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Abstract

Background: The respiratory microbiome of lung cancer patients is different from healthy people. Finding
the characteristics of microorganisms is conducive to exploring new directions for the assist in
distinguishing different histological types of lung cancer.

Methods: 16S rRNA sequencing and internal transcribed spacer sequencing were performed respectively
on sputum samples from 8 adenocarcinomas, 10 squamous cell carcinomas, 5 small cell lung cancers,
and 3 combined-small cell lung cancer patients. And then, bioinformatics analysis of their bacterial
microbiome and fungal mycobiome were conducted. And the correlation between respiratory
microorganisms and clinical characteristics was further analyzed.

Results: The difference in species diversity of the respiratory tract microorganisms of different
histological types of lung cancer is statistically significant. Moreover, smoking can increase the diversity
of respiratory bacteria. Nevertheless, quitting smoking is beneficial to the transformation of the
respiratory tract flora to a non-smoking state. Spearman’s correlation further showed that Fusarium was
positively related to Streptococcus, Neisseria, Prevotella-7, and Veillonella, and Penicillium was positively
related to Neisseria.

Conclusions: Based on the differences of microorganisms among different histological types of lung
cancer, deep composition characterization of lung cancer-related microorganisms and their clinical
characteristics is an important advancement in understanding the role of microorganisms in lung cancer
development.

Introduction

With the development of sequencing technology, researchers have demonstrated that microbes are
widespread in the human body and play different roles in diseases progression and treatment. On the one
hand, microbe infection can promote the development of cancer ['=3l. Microorganisms may promote the
development of lung cancer (LC) by inflammation, immune response, genotoxicity, and other
mechanisms . Inflammatory factors, such as interleukin (IL), tumor necrosis factor (TNF)-a, and
cyclooxygenase (COX-2), are closely related to the occurrence of tumor 3. The positive rate of
Helicobacter pylori (HP) in patients with gastric cancer is positively correlated with the expression of
migration inhibition factor (MIF) [61. And the expression of MIF can promote cell transformation, tumor
cell proliferation, and metastasis. MIF is also up-regulated expression in non-small cell lung cancer
(NSCLC) 7. Meanwhile, microbial fermentation may also produce potentially toxic and cancer-promoting
metabolites, such as ammonia, amine, phenols, sulfides, and nitrosamines 8] On the other hand,
investigations had found that microbes might be useful in the treatment of tumors. For example,
transplantation of faecal bacteria can enhance the efficacy of EGFR-TKI (epidermal growth factor

receptor tyrosine kinase inhibitors) and anti-PD (Programmed cell death protein)-1 in LC mice [9.10] |
addition, intestinal flora may affect the pulmonary immune response through blood circulation and
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lymphatic circulation, thus elevating the anti-pulmonary-tumor effect [''l. In a world, further studies are
needed to carry out, which will be helpful in the joint analysis of the microbial effect and cancer
development.

The lung is more likely to colonize with microbes because of communicating with the outside world
through the trachea ['2l. The composition of bacteria in oropharynx, nasopharynx and lung of healthy
people is different. Prevotella, Streptococcus, Veilonella, Haemophilus, and Neisseria were the main
bacteria genera in respiratory tract of healthy people '3 4. And Cladosporium, Eurotium, Penicillium, and
Asperygillus were the most common fungi taxa in respiratory tract of healthy people '3l LC as a highly
malignant tumor with high prevalence rate ['®], its pulmonary microbial composition has been confirmed
to be different from that of tumor free people by several studies. Streptococcus, Granulicatella, Veillonella,
and Neisseria were the major abundance changed in LC patients compared to the tumor free population
[17-20] To confirm the relationship microbial effect and LC development, many investigations were
carrying out. Both Mycobacterium tuberculosis and HP infection had been confirmed to associate with
the development of LC [21.22] Recent investigation also had confirmed that chronic infections in the lung
can increase the risk of LC [4l. Moreover, the differences in microbial composition between
adenocarcinoma (AD) and squamous cell carcinomas (SCC) patients were also found 231, However, up to
now, there are few researches about lung microbial diversity in patients with different histological types
of LC.

