 mice were exposed to 4-
NQO for 16 weeks and then treated with Curcumin 50 mg/kg by oral gavage for consecutive 6 weeks (Fig.
4A). Mice treated with Curcumin had increased weight and overall survival compared to the control group
(Fig. 4B, C). Representative images of the oral lesions in the control and Curcumin-treated groups showed
that Curcumin treatment led to a noticeable reduction in tumor size and the number of 4-NQO-induced
lesions (Fig. 4D), accompanied by a less malignant and invasive phenotype in the lesions compared with
the control group. The tissue sections were stained with H&E for detailed histopathological analysis.
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Curcumin-treated mice had less-invasive oral carcinoma lesions, but more low-grade dysplasia in their
tongues than the control group (Fig. 4E). At the same time, Curcumin treatment reduced both the number
and size of lesions induced by 4-NQO (Fig. 4F, G). Our findings demonstrated that Curcumin had growth
inhibitory effects and led to less tumor formation and a transformative phenotype in the 4-NQO-induced
model. Moreover, we established an HNSCC xenograft mouse model using SCC15 cell lines. The tumor
volumes were significantly decreased after Curcumin treatment (Supplementary Fig. S2A). The
expression of IC proteins PD-L1, PD-L2, and Galectin-9 in tumor tissue from the Curcumin group was
significantly downregulated compared with the control group (Supplementary Fig. S2B). We also
confirmed the downregulated expression of IC proteins in the Curcumin group by western blotting
(Supplementary Fig. S2C). Our findings collectively reveal that Curcumin not only regulates tumor
sensitivity to immune cell-mediated tumor killing through the suppression of PD-L1 expression but also
inhibits the expression of PD-L2 and Galectin-9 in HNSCC cells.

Curcumin restores effector T cells by modulating the expression of PD-1 and TIM-3 on CD4+ or CD8+ T
cells or CD4+CD25+FoxP3+Tregs in 4-NQO oral carcinogenesis model

To further explore the effects of Curcumin on the T lymphocyte subpopulation in the immune system, we
collected cells from the spleen and blood of 4-NQO-induced tumor-bearing mice. Curcumin treatment
increased the proportion of CD4+ and CD8+ T cells in the spleen and blood, which increased the immune
response to tumors (Fig. 5A, B). PD-1 and TIM-3 on the surface of immune cells are IC molecules that
mediate the immune escape of tumor cells. We investigated the expression of PD-1 and TIM-3 on CD4+ T
cells and CD8+ T cells by flow cytometry. Curcumin treatment led to a substantial reduction in PD-1+CD4+

T cells in both the blood and spleen and a decreased percentage of TIM-3+CD4+ T cells in the blood (Fig.
5C, D). In addition, Curcumin-treated mice also had a significantly decreased percentage of PD-1+ CD8+ T
and TIM-3+CD8+ T cells in both blood and the spleen (Fig. 5E, F). These findings imply that Curcumin can
restore effector T cells by modulating the expression of PD-1 and TIM-3 on CD4+ or CD8+ T-cells. Next, we
determined the role of Curcumin in the 4-NQO-induced anti-tumor immune response through the
regulation of Tregs, which play roles in suppressing the immune response. We examined the population
of Tregs in each group by flow cytometry. The population of CD25+FoxP3+ in CD4+ T cells was
significantly suppressed in Curcumin-treated mice compared with control mice (Fig. 5G). These results
imply that Curcumin can effectively inhibit tumor growth by downregulating Tregs in mice. FoxP3+ Tregs
co-expressing PD-1 and TIM-3 are highly immunosuppressive, including a specialized subset of tissue
Tregs in breast cancer models[31]. We investigated whether the expression of PD-1 and TIM-3 on Tregs
was also reduced by Curcumin treatment. The percentage of PD-1+ and TIM-3+ on Tregs was significantly
decreased in the Curcumin treatment group (Fig. 5H, I). These data indicate that Curcumin reduces not
only Tregs itself but also decreases the expression of IC receptors PD-1 and TIM-3 on Tregs, implying that
Curcumin may be an alternative treatment for Treg-mediated immunosuppression in HNSCC.

