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Abstract NDN Pending Interest Table (PIT) helps NDN by storing the state
of a request within the router. This state information helps the router to
redirect the data packet towards the requester. However, an attacker can send
malicious requests, which could flood the PIT; this attack is known as Interest
Flooding Attack (IFA). In our previous work, we have found the most relevant
features needed to detect IFA and applied a few machine learning approaches
for the offline detection of IFA. In this article, a trained Artificial Neural
Network (ANN) classifier has been deployed on each NDN router for the online
detection of IFA. A novel traceback-based mitigation is proposed, which is
triggered after the detection. The proposed approach is found better than the
previous approach in terms of the satisfaction ratio and throughput of the
legitimate consumers.
Keywords Named Data Networking; NDN; Interest Flooding Attack; ANN;
Feature Selection; Traceback

1 Introduction

The TCP/IP model, which was earlier developed to overcome the problem
of communication among hosts, is now being used for sharing content. Many
hacks such as P2P network [5] and Content Delivery Network (CDN) [19] as
an overlay are being tried for adopting TCP/IP for content sharing. However,
the content has to face delays due to the underlying network.

New types of networks specially designed to support content sharing are
being developed to overcome this problem. These networks use the name of the
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content rather than the address of the host. These networks come under the
umbrella of Information-Centric Networking (ICN) [3]. Few examples of the
ICNs are DONA [16], COMET [10], Content-Centric Networking (CCN) [14],
and Named Data Networking (NDN) [22].

Recently NDN evolves as the most prominent candidate among all ICNs [?].
NDN overcomes the problem of content sharing by in-network caching and
fetching the content using its name. NDN is more secure than the TCP/IP as
the trust model between the producer and consumer ensures the data packet’s
provenance and integrity. Confidentiality can be ensured by additionally en-
crypting the data packet. However, NDN is vulnerable to new types of attacks,
such as IFA [11], cache privacy attack [4], cache pollution attack [11], content
poisoning attack [12].

The attacks mentioned above either degrade QoS or affects the privacy
of the user. However, IFA can cease the flow of traffic through the network.
This makes IFA more severe than other NDN attacks. The attacker floods
PIT by intentionally requesting non-existing contents. Entries get created in
the PITs of the in-between NDN routers due to these requests. Thus PIT
becomes unavailable for the legitimate users because these malicious entries
persist in PIT till timeout.

Most of the previous approaches [1,8,7,20,21,23] detect IFA using one
or two features based on static thresholds. However, the features which are
necessary for attack detection have not been analyzed in the previous works. In
our previous work [17,18], 12 features have been analyzed that get affected due
to IFA, out of which 9 features were chosen using information gain [15] based
ranking. Four different machine learning approaches were applied out of which
two approaches, i.e., Multi-Layer Perceptron (MLP) with BackPropagation
(BP) [9,13] and J48 [13], were found better. This paper deals with the online
detection and mitigation of IFA. Few changes have been made to our previous
work to adapt it for the online IFA detection. The detection is divided into
two phases, i.e., malicious interface detection and malicious prefix detection.
For the detection of the interface, we have taken only those features which are
computed per interface.

After doing the above changes, the feature selection is re-performed using
information gain based ranking. Then ANN classifier is trained using the se-
lected features. The trained ANN classifier is deployed on the router for online
detection; the outcome of detection is a malicious interface. After detecting
the malicious interface, the malicious prefix is detected using a statistical ap-
proach. Traceback-based mitigation is applied after the detection of IFA. The
proposed approach is compared with [7] approach.

The major contributions of this paper are:

– Performing IFA on Tree topology and DFN like topology.
– Selecting the most appropriate features for IFA detection.
– Offline detection of IFA using the ANN classifier.
– Deploying trained ANN detector in the NDN router.
– A traceback-based mitigation approach for IFA.
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– Comparison of the proposed approach with the previous approach.

The rest of the paper is organized as follows. Section 2 presents basic NDN
architecture. Section 3 presents the work done by researchers for the mitigation
of IFA. Section 4 presents the proposed IFA mitigation approach. Section 5
describes the experimental setup and results. Section 6 discusses the conclusion
and future work.

2 Background Details

NDN uses two types of packets for a communication, i.e., interest packet and
data packet. The contents are requested using the interest packet. The data
packet contains actual content that acts as a reply to the interest packet.