In the present, the characteristics of sputum bacterial microbiome and fungal mycobiome distribution in
patients with different histological types of LC were focused. By employing the bacterial 16S rRNA and
fungal internal transcribed spacer (ITS) high-throughput sequencing, the distinct composition
characterization of LC-related microorganisms on the sputum were showed. Our finding broadens the
new concept that there are differences of microorganisms among different histological types of LC. The
deep composition and functional characterization may serve to open new avenues in understanding the
relationship mechanism of microorganisms and LC.

Materials And Methods

Subjects and Sample Collection: A total of 26 sputum specimens were collected from clinical patients
with advanced LC at the Affiliated Hospital of Southwest Medical University, Luzhou, China. All these
patients were histologically diagnosed as LC. Patient information was anonymised and their identity was
removed before analysis. Written informed consent was obtained from all participants. None of the
patients had a history of long-term immunosuppressive use, thoracic surgery, autoimmune diseases,
endotracheal intubation, invasive/noninvasive mechanical ventilation, or oral diseases. After gargling,
sputum samples were collected in a sterile cup. Samples were transferred rapidly on dry ice to laboratory,
and stored at -80°C. Patients' clinical indicators had been recorded: basic patient information including
gender and age, smoking history, pathological types and clinical stages of lung cancer, inflammatory
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cytokine levels including white blood cells (WBC) count, neutrophil rate, lymphocyte rate and C-reactive
protein.

Sample pretreatment and genomic DNA isolation

The samples were thawed on ice. And then, samples were treated with 5 ml of 30 % aqueous methanol
and 500 pl of a methanol-dithiothreitol (DTT) solution, made up by adding 0.24 g DTT to 1 mL of 30 %
aqueous methanol, mixed for 15min, and centrifuged at 20000rpm for 10 min 24, The supernatant was
discarded and the remaining substances were used for DNA isolation. The FastDNA SPIN Kit for soil (MP
Biomedicals Inc, United States) was used to the genomic DNA isolation. The procedure is according to
the instructions in the kit. Genomic DNA was eluted in to 80 pl of ultrapure water. The extracted DNA was
then electrophoreted, which produces bright bands that lead to successful DNA extraction. The extracted
DNA was stored in -20°C refrigerator.

Library construction and sequencing: Based on 16S rRNA and ITS conserved regions, primers were
designed. 16S rRNA sequencing forward primer was: 5 '-CCGTCAATTCMTTTRAGTTT-3', reverse primer
was: 5 -GTGCCAGCMGCCGCGG-3'. The ITS1 sequencing forward primer was: 5 -
GCTGCGTTCTTCATCGATGC-3', reverse primer was: 5 -GGAAGTAAAAGTCGTAACAAGG-3'. And
sequencing adapters at the ends of primers were added. PCR amplification and purify, quantify and
homogenize the products to form a sequencing library was performed. After that, the qualified library was
sequenced with lllumina HiSeq 2500 profiling by BioMarker Technologies (Beijing, China). And the results
were stored in the FASTQ file format, which contains the sequence information of the reads and their
corresponding the sequencing were quality information. To filter the raw reads obtained by sequencing
Trimmomatic v0.33 software was used 23], Then, to identify and remove primer sequences to obtain high-
quality reads, cut adapt 1.9.1 software was explored [26]. To splice the high-quality reads of each sample
through overlap, FLASH v1.2.7 software [27] was used. And the resulting splicing sequence is clean reads.
To identify and remove the chimera sequence to get the effective reads, UCHIME v4.2 software [28] was
used.

Statistical analysis

USEARCH software [29) was used to cluster/denoise high-quality sequences at 97.0 % similarity level to
obtain OTUs (operational taxonomic units) on the basis of Silva (Bacteria) and UNITE (fungi) taxonomic
database. And their species classification based on the sequence composition of OTUs was getted.
Based on the OTU results, taxonomic analysis on the samples at each classification level to obtain a
community structure diagram was performed. Metastats software 3% was used to carry out T test on
species abundance data between groups.