Curcumin suppresses the expression of IC proteins and promotes the expression of IFN-γ and Granzyme
B in 4-NQO oral carcinogenesis model
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We assessed the expression of IC proteins PD-L1, PD-L2, and Galectin-9 in 4-NQO-induced tongue cancer
tissues by western blotting and immunohistochemistry analysis. The expression of PD-L1, PD-L2, and
Galectin-9 in the Curcumin group was downregulated compared with the control group in tumor tissues
(Fig. 6A, B). Next, we examined the effects of Curcumin treatment on locoregional immunity in vivo. The
confocal assay showed that the Curcumin group led to a decreased percentage of CD8+ PD-1+ and CD8+

TIM-3+ in TILs compared with the control group (Fig. 6C). We also analyzed the expression of IFN-γ,
Granzyme B, which are produced by cytotoxic T cells. We observed a significant increase in the
expression of IFN-γ, Granzyme B in Curcumin-treated mice compared with the control group (Fig. 6D).
These data show that Curcumin therapy not only effectively reduces the expression of IC molecules on
cancer cells but also upregulates T-cell populations in peripheral tissues in vivo, indicating both
locoregional and systemic immune activation in mice with carcinogen-induced early lesions.

Discussion
Recurrence is a very challenging issue in cancer treatment, and one of the reasons that cancer treatment
is so difficult and can have a poor prognosis[32–34]. Recently, the Korean Society of Thyroid-Head and
Neck Surgery (KSTHNS) developed the guideline about surgical treatment of HNSCC to improve the
patients’ survival[35]. The reasons for HNSCC recurrence are mainly due to its high propensity for
intrinsic, spatial, and acquired resistance to chemotherapeutic agents, radiotherapy, and anti-epidermal
growth factor receptor (EGFR) mAb[36, 37]. Although ICB with PD-1/PD-L1 blockade is an alternative for
overcoming recurrence and resistance that has shown great promise for the treatment of a variety of
advanced cancers including HNSCC, a significant durable response is limited to a minority of patients,
and eventually, most of these patients experience relapse of the disease[14]. While the mechanism
underlying resistance to ICB has not been fully elucidated, accumulating evidence implies that
immunosuppressive signaling receptors such as TIM-3, which can impair cytotoxic T-cell functionality,
play an important role in acquired resistance[31, 38]. Therefore, combination strategies, not only ICB with
conventional standard therapies such as cytotoxic or targeted agents and radiotherapy but also multiple
IC inhibitors and their ligands in the TME, have been tested in various cancer subtypes[39]. Preliminarily,
the combination has increased the response rate in a few clinical trials, but the immune-related adverse
events commonly associated with checkpoint blockers, such as diarrhea, colitis, myocarditis and
endocrine disorders, are more severe in these patients[40–42].