There are three data structures that are used by NDN, i.e., Pending Interest
Table (PIT), Forwarding Information Base (FIB), and Content Store (CS) for
forwarding interest and data packet. PIT stores the interest packet’s name and
the interface on which the interest packet is received until the matching data
packet is received. The FIB is like the routing table in TCP/IP. It has a list
of named prefixes and the interfaces from which the interest packet should be
forwarded. The CS caches the contents received by the router.

NDN forwarding pipeline is shown in Figure 1. Upon receiving an interest
packet, the router searches CS for the matching data packet; if it is found,
it is replied through the interface from which the interest packet is received.
Else, a lookup is performed by the router in the PIT for finding the matching
entry. If a matching entry is found, the corresponding interface is added to the
matching PIT entry’s interface list. Otherwise, a new entry is created in the
PIT. Additionally, the interest packet is forwarded through the interface given
by FIB. When a router receives a data packet, it searches for the matching
PIT entry. If a matching entry is found, the data packet is forwarded through
interfaces present in the matching PIT entry, and the data packet is cached in
the CS. Else, the router will drop the data packet.

3 Related Work

The DoS attack in NDN was introduced as “interest flooding” by [11]. [11]
have given a countermeasure in which the attack is detected using stats such as
pending interest packets per outgoing interface, interest packets per incoming
interface, and pending interest packets per namespace. The router reduces the
PIT quota for the malicious namespace on the malicious interface after the
IFA detection. This information is propagated to downstream routers, which
applies a countermeasure on the malicious interface. The authors have not
provided an implementation or evaluation of their approach.

[1] have proposed three algorithms that apply a limit to interest pack-
ets that are forwarded through each interface. These algorithms are token
bucket with per-interface fairness, satisfaction-based Interest acceptance, and
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Fig. 1 NDN Forwarding Pipeline

satisfaction-based pushback algorithm. In the first algorithm, each outgoing
interface has a fixed share of PIT entries, which is equally distributed among
all the incoming interfaces. In the second algorithm, the router allows interest
packets based on the satisfaction ratio of interfaces. In the third algorithm, a
limit is given to each incoming interface to satisfy the interest packets. The
routers announce limits to downstream neighbors, which are used by the neigh-
bors to set their limits. The limitation of these algorithms is that they restrict
every packet on the malicious interface; thus, legitimate interest packets may
also suffer. Also, this approach does not stop the attacker from attacking.

[8] have used PIT size as a metric for the detection of IFA. When the
PIT size increases more than a threshold, the router looks for an unsatisfied
interest packet with the longest name. This interest packet is replied with a
spoofed data packet, which contains information about malicious namespace.
The originating router applies a filter on the malicious interface after receiving
the spoofed data packet.

[7] have proposed a framework called Poseidon for the detection and mit-
igation of IFA. It uses two parameters for IFA detection, i.e., the ratio of
incoming & outgoing data packets and PIT space per interface. The attack
is detected when both the parameters exceed a predefined threshold. The in-
terest packets received on the malicious interface are dropped after the IFA
detection, and an alert message is sent through the malicious interface. The
router decreases the threshold value of the above two parameters on receiving
the alert message. In this approach, the mitigation is applied to an interface;
therefore, incoming legal interest packets may also suffer from IFA.

[20] have proposed an approach called Disabling PIT Exhaustion (DPE)
for IFA mitigation. Each router has a malicious list (m-list) which contains the
number of expired interest packets for each namespace as a parameter for IFA
detection. When this parameter goes beyond a predefined threshold, then the
namespace present in the corresponding m-list is considered malicious. The
router will not create an entry for the malicious namespace. The malicious
namespaces remain in the m-list till decay time.
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[21] have proposed a collusive IFA detection approach based on wavelet
analysis. This approach uses a namespace frequency distribution called Power
Spectral Density (PSD) as a parameter for IFA detection. When the value of
PSD low, the collusive IFA is detected. The authors have chosen the detection
threshold experimentally. The main drawback of this approach is it is only
applicable to collusive IFA.

A detection approach should be accurate, fine-grained, and fast. Most of
these approaches rely on the detection or mitigation of IFA using one or two
features. The IFA mitigation is done based on a statistical threshold. These
approaches are fast, but they have low accuracy, and they are not fine-grained
(detect interface as well as a malicious prefix). We have used six different fea-
tures to detect malicious interfaces. These features are selected from eleven
features based on IG-based ranking. These features are used to train ANN,
whose accuracy is 98.5%. This approach is faster as time is only consumed
in the training phase; once the ANN is trained, the detection takes few mil-
liseconds. This trained ANN is deployed in the NDN router for the online de-
tection of the malicious interface. After the malicious interface detection, the
malicious prefix has been detected. After detection, we have applied traceback-
based mitigation. Thus, the proposed approach is accurate, fine-grained, and
fast.