Perform alpha and beta diversity analysis on different LC types, smoking and non-smoking, and infection

indicators. The alpha diversity index was evaluated by QIIME2 software 3. QIIME software 132 was used
for beta diversity. The T test was used to evaluate the differences in alpha diversity index among different
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treatments. The Unweightde Unifrac algorithm was used for bacterial beta diversity analysis. The binary-
Jaccard algorithm was used for fungal beta diversity analysis. Based on the appeal of the two distance

matrices, Non-MetricMulti-Dimensional Scaling (NMDS) 331, Heatmap 134], PERMANOVA 18] and

Unweighted Pair-group Method with Arithmetic Mean (UPGMA) 38! are used for multi-dimensional beta
diversity analysis.

Results

Patient cohort and sequencing quality

There were 8 samples of AD, 10 samples of SCC, 5 samples of small cell lung cancer (SCLC), and 3
samples of combined-small cell lung cancer (C-SCLC). Among all the patients, 19 had smoking history
and 6 had chemotherapy history. Patients’ basic information is presented in Table 1. By using 16S rRNA
sequencing, a total of 2,388,223 original sequences were obtained from 26 samples, and 1,764,852 high-
quality sequences were obtained after splice and filtration. The average sequence length of all samples
was 415-427 bp, and bases with mass value greater than or equal to 30 accounted for 94.61-95.53 % of
the total base number. Through ITS sequencing, a total of 2,058,555 original sequences were obtained
from 26 samples, and 1,747,974 high-quality sequences were obtained after splicing and filtering. The
average sequence length of all samples was 215-263 bp. And bases with mass value were greater than
or equal to 30 accounted for 94.31-98.34 % of the total base number.
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Table 1
Clinical and pathologic characters of enrolled patients

Feature AD SCC SCLC C-SCLC
number 8 10 5 3
Gender

Male 5 10 5 3
Female 3 0 0 0

Drinking history

Yes 3 8 2 3
No 5 2 3 0
Smoking history

Yes 5 8 3 3
No 3 2 2 0
Chemotherapy history

Yes 2 3 2 0
No 6 7 3 3

AD: adenocarcinoma; SCLC: small cell lung cancer, SCC: squamous cell carcinoma; C-SCLC:
combined-SCLC.

Bacterial microbial composition is basically similar, but there are some species have statistical difference

In total, 13 kinds of bacteria phylum, 108 kinds of bacteria genus, and 52 kinds of bacteria species were
found. The pulmonary bacterial flora of LC patients mainly belongs to Firmicutes (34.48 %),
Proteobacteria (22.88 %), Bacteroidetes (22.60 %), and Actinobacteria (9.28 %). The main genera are
Streptococcus (21.35 %), Neisseria (15.57 %), Prevotella (9.73 %) and Veillonella (5.37 %). They have
different proportions in each group (Figs. TA and 1B). Metastats software was used to carry out T test on
species abundance data between groups. Firmicutes was more abundant in SCC than in AD and SCLC.
It's interesting to note that the abundance of Firmicutesin SCC (38.7 %) was significantly higher than that
in AD (29.6 %) (P=10.017). However, most of the family level species with significant difference in
abundance between AD and SCC belonged to Bacteroidetes. It suggests that the difference between SCC
and AD in Firmicutes is not caused by a few species, however, by a wide range of species abundance
changes. Synergistetes and Spirochaetes were more abundant in AD than in SCC and SCLC. And the
difference of their abundance between AD and SCC was statistically significant (P<0.05). The species
with statistically differences were summarized in Table 2. AD and SCC have the largest number of
different species.

Page 6/24



Table 2

The significant difference analysis between groups

Phylum

Synergistetes
Firmicutes
Spirochaetes

Family
Desulfovibrionaceae
Marinifilaceae
Sphingobacteriaceae
Lentimicrobiaceae
Synergistaceae
Propionibacteriaceae
Defluviitaleaceae
Bacteroidaceae
Rikenellaceae