Curcumin is one of the best characterized chemopreventive agents. It has strong anti-oxidative, anti-
inflammatory and anti-septic properties and has been widely used for a long time in traditional medicine,
implying that similar to many phytochemicals, it is safe in the human body and side effects are rare[22].
Recently, Curcumin has emerged as a potent anti-cancer agent that targets several biological pathways
and processes in various cancers, including mutagenesis, cell cycle, oncogene expression, angiogenesis,
metastasis, and cell death signaling such as apoptosis and autophagy without adverse effects on normal
tissue[22]. Moreover, in combination with conventional anti-cancer therapies such as chemotherapy and
radiation, Curcumin enhances efficacy by sensitizing cancer cells to their cytocidal effects and reduces
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treatment-associated side effects including cardio-, hepato-, nephro- and neuroprotective properties by
balancing reactive oxygen species or inflammatory reactions[18–23]. In addition to its direct effects on
cancer cells described above, emerging evidence has shed light on the immune-modulating effects of
Curcumin that may play a role in its anti-tumor effects[23]. Although, the immune-modulatory actions of
Curcumin have been shown in a wide range of inflammatory and autoimmune diseases such as arthritis,
colitis and hepatitis, its immunomodulatory capacity in the TME has emerged relatively recently.
Research has shown that Curcumin not only enhances tumor antigen-specific T cells via reversal of
tumor-induced immunosuppression but also enhances cytotoxic T cells by acting directly on immune cell
dysfunction, which is one of the major mechanisms of tumor escape from immune surveillance via the
signal transducer and activator of transcription 3 and nuclear factor kappa B (NF-kB) signaling
pathways[23, 43, 44]. Lim et al.[45]showed inhibition of inflammation-mediated PD-L1 expression by
Curcumin, and Liao et al.[46] showed decreased PD-L1 expression following immunosuppression in cell
populations, such as Tregs and myeloid-derived suppressor cells, in a murine oral cancer model after
Curcumin treatment. Hayakawa et al.[44] showed that Curcumin increases the induction of tumor
antigen-specific T cells by restoring T-cell stimulation, implying that the combination of PD-1/PD-L1 Ab is
attractive for the development of effective ICB. Given the various biologic effects, we hypothesized that
Curcumin, as well as PD-L1, may affect the simultaneous expression of other IC proteins on immune cells
and its ligands on tumor cells. We hypothesized that Curcumin could be an alternative to overcoming
disease progression or relapse due to resistance to immunotherapy. To this end, we evaluated the effects
of Curcumin on the expression of multiple IC ligands on tumor cells.

We demonstrated that PD-L1, PD-L2, and Galectin-9 induced HNSCC cell invasion via EMT activation,
indicating the intrinsic roles of these IC ligands in HNSCC independent of the interaction with immune
cells. In addition, by showing that Curcumin simultaneously inhibits PD-L1, PD-L2, and Galectin-9, for the
first time, we show that Curcumin can simultaneously inhibit IC ligands other than PD-L1. Our data have
clinical significance in that recent advances have revealed that bidirectional regulation may exist between
EMT status and IC ligands, especially PD-L1 expression that ultimately leads to tumor immune escape.
Our data also indicate that PD-L1 signaling plays an important role in the maintenance of EMT status in
HNSCC, in accordance with similar reports in solid tumors such as renal cell carcinoma, breast cancer,
hepatocellular carcinoma, esophageal cancer, and glioblastoma[47, 48]. Although far less investigated
than PD-L1, PD-L2 reportedly contributes to T-cell exhaustion by interacting with the PD-1 receptor,
implying functional relevance to the TME. A few clinical papers have shown that PD-L2 expression is
independently associated with clinical response in anti-PD-1-treated patients, indicating that the effect of
ICB may be related partly to blockade of PD-1/PD-L2 interactions. Therefore, targeting both PD-1 ligands
may provide additional clinical benefit[49]. The effect of PD-L2 intrinsic signaling on the tumor itself has
been much less investigated than that of PD-L1[50]. However, recently Ren et al.[51] suggested that PD-L2
intrinsically promotes tumor invasion and metastasis via RhoA and autophagy pathways. Consistent
with the data, we demonstrated that Curcumin can reduce intrinsic PD-L2 expression independent of
immune cells, thereby inhibiting the EMT in HNSCC cells. Although PD-L2 expression in HNSCC tumor
tissue has been shown[52], we report for the first time the association of PD-L2 with the EMT in HNSCC.
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Our data also delineate the role of PD-L2 as an immunosuppressive and cancer-promoting signaling
molecule. In this study, we showed that suppression of Galectin-9 decreased the EMT in HNSCC cells.
However, because the role of Galectin-9 apart from tumor immune escape has not yet been studied in
HNSCC[53], further validation and mechanistic studies about associated molecular pathways are needed.
Our findings support previous findings that Galectin-9 expression in solid tumors may be linked to tumor
cell adhesion or metastasis in various cancers[54, 55], and Galectin-9 is expressed significantly more in
advanced cancer stages compared to early stages and expressed by tumor-infiltrating lymph nodes[55,
56]. Moreover, mechanisms underlying the regulation of multiple IC ligands are need more detailed study.