4 Interest Flooding Attack

IFA makes network services unavailable for legitimate consumers. [11] pro-
posed three types of IFA based on interest packets used for the attack, i.e.,
Type-1 (existing or static), Type-2 (dynamically-generated), and Type-3 (non-
existent). In Type1, the existing set of contents is requested repeatedly. These
contents are cached by the nearby routers due to which the requests are sat-
isfied by the CS. Thus, less number of PIT entries are created. In Type2, the
attacker generates dynamic contents which are satisfied by the producer on
demand. The producer spends some time creating these contents. Thus, this
attack affects a producer as well as a router. In Type-3, the attacker requests
non-existing contents. These requests create PIT entries that are not satis-
fied. PIT entries corresponding to the requests remain in the PIT till timeout.
Thus, PIT Type-3 is more severe than Type-2 because the PIT entries created
due to the Type-3 attack remain in PIT until timeout and timeout duration is
large. This article considers only Type-3; in the rest of the paper, IFA means
Type-3.

Figure 2 demonstrates IFA in NDN on a simple topology. It has one con-
sumer, one attacker, and one producer. The producer publishes content corre-
sponding to prefix “/prefix.” The attacker sends a large number of synthetic
interest packets by concatenating the prefix with a random string. These in-
terest packets are forwarded to the publisher by the NDN routers. This results
in the creation of PIT entries on the routers which are present in the path fol-
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Fig. 2 IFA Demo

Fig. 3 Series of Processing Done for the Mitigation of IFA

lowed by the malicious interest packets. These entries consume PIT, making
it unavailable for legitimate users.

The following series of processing has been done for the mitigation of IFA.

1. IFA Modeling and Implementation– In this phase, the simulation of IFA is
done using ns-3 based ndnSIM [6] simulator.

2. Data Collection– In this phase, the relevant features are collected from
the simulator and pre-processing is performed to make them suitable for
further processing.

3. Feature Selection– In this phase, Information Gain based feature selection
is applied to select the most relevant feature set.

4. IFA Detection– In this phase, the selected features are used for the of-
fline detection of IFA using MLP with BP. After the off line detection,
the trained detector is deployed in the NDN routers for the online IFA
detection.

5. IFA Mitigation– A traceback-based detection is applied for the mitigation
of IFA.
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Fig. 4 Topologies Considered for Attack Modeling (a) Tree Topology and (b) DFN like
Toplogy

These phases are shown in Figure 3 and are described in detail in the
following subsections:

4.1 IFA Modeling

The ndnSIM network simulator is used for modeling the attack scenario on
Tree topology and DFN like topology which is shown in Figure 4(a) and Fig-
ure 4(b). The routers, consumers, attackers, and publishers are shown in the
figure as R*, C*, A*, and P*, respectively, here * represent a number. The
size of the PIT and the expiration time for a PIT entry is taken as 1200KB
and 4 seconds for both the topologies. CS uses LRU as replacement policy and
can has maximum 100 entries. The length of the queue and the delay for the
point-to-point link are taken as 1000 and 10ms, respectively.

All the scenarios for the Tree and DFN like topology run for 300 seconds
of simulation time, and the consumers are active in the whole duration. The
consumers send interest packets with a frequency of 100 packets, and the
attackers request the malicious interest packets with a frequency of 400 packets
for the Tree topology. Whereas for the DFN like topology, the consumers send
interest packets with a frequency of 200 packets, and the attackers request the
malicious interest packets with a frequency of 800 packets. The attackers are
active in the duration of 100s-200s of simulation time.
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4.2 Data Collection

Data corresponding to 11 different features has been collected after every
500ms. These features are InInterest, OutInterest, DropInterest, InData, Out-
Data, DropData, InSatisfiedInterests, OutSatisfiedInterests, InTimedOutIn-
terests, OutTimedOutInterests, and PitEntries. The description of these fea-
tures is given in Tab. 1.