Family

Tannerellaceae
Lentimicrobiaceae

Leptotrichiaceae

AD
Mean

1.60E-03

2.96E-01

1.54E-02

Mean

4.19E-04

3.03E-04

0.00E +

00

6.60E-04

1.60E-03

3.07E-04

2.82E-04

3.33E-03

6.36E-04

AD
Mean

1.25E-03

6.60E-04

4.35E-02

Variance

2.62E-06

4.27E-03

2.45E-04

Variance

6.85E-07

2.47E-07

0.00E +

00

4.90E-07

2.62E-06

1.55E-07

3.61E-08

4.60E-05

3.61E-07

Variance

3.66E-07

4.90E-07

7.68E-04

Std.err
5.73E-04

2.31E-02

5.54E-03

Std.err

2.93E-04

1.76E-04

0.00E +

00

2.47E-04

5.73E-04

1.39E-04

6.72E-05

2.40E-03

2.12E-04

Std.err
2.14E-04

2.47E-04

9.80E-03
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SCC
Mean

1.69E-
04

3.87E-
01

3.70E-
03

Mean
2.78E-
06

5.42E-
06

2.56E-
04

3.89E-

Variance

7.98E-08

5.69E-03

2.52E-05

Variance

7.75E-11

1.31E-10

6.57E-07

5.04E-09

7.98E-08

2.92E-09

1.55E-08

3.34E-08

6.26E-08

Variance

1.73E-07

7.94E-10

4.20E-05

Std.err

8.93E-
05

2.39E-
02

1.59E-
03

Std.emr
2.78E-
06

3.62E-
06

2.56E-
04

2.25E-

Std.err

1.86E-
04

1.26E-
05

2.90E-
03

value

0.004

0.017

0.047

value

0.001

0.001

0.001

0.003

0.004

0.011

0.014

0.028

0.042

value

0.004

0.008

0.009




Phylum AD SCC P

value
Mean Variance Std.err Mean Variance Std.err
Phylum SCcC SCLC P
value
Mean Variance Std.err Mean Variance Std.emr
Tenericutes 5.95E-04 4.16E-07 2.04E-04 90.18E- 3.17E-08 7.96E- 0.041
05 05
Family Mean Variance  Std.err Mean Variance Stder P
value
Leptotrichiaceae 3.44E-02 4.08E-04 6.39E-03 1.73E- 420E-05 2.90E- 0.017
02 03

Ruminococcaceae 4.55E-03 1.65E-05 1.28E-03  1.40E- 1.30E-06 5.11E- 0.024
03 04

Flavobacteriaceae 1.47E-02 2.27E-04 4.76E-03  3.67E- 6.05E-06 1.10E-  0.026

Mycoplasmataceae 461E-04 3.09E-07 1.76E-04  5.82E- 1.59E-08 5.63E-  0.031

Actinomycetaceae 2.65E-02 2.39E-04 4.89E-03 1.50E- 4 33E-05 2.94E- 0.045

Alpha diversity showed differences among groups (Figs. 1C and 1D). Chao1 assesses species
abundance. And Shannon assesses species diversity which is affected by species abundance and
uniformity in sample communities. AD has a higher Chao1 value than SCC (P=0.0088) and SCLC (P=
0.0042). AD also has a higher Shannon value than SCC (P=0.0324). Both species abundance and
species diversity of AD is the highest. And the alpha diversity of SCC is the lowest. There was no
statistical difference between SCC and SCLC in alpha diversity.

The similarity of bacterial species diversity was higher in AD than in SCC

According to the results of NMDS, the distribution of each sample in SCC and SCLC is dispersed, while in
AD is concentrated (Fig. 2A). According to the Heatmap results, the color gradient from blue to red
indicates the distance between samples from near too far. It was further observed that AD, SCC, and SCLC
formed separate clusters except for individual samples. The within-group difference AD was the smallest
and SCC was the largest. And SCLC is between AD and SCC. AD and SCC showed great between-group
difference (Fig. 2B). PERMANOVA (permutational multivariate analysis of variance) was used to further
verify the results of NMDS and Heatmap. AD has the smallest beta distance and SCC has the largest beta
distance. The beta distance between groups was slightly larger than within groups. Pvalue is less than
0.05 meaning the high reliability of the test (Fig. 2C). In conclusion, among the three groups, the AD group
had the highest bacterial species diversity similarity, however, the SCC group had the lowest species
bacterial diversity similarity.
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C-SCLC differs from SCLC in bacterial diversity

Although C-SCLC has the same histological components as SCLC. Its bacterial species diversity is
different from SCLC. Proteobacteria abundance in SCLC is greater than C-SCLS (P=0.0238). In genus
level, the abundance of Neisseria, Aggregatibacter, Haemophilus, Peptostreptococcus, Gemella,
Stomatobaculum, and Parvimonas in the SCLC was significantly greater than that in the C-SCLC (P<
0.05), however, the abundance of Tannerella in the SCLC was significantly less than that in the C-SCLC (P
<0.005). The sample hierarchy cluster tree is obtained through UPGMA. And C-SCLC and SCLC samples
are clustered into two separate clusters (Fig. 3A). PERMANOVA results showed that the beta distance of
C-SCLC was greater than that of SCLC. The beta distance between two groups was significantly larger
than within groups (Fig. 3B). These data suggested that there was a difference in the composition of
bacterial species between C-SCLC and SCLC.