The nude mouse model was used to investigate the effect of Curcumin on the expression of ligand in
HNSCC cells independently of immune cells. In this HNSCC xenograft model, we do not think that
Curcumin can inhibit tumor progression by targeting these molecules alone, as its anti-cancer properties
are through other multiple signaling pathways[22]. However, the in vivo model validates the IC ligand-
inhibiting effects of Curcumin evident in the in vitro results.

To further evaluate the effects of Curcumin on the TME with regard to ICB, we used the 4NQO-induced
syngenic murine tongue squamous cell carcinoma model, which mimics the carcinogenesis of HNSCC.
As expected, the model showed a significantly immune-suppressive TME, consisting of increased
expression of inhibitory IC proteins such as PD-1 and TIM-3 in lymphocytes. The increase in both
CD25+FoxP3+ Treg cells and PD-1+ and TIM-3+ Treg expression is associated with more suppressive
activity[57]. Curcumin treatment not only reduces the size and number of lesions but also may reduce the
risk of invasive cancer and increase the proportion of precancerous lesions, implying that Curcumin
functions as a chemopreventive agent that inhibits cancer initiation and may also reduce cancer
progression[58].

Our study differs from previous studies in that it focused on the effects of inhibiting multiple IC proteins
via not only receptors on T cells but also its ligands on tumor cells simultaneously, as a mechanism to
restore CD8+ T-cell dysfunction. Given that exhausted T cells exhibit defective proliferative capacities and
cytokine production, and inert lytic function[31], Curcumin treatment successfully reinvigorates T cells of
the HNSCC TME in that it increases total CD4+ and CD8+ cells in the periphery implying T-cell
proliferation; CD8+ TILs are a subset of T cells that directly target tumor cells, and are a good prognostic
factor in all HNSCC[59]. Also, Curcumin treatment increases the secretion of cytokines such as IFN-y and
Granzyme B, reflecting the effector functions of cytotoxic T cells. Sakuishi et al.[38] reported that TIM-
3+PD-1+ TILs exhibit the most severe exhausted phenotype as defined by the failure to proliferate and
produce IL-2, TNFa, and interferon gamma (IFN-γ); thus, combined targeting of the TIM-3 and PD-1
pathways is more effective in controlling tumor growth than targeting either pathway alone. Some
studies have reported inhibition of PD-L1 expression by Curcumin as described above, but this is the first
study of the effect of Curcumin on the Galectin-9/TIM-3 axis in solid tumors.

Moreover, we demonstrated that Curcumin-induced restoration of T-cell function may be due to the effect
of Curcumin inhibiting the PD-1 and TIM-3 axis in CD4+ and CD8+ T-cells not only at the tumor site (TILs)
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but also in the periphery (blood and spleen). These data highlight the clinical usefulness of Curcumin in
upregulating TIM-3, which is a well-known regulator of CD8+ T-cell exhaustion[38] and has been shown to
mediate adaptive resistance to anti-PD-1 in models of non-small cell lung cancer and HNSCC[60]. Jie et
al.[61]showed that the frequency of PD-1+ and TIM-3+ cells was significantly increased on CD8+ TILs
after cetuximab treatment, which is an mAb to EGFR and the most well-known molecular target agent in
HNSCC. The PD-1 and TIM-3 axis is associated with resistance to chemotherapy. The combination of
cetuximab with PD-1 or TIM-3 should be considered to improve clinical outcomes for HNSCC patients. In
line with these data, clinical trials are currently underway to elucidate the role of combined blockade of
TIM-3 and PD-1/PD-L1 in various advanced and/or metastatic solid tumors (Registration Nos.
NCT03680508, NCT03708328, and NCT03961971 at ClinicalTrials.gov). Mechanistically, CD8+ T cells
that express TIM-3 have diminished proliferation capacity, reduced IL-2 and IFN-γ expression, and reduced
perforin and/or Granzyme B secretion compared to CD8 T cells that express PD-1[62, 63]. Thus, increased
TIM-3 expression after anti–PD-1/PD-L1 treatment may serve as a compensatory mechanism of T-cell
exhaustion[38]. Also, we showed PD-1 and TIM-3 inhibition on peripheral Treg cells by Curcumin
treatment. This is the first study demonstrating the effect of Curcumin on PD-1 and TIM-3 expression on
FoxP3+ Treg cells. These data are supported by previous studies showing that the majority of
intratumoral CD25+FoxP3+ Tregs express TIM-3. Importantly, TIM-3+ Tregs express higher levels of IL-10
compared to TIM-3− Tregs and a higher capacity for inhibiting IFN-γ and TNFα secretion by effector T-
cells[64–67].