Table 1 Features used for the Detection of IFA and its IG Values

Parameters Meaning Consider IG value
InInterests Interest packets received per interface Yes 0.38165
OutInterests Interest packets sent per interface No 0.03374
DropInterests Interest packets dropped per interface Yes 0.15831
InData Data packets received per interface No 0.03332
OutData Data packets sent per interface Yes 0.09666
DropData Data packets dropped per interface No 0.01915
InSatisfiedInterests Satisfied interest packets received per interface Yes 0.09666
OutSatisfiedInterests Satisfied interest packets sent per interface No 0.03332
InTimedOutInterests Timeout interest packets received per interface Yes 0.16082
OutTimedOutInterests Timeout interest packets sent per interface No 0.00988
PitEntries A number of PIT entries per interface Yes 0.32461

This data is used for selecting the most appropriate features from the
feature set.

4.3 Feature Selection

Information Gain (IG) based feature ranking is used for selecting the most
appropriate features for IFA detection. The process of selecting features is as
follows:

1. Calculate the entropy H(x) for the data set using the formula given below:

H(x) = −

n∑

i=1

pilog2pi (1)

Here, x is a random variable which takes values V1, V2, ..., Vn and p1, p2, ..., pn
are respective probabilities of occurrence of V1, V2, ..., Vn.

2. Information gain of a given feature Fi can be calculated uisng equation
below:

H(x) = −p1log2p1 − p2log2p2 (2)

3. The fetuares are sorted according to their IG values.
4. Features with high IG values are selected for IFA detection.

The data pre-processing, feature selection, and classification are done us-
ing the Waikato Environment for Knowledge Analysis (WEKA) [2]. It is an
open-source Java-based application licensed under the GNU General Public
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Table 2 Description of mList

Parameter Meaning
interface malicious interface
prefixList malicious prefix list
numPITEntries number of PIT entries per interface

License. It has collection algorithms for data preparation, classification, re-
gression, clustering, association rules mining, and visualization. Tab. 1 shows
eleven features which are used for the analysis of IFA with the corresponding
IG values. Out of the eleven features, six prominent features are chosen for
IFA detection. These features are InInterest, DropInterest, OutData, InSatis-
fiedInterests, InTimedOutInterests, and PitEntries. After selecting the most
appropriate feature-set the next step is to apply machine learning approach
for the classification of traffic.

4.4 IFA Detection

In our previous article [18] we have shown that the ANN classifier is more
suitable for the detection of IFA as It has higher accuracy, less training time,
and it is easy to deploy. Therefore, a ANN classifier is used for the classification
of traffic, and the backpropagation algorithm is used for training the ANN.
The detection approach is evaluated using four matrices– accuracy, precision,
sensitivity (or recall), and specificity. Ten-fold cross-validation is used for the
assessment of the classifier.

4.4.1 Artificial Neural Network based Classifier

A single hidden layer ANN classifier is used for the classification of traffic. This
ANN classifier has three layers of neurons, i.e., the input, hidden, and output
layer. Same number of neurons are taken for the input and the hidden layer. All
the weights in the ANN classifier are updated using the backpropagation [13].
The result of detection is given in Tab. 2. This trained detector is deployed on
each router for the detection of malicious interface. The proposed detection
approach has already been compared with the previous approaches in our
previous work [18].

4.5 IFA Mitigation

In the previous section, we have seen that the ANN classifier checks all the in-
terfaces of each router for finding the malicious interfaces. After this detection
phase, the mitigation phase is triggered to cease the attackers. The proposed
approach follows a traceback mechanism that traces an attacker attached to a
gateway router and then applies the filter to the interface through which the
attacker is connected.
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Algorithm 1 Periodic Stats Collection And Detection
procedure PeriodicStatsCollectionAndAttackDetection(k, detectionInterval)

for j = 0 ; j < numInt ; j ++ do

stats = getStats()
isM = trainedDetector(stats)
if isM = true then

createNewEntryOrUpdate(j)
if isAccessRouter = true then

removePITEntries(j)
else

prefixList = extractTopKPrefixes(j , k)
sendAlertMessage(j, prefixList)
removePITEntries(j, prefixList)

else

it = findInMList(j)
if getPIT (j) > PITSize/4 then

mList.erase(it)

sleep(detectionInterval)

function createNewEntryOrUpdate(j)
it = findInMList(j);
if it == mList.end() then

ml = CreateObject<MList>();
ml.interface = j;
ml.numPIT = getPIT (j);
mList.pushback(ml);

else

it.numPIT = getPIT (j);

function sendAlertMessage(j, prefixList)
data = Create<Data> (”/alert”);
data.append (prefixList);
sendData(data, j)

A data structure called mList is used for storing information about mali-
cious interfaces. The mList gets updated periodically after the detection in-
terval. The interest packets which are received from the interfaces present in
the mList are restricted on the access routers. For the non-access routers, the
interest packets are restricted only when their PIT share exceeds a limit. The
detail of the mList data structure is given in the Tab. 2.