Smoking affect the sputum bacteria composition: In AD group, the ratio of smoking to non-smoking was
5:3. In phylum level, the abundance of Spirochaetes and Bacteroidetes in the smoking group was
significantly greater than that in the non-smoking group (P<0.05). And the abundance of Actinobacteria
in the smoking group was significantly less than that in the non-smoking group (P=0.0106). In genus
level, the abundance of Mogibacterium, Prevotella-2, Treponema-2, Pseudomonas, Alloprevotella,
Fretibacterium, Leptotrichia, and Ralstonia in the smoking group was significantly greater than that in the
non-smoking group (P<0.05), however, the abundance of Corynebacterium and Rothia in the smoking
group was significantly less than that in the non-smoking group (P<0.05). The abundance of many
species has increased in the smoking group, which suggesting that smoking may increase the risk of
bacterial invasion. The results of the Heatmap showed that the bacteria species diversity was more
similar within groups rather than between groups (Fig. 4A). Although the A11 sample was in the smoking
group, its species diversity was more similar with non-smoking group. Tracking the clinical information of
A11 samples found that it’s from a patient who had quit smoking for more than 10 years. This suggests
that quitting smoking may lead to a gradual shift in respiratory bacteria to non-smoking status.
PERMANOVA showed that the beta distance was significantly greater in the smoking group than in the
non-smoking group (Fig. 4B). These phenomena were not observed in the fungal sequencing results (data
not shown). Altogether, these data suggests that smoking can reduce diversity similarity of bacteria.

Fungal composition of sputum in lung cancer patients

Fungal sequencing reads were also clustered. The OTU value of each sample is 79—-349. A total of 1324
OTUs were obtained from the 26 samples. The number of OTU shared by each groups was small

(Fig. 5A). In total, 10 kinds of fungal phylum, 328 kinds of fungal genus, and 359 kinds of fungal species
were found. Unlike bacteria, there are exist many unclassified species. The main fungal composition of
sputum of LC patients at phylum level is Ascomycota (74.77 %), Basidiomycota (11.89 %),
Mucoromycota (1.39 %), Rozellomycota (1.22 %), and Unclassified (10.50 %) (Fig. 5B). And the
composition at genus level is Candida (18.52 %), Cladosporium (8.32 %), Fusarium (5.42 %),
Leptobacillium (2.98 %), Aspergillus (2.64 %), and Unclassified (23.63 %).
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The diversity of fungi varies greatly among individuals

The Chao1 value of AD group is greater than that of SCC group (P=0.0328). And the Chao1 value of C-
SCLC is less than the other three groups (P< 0.05). These suggest that AD fungus species abundance
was higher than SCC. And C-SCLC fungus species abundance was lower than the other three groups
(Fig. 6A). The beta distance between each sample is far (Fig. 6B). It indicates that unlike bacteria, the
fungal composition of the sputum of LC patients has great individual differences. And there was no
obvious clustering of fungal diversity among the groups.

Correlations between bacteria and fungi

Spearman's rank correlation coefficient 37) was used to analyze the correlation between bacterial and
fungal species abundance. The correlation between the top three abundance species at the phylum level
and the top five abundance species at the genus level in bacteria and fungi was analyzed, respectively.
Scatter diagrams showing the correlations between bacteria and fungi were plotted in Fig. 7. There is
negative correlation between Proteobacteria and Ascomycota (P= 0.05). Fusarium was positively
correlated with Streptococcus, Neisseria, Prevotella-7, and Veillonella (P< 0.05). And Penicillium was
positively correlated with Neisseria (P<0.05).