We do not consider Curcumin’s inhibitory effects or binding affinity for IC proteins to be superior to those
of specifically engineered mAbs. However, we showed that Curcumin can simultaneously inhibit both PD-
1 and TIM-3 expression, which is important for the reinvigoration of exhausted T cells and an important
adaptive escape mechanism from anti-PD-1 inhibition, respectively. Another advantage of Curcumin
shown in our study is that Curcumin inhibits not only IC proteins on T-cell subsets but also its ligands on
tumor cells, whereas existing ICB acts on either the ligand (of a tumor cell or antigen-presenting cell) or IC
protein of immune cells. Although additional large-scale randomized clinical trials are needed, our study
provides a rationale for combining Curcumin with conventional standard therapeutic modalities including
approved IC inhibitors such as nivolumab, pembrolizumab, and durvalumab. This strategy may provide
multi-faceted, sustained anti-cancer effects in patients with limited responses to ICB, and even those who
fail to respond to ICB and molecular targeted therapy.

Conclusion
In conclusion, we showed that Curcumin restores T-cell dysfunction via multiple and multi-level IC
suppression. Given the adverse reactions caused by ICB blockade by specific mAbs, the well-established
safety of Curcumin as a phytochemical and its anti-cancer effects underscore the potential benefits of
Curcumin when used as a combination therapy with conventional targeted agents including ICB or in
post-treatment chemoprevention.
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Abbreviations
TME Tumor microenvironment

HNSCC Head and neck squamous cell carcinoma

ICB Immune checkpoint blockade

PD-L1 Programmed death-ligand 1

TILs Tumor-infiltrating lymphocytes

PD-1 Programmed cell death protein 1

TIM-3 T-cell immunoglobulin and mucin-domain 3

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

PBMC Peripheral blood mononuclear cells

hFB human fibroblast-cells

EMT Epithelial-mesenchymal transition

Tregs Regulatory T-cells

4-NQO 4-nitroquinoline 1-oxide

KSTHNS Korean Society of Thyroid-Head and Neck Surgery

EGFR Epidermal growth factor receptor

NF-kB Nuclear factor kappa B

IFN-γ Interferon gamma
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Figure 1

Curcumin suppresses IC proteins expression in a dose and time-dependent manner which promote the
proliferation, invasion and regulates epithelial to mesenchymal transition (EMT) of HNSCC cell lines.
SNU1041 (A) and SCC15 (B) cells were treated with different concentration of Curcumin (0-80 μM) for
24h. Also, SNU1041 (C) and SCC15 (D) cells were treated with 40 μM of Curcumin at different times (0-24
h). The expression of immune checkpoint proteins was detected by western blot assay. (E-G) SNU1041
and SCC15 cells were transfected with siRNA of PD-L1, PD-L2, and Galectin-9 or negative control siRNA
for 48 h, cell viability was determined by WST-1 assay. (H-J) After 48h of transfection, the cells were
allowed to migrate for 48h in chambers with matrigel (cell invasion). Stained cells were counted under a
light microscope. (K-M) Also, after 48h of transfection, the expression of, E-cadherin, N-cadherin,
Vimentin, and Slug was examined by western blot assay. The data represent the means ± standard
deviation of three independent experiments. * P<0.05, ** P<0.01, and *** P<0.001.
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Figure 2

