1. Huisman, J. et al. Cyanobacterial blooms. Nat Rev Microbiol 16, 471–483 (2018).
2. Chorus, I. & Welker, M. Toxic Cyanobacteria in Water; A Guide to Their Public Health Consequences, Monitoring and Management; Second Edition. (2021).
3. Bullerjahn, G. S. et al. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54, 223–238 (2016).
4. Environmental Protection Agency (EPA). 2017 National Lakes Assessment - Infographic. https://www.epa.gov/system/files/documents/2022-09/infographic_9_7_22b.pdf (2022).
5. Pearl, H. W. & Huisman, J. Blooms Like It Hot. Science (1979) 320, 57–58 (2008).
6. Chapra, S. C. et al. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. Environ Sci Technol 51, 8933–8943 (2017).
7. Paerl, H. W. et al. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems. Environ Sci Technol 50, 10805–10813 (2016).
8. Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E. & Orihel, D. M. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Technol 50, 8923–8929 (2016).
9. Redfield, A. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. in Daniel RJ (ed) James Johnstone memorial volume 176–192 (University Press of Liverpool, 1934).
10. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).
11. Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Phytoplankton stoichiometry. Ecol Res 23, 479–485 (2008).
12. Dick, G. J. et al. The genetic and ecophysiological diversity of Microcystis. Environmental Microbiology vol. 23 7278–7313 Preprint at https://doi.org/10.1111/1462-2920.15615 (2021).
13. Van De Waal, D. B. et al. The ecological stoichiometry of toxins produced by harmful cyanobacteria: An experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12, 1326–1335 (2009).
14. Pimentel, J. S. M. & Giani, A. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80, 5836–5843 (2014).
15. Utkilen, H. & Gjolme, N. Toxin Production by Microcystis aeruginosa as a Function of Light in Continuous Cultures and Its Ecological Significance. Appl Environ Microbiol 58, 1321–1325 (1992).
16. Phelan, R. R. & Downing, T. G. A growth advantage for microcystin production by microcystis PCC7806 under high light. J Phycol 47, 1241–1246 (2011).
17. Hellweger, F. L. et al. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science (1979) 376, 1001–1005 (2022).
18. Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6, (2011).
19. Dziallas, C. & Grossart, H. P. Increasing oxygen radicals and water temperature select for toxic microcystis sp. PLoS One 6, (2011).
20. Guljamow, A. et al. Diel variations of extracellular microcystin influence the subcellular dynamics of rubisco in microcystis aeruginosa pcc 7806. Microorganisms 9, (2021).
21. Barchewitz, T. et al. Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806. Environ Microbiol 21, 4836–4851 (2019).
22. Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol 79, 2642–2647 (2013).
23. Agha, R. & Quesada, A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 6, 1929–1950 (2014).
24. Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. PNAS 101, 568–573 (2003).
25. Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).
26. Welker, M., Von Döhren, H., Täuscher, H., Steinberg, C. E. W. & Erhard, M. Toxic Microcystis in shallow lake Müggelsee (Germany) - Dynamics, distribution, diversity. Arch Hydrobiol 157, 227–248 (2003).
27. Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N. & Hiroishi, S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol Lett 266, 49–53 (2007).
28. Li, J., Xian, X., Xiao, X., Li, S. & Yu, X. Dynamic characteristics of total and microcystin-producing Microcystis in a large deep reservoir. Environmental Pollution 335, (2023).
29. Merder, J. et al. Geographic redistribution of microcystin hotspots in response to climate warming. Nature Water 1, 844–854 (2023).
30. Beaver, J. R. et al. Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: A preliminary evaluation. Harmful Algae 36, 57–62 (2014).
31. Yuan, L. L. & Pollard, A. I. Using National-Scale Data to Develop Nutrient-Microcystin Relationships That Guide Management Decisions. Environ Sci Technol 51, 6972–6980 (2017).
32. Buley, R. P., Correia, H. E., Abebe, A., Issa, T. B. & Wilson, A. E. Predicting microcystin occurrence in freshwater lakes and reservoirs: assessing environmental variables. Inland Waters 11, 430–444 (2021).
33. Wood, S. N. Generalized Additive Models: An Introduction with R. (CRC Press, A Chapman & Hall Book, 2017).
34. Rigby, R. A. & Stasinopoulos, D. M. Generalized Additive Models for Location, Scale and Shape. Appl. Statist vol. 54 (2005).
35. Dunn, P. K. & Smyth, G. K. Series Evaluation of Tweedie Exponential Dispersion Model Densities. Statistics and Computing vol. 15 (2005).
36. Droop, M. R. The nutrient status of algal cells in batch culture. Journal of the Marine Biological Association of the United Kingdom 55, 541–555 (1975).
37. Wilhelm, S. W. et al. Response to “Model assumptions limit implications for nitrogen and phosphorus management”: The need to move beyond the phosphorus = biomass = toxin doctrine. J Great Lakes Res 48, 1738–1739 (2022).