Inflammatory cytokines and respiratory microbiome

According to the median of WBC, neutrophil ratio, lymphocyte ratio, and C-reactive protein (CRP), the AD
group was divided into low-median inflammatory factor group and high-median inflammatory factor
group. Alpha diversity and beta diversity of bacteria and fungi were analyzed. There was no statistical
difference in the Chao1 and Shannon values between the high and low median inflammatory factor
groups (P>0.05) (suppl-table 1, suppl-table 2). In terms of beta diversity, there was no obvious similarity
in the species diversity of bacteria or fungi in the two groups. In the SCC group, also did not observe the
correlation between inflammatory factors and microbiome diversity.

Discussion

In this study, high-throughput sequencing was used to sequence the sputum microbiome and mycobiome
of LC patients. This is a thorough study of respiratory microbiome in different histological types of LC. In
addition to bacteria, the human respiratory tract is colonized with fungal mycobiome. In fact, perez-
Cobas's study confirmed that human airways are also colonized with archaea [38l. This suggests that the
respiratory tract is a microenvironment with a variety of microbial communities. Our results also
confirmed the effects of smoking on the respiratory microorganisms. It provided preliminary data for the
related institutional research on the LC and microorganisms.

Using different tissue samples, it has been confirmed that the lung microbiome of LC patients is different
from that of tumor free people. In the bronchial brush samples, the abundance of Streptococcusin LC
patients was significantly higher than that in healthy groups by 16S rRNA sequencing. Neisseria also was
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confirmed as an increasing trend in the cancerous sites of LC patients. And the alpha diversity of LC
patients decreased significantly [391. Moreover, the abundance of Streptococcus, Prevotella, and
Bifidobacterium in LC tumor tissue was significantly higher than that in emphysema lung tissue [40] 1y
addition, the abundance of Streptococcus, Abiotrophia, and Granulicatella in sputum samples of LC
patients was significantly higher than that of healthy people*'l. However, there are few studies on the
differences of the microbiome between different histological types of LC.

AD and SCC are the two most common types of LC. Previous research found there were 9 genera to be
significantly correlated with the occurrence of SCC as compared to AD (Acidovorax, Brevundimonas,
Comamonas, Tepidimonas, Rhodoferax, Klebsiella, Leptothrix, Polaromonas, Anaerococcus) 421 And
similar to our results, the phylogenetic diversity of AD tumor tissues was significantly greater than that of
Scc [231 Moreover, in saliva samples, the abundances of Streptococcus and Porphyromonasin AD were
higher than in SCC ['7]. In addition, compared with SCC patients, AD patients have the larger bacterial
species abundance, species diversity, and inter-group species diversity similarity (Figs. 1 and 2). However,
there is no precise research to confirm the relationship between these different composition
microorganisms and AD and SCC development. Additional experiments are needed to further elucidate
these mechanisms.

When SCLC is combined with any other NSCLC histologic type, the symptom is referred to as C-SCLC 43I,
At present, few studies on respiratory microbiome of SCLC and C-SCLC have been carried out. Our results
showed that the bacterial species abundance, species diversity, and species diversity similarity of SCLC
are between AD and SCC (Figs. 1 and 2). However, compared to AD and SCC, there is a significantly
different species in SCLC. Although SCLC and C-SCLC have the same histological components, the
bacterial species diversity of C-SCLC is less similar. And there is a difference in the composition of
bacterial species between C-SCLC and SCLC (Fig. 3). Whether the combination of the two histological
types increased individual differences in C-SCLC requires further confirmation by exploring larger sample
size investigations. In addition, the detection of biological components of exhaled breath can be used to
diagnose cancer, and even distinguish LC of different tissue types 4. In this cue, the detection of the
respiratory microbiome may also be a way to identify different histological types of LC.