The effects of combination of Curcumin with PD-L1 Ab on CD8+ T-cell-mediated cancer cell killing and
cytokines secretion. CD8+ T-cells were separated from the human sample. (A) The Representative
pictures of T cell clumping after activation. (B) SNU1041 cells pretreated with Curcumin were co-cultured
with or without CD8+ T-cells (Left). SNU1041 cells were treated with Curcumin (20 μM), PD-L1 antibody
(10 µg/ml), Curcumin (20 μM) combined with PD-L1 antibody (10 µg/ml). The difference in residual
tumor cells survival rate between T-cells (+) and T-cells (-) (Right). The crystal violet was dissolved with
1% SDS and absorbance was measured at 540 nm to quantify tumor cell viability. (C) The cytokine IFN-y,
Granzyme B secretion were measured by the ELISA kit. The data were represented as mean ± SEM.
*P<0.05, **P<0.01, and ***P<0.001.
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Figure 3

Tumor formation induced by 4-NQO and upregulation of PD-1 and TIM-3 in 4-NQO treated mice group. (A)
C57BL/6 mice were administered either water (control) or 4-NQO (50 μg/ml) in the drinking water
containing 1% sucrose for 16 weeks. Then all mice were reverted to regular water until 22 weeks. (B, C)
Representative oral lesions and H&E staining in control and 4-NQO treated group mice (0 weeks, 16
weeks, 22 weeks). (D, E) Spleen and blood samples from control and 4-NQO treated mice were analyzed
by flow cytometry. Representative images of PD-1 and TIM-3 on CD4+ and CD8+ T-cells in control and 4-
NQO treated mice group. (F, G) Representative flow cytometry images of CD4+CD25+FoxP3+ Treg and
percent of PD-1+ and TIM-3+ in the CD4+CD25+FoxP3+ Treg population from control and 4-NQO-treated
mice. The data were represented as mean ± SEM. *P<0.05, **P<0.01, and ***P<0.001.
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Figure 4

Curcumin induces prolonged survival of the C57BL/6 mice and reduces the tumor burden in the 4-NQO-
induced oral carcinogenesis model. (A) Experimental scheme. C57BL/6 mice were administered 4-NQO
(50 μg/ml) in the drinking water for 16 consecutive weeks. At the end of 4-NQO exposure, mice were daily
treated with either vehicle (control) or Curcumin by oral gavage for 6 consecutive weeks. (B) Control and
Curcumin-treated groups were weighed every other day. (C) The survival rate of control and Curcumin-
treated group. (D, E) Representative oral lesions and H&E staining of control and Curcumin-treated group
mice at 16 weeks and 22 weeks. Tumor lesions were classified into low-grade dysplasia, high-grade
dysplasia, preinvasive carcinoma, papilloma, invasive carcinoma. (F, G) Quantitative analysis of the
lesion per tongue and lesion size (mm) at the end of Curcumin treatment (week 22). The data were
represented as mean ± SEM. *P<0.05, **P<0.01, and ***P<0.001.
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Figure 5

Curcumin reduces the expression of PD-1 and TIM-3 on CD4+, CD8+ T cells and Tregs in both blood and
spleen. (A, B) Flow cytometric dot plot presentation shows CD4+ and CD8+ T-cell populations in the
spleen and blood. (C-F) Representative flow cytometry images of PD-1 and TIM-3 expression on CD4+
and CD8+ T-cells in blood and spleen. (G) Representative images of CD25+FoxP3+ Tregs in the CD4+ T-
cell population from the spleen. (H, I) Percent of PD-1+ and TIM-3+ cells in the CD4+CD25+FoxP3+ Treg
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population from control and Curcumin treated mice. The data were represented as mean ± SEM. *P<0.05,
**P<0.01, and ***P<0.001.

Figure 6

Curcumin downregulates the expression of IC ligands and its related receptors in TIL and increases the
expression IFN-γ and Granzyme B. (A, B) The expression of IC ligands PD-L1, PD-L2, and Galectin-9
assessed from the cancer tissues of control and Curcumin-treated group by western blot assay and
immunohistochemical staining. (C) Confocal assay of CD8+ PD-1+ and CD8+ TIM-3+ in TIL from control
and Curcumin group. (D) Immunohistochemical images for IFN-γ and Granzyme B from the cancer tissue
of control and Curcumin-treated groups. All data were represented as mean ± SEM. Statistical
significance was analyzed using Student’s t-tests. *P<0.05, **P<0.01, and ***P<0.001.
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