The proposed approach is described using three algorithms, i.e., Algo-
rithm 1 (Periodic Stats Collection And Detection), Algorithm 2 (OnInterest),
and Algorithm 3 (OnData). Algorithm 1 runs on each router periodically af-
ter a fixed period called detectionInterval. Algorithm 2 and Algorithm 3 are
called when a router receives an interest packet and data packet, respectively.
The detailed description of these algorithms is given below.

The Algorithm 1 extracts stats which are discussed in Section 4.2 and
passes it to the trained detector to detect whether an interface is malicious
or not. On the detection of a malicious interface, the router checks entry
corresponding to the interface in the m-List. Else, the router calls a function
createNewEntryOrUpdate, which creates a new entry if the entry does not
exist. Otherwise, the router sets numPIT field to number entries that exist
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in the PIT for the interface. In the newly created entry interface field is set
to the interface on which the attack is detected, numPIT field is set to the
number of entries exist in the PIT for the interface.

Algorithm 2 On Interest
procedure OnInterest(interest, inFace)

it =findInMList(inFace);
if isAccessRouter = 1 && it! = mList.end() then

return
else

if it! = mList.end() then

if it.numPIT ≥ PITSize/numInt then
return

Normal interest packet processing

Algorithm 3 OnData
INPUT: inFace, data

procedure OnData(data, inFace)
if data.GetName() == ”/alert” then

onAlert(data, inFace)
return

Normal data packet processing

function onAlert(data, face)
pl = data.getPrefixList()
maxPrefixInt = searchInterfaceMaxPrefix(pl)
if isAccessRouter = true then

removePITEntries(maxPrefixInt);
createNewEntryOrUpdate(maxPrefixInt);

else

sendAlertMessage(maxPrefixInt, pl);

Next, if the router is an access router, then it removes all the PIT entries
corresponding to the interface. Else, the router creates a prefixList by extract-
ing top k prefixes from the PIT corresponding to the interface and prefixList.
The interface and prefixList are passed to the sendAlertMessage function,
which creates a data packet having name field set to “/alert.” The prefixList
is concatenated to the name field of the data packet then the data packet is
sent through the interface. After sending the alert message, the router removes
all the PIT entries corresponding to the prefixList and interface.

The OnInterest and OnData functions are called when the interest packet
and data packet respectively are received on the router. When an interest
packet is received on an interface, then the router first checks the mList for
the matching entry. If the entry is found and the router is an access router,
then the packet is dropped. Otherwise, if number of PIT entries occupied by
the interface is greater than the allowed PIT quota for the interface, then the
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packet is dropped. If the interest packet is not dropped, then it is processed
according to the normal NDN forwarding pipeline.

When the router receives a data packet, it first checks the whether the
message is an alert message or not. If it is an alert message, then a func-
tion onAlert is called which searches interface (maxPrefixInt) on which the
maximum number of malicious traffic is received. If the router is an access
router, then PIT entries corresponding to maxPrefixInt is removed, and
createNewEntryOrUpdate function is called, which updates the correspond-
ing mList or creates new mList. Else the alert message is forwarded through
the maxPrefixInt.

5 Experimental Result

Experimental setup has already been described in Section 4.1. The proposed
approach has been compared with [7] approach. Following are the different
scenarios considered for the evaluation of the proposed approach.

1. Not Attack: In this scenario, only the consumers are active. Thus no attack
traffic flow through the network.

2. Attack: In this scenario, the consumers and the attackers both are active
simultaneously.

3. Poseidon: In this scenario, the consumer & the attackers both are active,
and the Poseidon approach is applied to each router for the mitigation of
IFA.

4. ANN based Mitigation (ANNM): In this scenario, the consumers and the
attackers both are active, and our NN based countermeasure is applied to
each router for the mitigation of IFA.

Three matrices are used for the comparison, i.e., Satisfaction Ratio (SR),
Average PIT Size (APS), and Throughput. The details of these matrices are
given below:

1. Satisfaction Ratio: It is the ratio of the number of data packets received to
the number of interest packets sent with respect to time. This is the most
commonly used metric for the evaluation of the IFA mitigation approach.