It is known that smoking influence the lung microorganism’s composition. Previous studies had
confirmed that the oral bacterial microbiome diversity and bacterial species of mice exposed to cigarette
smoke was significantly lower than that of the control group. And the oral microbiome diversity of mice
gradually recovered after the cigarette smoke exposure was stopped for 3 months [45]. Similar to previous
researches, our results showed there was a significant difference in the respiratory bacterial microbiome
between smokers and non-smokers (Fig. 4). Besides, the microbiological function analysis of smokers
and non-smokers is significantly different. Compared with non-smokers, smokers showed higher
tricarboxylate utilization and lactic acid racemization 4¢l. Smoking was also associated with an
increased abundance of potentially pathogenic bacteria, including Streptococcus, Fusobacterium,
Prevotella, Haemophilus, and Treponema!*’). And tobacco impairs innate immune defenses, leading to
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changes in the abundance, taxonomic composition, and phylogenetic diversity of respiratory microbiome.
This, in turn, leads to an inflammatory response that further damages lung defenses and further
dysregulation of the respiratory microbiome 48l In conclusion, smoking can increase the chance of
microbial colonization and increase the diversity of respiratory bacterial microbiome. Interestingly, our
results also confirmed that long-term cessation can restore the respiratory bacterial microbiome to the
status of non-smokers.

As known, Candida and Aspergillus, common opportunistic pathogens, tend to cause disease when the
body's immune system is weakened 9. LC patients are more likely to be complicated with fungal
infection, resulting in prolonged hospital stay, increased treatment costs, poor prognosis, and even life-
threatening 159, Combination of these reasons, these colonizing opportunistic pathogens may cause
disease and clinical symptoms. It had confirmed that Candida infection may be associated with oral and
esophageal cancers [°'. And fungi may accelerate the pancreatic ductal adenocarcinoma 52, Unlike
bacteria, the species diversity of fungi varies greatly among individuals (Fig. 6). And this conclusion is
consistent with previous studies [15!.

However, it is known that bacteria and fungi co-exist in the human respiratory tract. Candida albicans and
Escherichia colihave a synergistic effect, which can increase the mortality of mice infected with
abdominal cavity 53 And the B-1,3-glucan of C. albicans can also enhance the resistance of
Staphylococcus aureus in a multi-microbial biofilm environment 54, It also found that the interactions
between Aspergillus fumigatus, Cryptococcus and bacteria, could be a new direction for antifungal drugs
[55] In this study, it was found that there was a correlation between the abundance of most bacteria and
fungi. And Fusarium, in particular, was positive associated with four species of bacteria. Further
experiments are needed to elucidate the positive association in the LC.

Microorganisms that exist in the human body can be divided into symbiotic bacteria and pathogens.
Symbiotic bacteria generally do not cause infection and inflammation, and pathogens are the cause of
infection, which is also the basis of the infection dichotomy %61, In our study, no relationship between
inflammatory factors and the diversity of the respiratory tract microbiome was found. This suggests that
the respiratory tract microorganisms in patients with lung cancer were mostly symbiotic bacteria.
However, there were many opportunistic pathogens in the respiratory tract of patients with lung cancer,
such as Streptococcus, Staphylococcus, Candida, and Aspergillus. It interacted with microorganisms to
cause infections, which in turn caused changes in inflammatory factors. Another speculation is that the
inflammatory response caused by the respiratory microbiome only caused changes in the tumor
microenvironment, and did not cause significant changes in blood inflammatory factors.

There exist several limitations to the study. Since the incidence of lung cancer in men was higher than
that in women, the proportion of men and women in this study was different. Because the incidence of
SCLC and C-SCLC was lower than that of AD and SCC, the sample size of SCLC and C-SCLC was smaller.
The sputum samples may have oral flora contamination compared to the bronchoalveolar lavage (BAL)
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samples, however, we believe that the sputum sample contains a larger collection of microorganisms.
The sputum sample contains the collection of microorganisms in the bronchi and alveoli of the left and
right lungs, while BAL only contains the collection of microorganisms in a certain segment of the bronchi
and alveoli. And it provides a non-invasive method of obtaining upper bronchial tract samples and also
involves minimal patient discomfort.