2. Average PIT Size: It is the average of PIT size of all the routers with
respect to time.

3. Throughput: It is the number of data packets received by the consumers
after sending the interest packets with respect to time.

Figure 5(a) and Figure 5(b) show the SR of the legitimate consumers with
respect to time for Tree and DFN like topology respectively. In the case of
the Tree topology, the satisfaction ratio is approximately one when no attack
is going on. For the Tree topology, the SR drops to 0.0092, which is 99%
drop as compared to the normal traffic in the attack scenario. The Poseidon
approach shows a fluctuation of SR between 0.5 to 0.01 during the attack.
ANNM shows a sudden drop in SR, which reaches 0.5 at the starting of the



Fast Detection and Traceback-based Mitigation of Interest Flooding Attack 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

S
a

tR
a

ti
o

Time in Seconds

Not Attack
Attack

Posidon
ANNM

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

S
a

tR
a

ti
o

Time in Seconds

Not Attack
Attack

Posidon
ANNM

(b)

Fig. 5 Satisfaction Ratio (SR) of Normal Consumers w.r.t. Time for (a) Tree Topology and
(b) DFN like Toplogy
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Fig. 6 Throughput of Normal Consumers w.r.t. Time for (a) Tree Topology and (b) DFN
like Toplogy
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attack. A second later, the SR increases to 0.78 after this the SR shows a little
fluctuation between 0.76 to 0.79. This shows the effectiveness of the proposed
ANNM approach.

A simillar behaviour can be seen in case of DFN like topology. In the
case of DFN like topology, the satisfaction ratio is approximately 0.9 when no
attack is going on. For the DFN like topology, the SR drops to 0.327 in the
attack duration. The Poseidon approach shows a fluctuation of SR between
0.403 to 0.67 during the attack. The proposed ANNM approach shows a minor
fluctuation in SR between 0.86 to 0.9. A similar trend can be seen in the
Figure 6(a) and Figure 6(b) in the Throughput metric for Tree and DFN like
topology, respectively.

Figure 7(a) and Figure 7(b) show the average PIT size with respect to time
for the Tree and DFN like topology respectively. For the Tree topology, the
PIT size for the normal scenario fluctuates between 28 to 40. In the attack
scenario, the size of the PIT fluctuates between 76 to 130 during the attack
(100s-200s). The Poseidon approach shows a wide range of fluctuation in the
PIT size between 76 to 130. The proposed ANNM approach shows a minor
fluctuation in the PIT size between 46 to 108 in the attack duration. For
the DFN topology, the PIT size for the normal scenario fluctuates between
46 to 105. In the attack scenario, the size of the PIT fluctuates between 611
to 1215 during the attack (100s-200s). The Poseidon approach shows a wide
range of fluctuation in the PIT size between 576 to 1196. The proposed ANNM
approach shows a minor fluctuation in the PIT size between 495 to 1027 in
the attack duration.

6 Conclusion

Most of the previous approaches use one or two features for the detection
and mitigation of IFA. These approaches were based on a hard threshold. In
our previous work, we have shown that these approaches have less accuracy
than machine learning-based approaches. This paper presents a traceback-
based mitigation approach for IFA. Firstly, six features are selected out of
eleven using IG-based ranking. These selected features are used for building a
trained ANN-based classifier. This classifier is deployed in the NDN routers for
online IFA detection. On IFA detection, the router stores malicious interface
and prefix-list in the m-list. The router sends an alert message to the gateway
router to inform it about the attack. The gateway router adds them to its
m-list. The gateway router restricts the interest packets which match with the
m-list. The proposed approach performs better than the previous approach in
terms of the satisfaction ratio and throughput of normal consumers. In the
future, we try to adapt our approach to the mitigation of different types of
IFAs.
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Figures

Figure 1

NDN Forwarding Pipeline

Figure 2

IFA Demo



Figure 3

Series of Processing Done for the Mitigation of IFA



Figure 4

Topologies Considered for Attack Modeling (a) Tree Topology and (b) DFN like Toplogy

Figure 5

Satisfaction Ratio (SR) of Normal Consumers w.r.t. Time for (a) Tree Topology and (b) DFN like Toplogy



Figure 6

Throughput of Normal Consumers w.r.t. Time for (a) Tree Topology and (b) DFN like Toplogy

Figure 7

Average PIT Size of Routers w.r.t. Time for (a) Tree Topology and (b) DFN like Toplogy