Conclusion

In the present study, the differences in the respiratory microbiome among patients with different
histological types of LC were dissected. In addition, the effect of smoking on the respiratory microbiome
was found. Moreover, it provided the cue that there is a reaction between the pulmonary bacteria and
pulmonary fungi in lung cancer patients. Such systematic and high throughput-wide characterization can
be effectively used to understand the interaction between pulmonary microorganisms and LC
development.
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Figure 1

Bacterial species distribution histogram and alpha diversity. (a) Species distribution histogram of
different groups in phylum level. One color represents one phylum, the length of the color block present
the relative richness proportion of the phylum. (b) Bacterial species distribution histogram of different
groups in genus level. (c) Histogram of alpha diversity index differences between groups. Chao1 index
measure species richness, i.e. the number of species. (d) Shannon indexes was used to measure species
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diversity, it was affected by species richness and community evenness in the sample community.
Pairwise comparisons were made between each group, * P< 0.05, ** P< 0.01, indicated a significant
difference between the two groups.
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Figure 2

AD, SCC, and SCLC bacterial beta diversity analysis. (a) Non-MetricMulti-Dimensional Scaling analysis.
Dots represent all samples; different colors represent different groups, distance between dots presents the
difference, when Stress is less than 0.2, it indicates that NMDS analysis has certain reliability. The closer
the samples are on the coordinate diagram, the higher the similarity is. (b) Sample clustering heatmap.
Color gradient from blue to red represents the distance between samples from close to far. Treat1
represent different groups. X-axis and Y-axis represent different samples. (c) Permutational multivariate
analysis of variance. R2 represents the interpretation degree of sample difference between different
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groups. A larger R2 indicates that grouping has a higher interpretation degree to the difference, the group
difference is higher, and P value less than 0.05 indicate a high reliability of the test. Y-axis represents beta
distance; The box above "All between" represents the beta distance data of samples between all groups,
while the box above "All within" represents the beta distance data of samples within all groups. The box
below represents the beta distance data of samples within different groups.
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Figure 3

SCLC and C-SCLC bacterial beta diversity analysis. (a) Unweighted pair-group method with arithmetic
mean analysis. The closer the samples are, the shorter the branch length is, the more similar the species
compositions of the two samples are. Different colors represent different groups. (b) Permutational
multivariate analysis of variance. R2 represents the interpretation degree of sample difference between
different groups. A larger R2 indicates that grouping has a higher interpretation degree to the difference,
the group difference is higher, and P value less than 0.05 indicate a high reliability of the test. Y-axis
represents beta distance. The box above "All between" represents the beta distance data of samples
between all groups, while the box above "All within" represents the beta distance data of samples within
all groups. The box below represents the beta distance data of samples within different groups.
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Figure 4

Smoker and non-smoker bacterial beta diversity analysis. (a) Sample clustering heatmap. Color gradient
from blue to red represents the distance between samples from close to far. Treat1 represent different
groups. X-axis and Y-axis represent different samples. (b) Permutational multivariate analysis of
variance. R2 represents the interpretation degree of sample difference between different groups. A larger
R2 indicates that grouping has a higher interpretation degree to the difference, the group difference is
higher, and P value less than 0.05 indicate a high reliability of the test. Y-axis represents beta distance.
The box above "All between" represents the beta distance data of samples between all groups, while the
box above "All within" represents the beta distance data of samples within all groups. The box below
represents the beta distance data of samples within different groups.
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Figure 5

Fungal OTU analysis and histogram of species distribution. (a) OTU-Venn diagram. Different colors are
presented by different samples. The number of overlapping area among graphs with different colors is
the number of OTU shared by multi-samples. (b) Fungal species distribution histogram of different

groups in phylum level. One color represents one phylum, the length of the color block present the relative
richness proportion of the phylum.
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Fungal alpha diversity and beta diversity. (a) Histogram of alpha diversity index differences between
groups. Chao1 index measure species richness, i.e. the number of species. Pairwise comparisons were
made between each group, * P< 0.05, ** P< 0.01, indicated a significant difference between the two
groups. (b) Sample clustering heatmap. Color gradient from blue to red represents the distance between
samples from close to far. Treat1 represent different groups. X-axis and Y-axis represent different
samples.
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The correlation between bacteria and fungi. The X axis represents the abundance of fungal species, and
the Y axis represents the abundance of bacterial species. p is Spearman correlation coefficient, and it has
statistical significance when P value < 0.05. (a) Correlation analysis of Proteobacteria and Ascomycota.
(b) Correlation analysis of Prevotella-7 and Fusarium. (c) Correlation analysis of Neisseria and Fusarium.
(d) Correlation analysis of Neisseria and Penicillium. (e) Correlation analysis of Streptococcus and
Fusarium. (f) Correlation analysis of Veillonella and Fusarium.
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