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Abstract 

Background 

Dietary factors may modulate many complex interactions between the microbiome, metabolome, 
and immune system and can have an impact on the functional status of older adults. Sulforaphane 
(SFN), a natural compound and Nrf2-related activator of cytoprotective genes, provides a wide 
range of biological effects from cancer prevention to reducing insulin resistance. We have shown 
that SFN increased survival and improved cardiac and skeletal muscle function in a mouse model 
of aging. This study aims to investigate the anti-aging effects of SFN on the gut microbiome and 
metabolome. 

 
Results 
Young (6-8 weeks of age) and old (21-22 months of age) male C57BL/6J mice were provided 
regular rodent chow or chow containing SFN for 2 months. Fecal samples were collected right 
before and at the completion of SFN administration. We profiled the gut microbiome and applied 
global metabolomic profiling to fecal samples. Multi-omics datasets were analyzed individually 
and integrated to investigate the relationship between SFN diet, the microbiome, and 
metabolome. Microbial diversity, composition and functional capacity varied substantially across 
different age groups. On a global level, in old mice we observed that the SFN diet restored the 
gut microbiome to mimic that in young mice. In old mice, the SFN diet enriched bacteria 
associated with an improved intestinal barrier function and the production of anti-inflammatory 
compounds. In addition, the tricarboxylic acid cycle, central in cellular respiration, was decreased 
and amino acid metabolism-related pathways were increased. SFN diet induced metabolite 
biomarkers in old mice that are associated majorly with the genera, Oscillospira, Ruminococcus, 
and Allobaculum. 

Conclusion 

In old mice, SFN directed the metabolic potential to that of young animals. Integrated microbiome 
and metabolome analyses revealed metabolite biomarkers that could be modulated by bacteria 
and contribute to the anti-aging effects of SFN. Collectively, our results provide evidence in 
support of a novel hypothesis that SFN diet exerts anti-aging effects by influencing the gut 
microbiome and metabolome. Although further investigations are needed to identify precise 
mechanisms, modulating the gut microbiome by SFN may have the potential to promote healthier 
aging. 

 
Keywords: aging, sulforaphane, gut microbiome, metabolome, biomarkers  
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Background 
 
The gut microbiome is an extremely diverse and complex ecosystem of bacteria, viruses, and 
fungi inhabiting the intestinal tract, which interact with each other and their host [1]. The human 
gut microbiome is unique to each individual, but is dominated by anaerobic bacteria belonging to 
two phyla, Firmicutes and Bacteroidetes [2]. It is becoming apparent that there are many complex 
interactions between the gut microbiome, immune system, and metabolism in health and disease 
[3, 4]. Accumulating data support the contention that microbial metabolites play major roles in the 
regulation of the immune system [5]. Unsurprisingly, diet is a major modifiable factor shaping the 
gut microbiome structure and metabolic activity both in the short and long terms as reported in 
observational and intervention studies [6, 7]. Given these associations, dietary factors may have 
significant therapeutic utility in modulating many interactions between the gut microbiome, 
metabolism, and immune system.  
 
The human gut microbiome fluctuates over the individual’s life span, undergoing the most 
prominent deviations during infancy and old age [8]. Interestingly, our immune health shows 
similar fluctuation patterns like the gut microbiome and the most unstable state during infancy and 
old age [8]. Although the causal relationship between the gut microbiome and aging is unclear, 
the gut microbiome may serve as a target for anti-aging intervention. We hypothesize that diet 
can revert the gut microbiome to a younger composition. In this study, we tested this hypothesis 
with a sulforaphane (SFN) containing diet in a mouse model of aging. SFN is a compound in 
cruciferous vegetables that has been investigated for its anti-cancer, anti-aging, antioxidant, 
antimicrobial, anti-inflammatory, anti-diabetic, and neuroprotective properties [9, 10]. Many 
studies have investigated SFN for its role in aging. SFN mechanisms of action have been linked 

to Nrf2 and NF-κB, key cellular transcription factors. SFN-induced activation of Nrf2 and inhibition 

of NF-κB result in the induction of redox-modulating genes and the inhibition of inflammation, 
respectively [11]. However, the effect of SFN on the gut microbiome has not yet been investigated 
in aging. 
 
We hypothesize that administration of SFN reshapes the old gut microbiome into a younger 
composition. This may lead to an enrichment of beneficial bacteria that produce short chain fatty 
acids (SCFAs), known for their anti-inflammatory actions that may help improve aging-related 
pathologies. In this study, we focus on the anti-aging impact of SFN on the gut microbiota in a 
mouse model. To disentangle the contribution of aging and non-aging related variables to the gut 
microbiome, we divided mice into four groups: an old control group receiving regular rodent chow, 
an old group receiving the same chow but supplemented with SFN, a young control group, and a 
young SFN diet group (Table 1). Fecal samples were collected immediately before (indicated in 
text and figures as 0 months) and 2 months after the start of SFN administration. We conducted 
multi-omic profiling to investigate the relationship between SFN diet, the gut microbiome, and 
metabolome. Our results identified global relationships and highlighted novel associations 
between SFN diet and microbiome structure and function, and metabolite biomarkers that may 
be modulated by gut bacteria.  
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Results 
 
Data annotation and overview of samples. Both aging and senescence are widely modelled in 
mice because of their physiological similarities to humans [12]. Male C57BL/6J mice at 6-8 weeks 
of age (corresponding to 17-20 years in humans) and mice at 21-22 months of age (60-65 years 
old in human age) were included in the study. From both cohorts, fecal samples were collected 
immediately before (0 months) and 2 months after the start of SFN-containing diet or control diet 
(Table 1) and stored frozen until microbiome and metabolome analysis. The fecal microbiome 
was analyzed by amplicon sequencing of the V4 region of the 16S rRNA gene. We obtained a 
total of 3.3 million high-quality amplicon sequence variants (ASVs) from 40 samples whose 
sequencing depth ranged from 24,788 to 130,121 with a mean frequency of 83,539 per sample. 
We removed ASVs that were annotated as chloroplast and mitochondria using a pre-trained 
taxonomy classifier against the Greengenes (v13_8) 99% Operational Taxonomic Units (OTUs) 
reference database [13] and further removed rare ASVs with abundance less than 0.0005% of 
the total number of sequences.  
 
Alpha diversity analysis. We used two measures Phylogenetic Diversity Index and Species 
Richness for alpha diversity. P-values calculated by a Kruskal-Wallis test for phylogenetic 
diversity index and species richness for all pairs of groups are summarized in Table S1. First, 
OC0 (Old-Control-0 month) and OS0 (Old-SFN-0 month) on the other hand, and YC0 (Young-
Control-0 month) and YS0 (Young-SFN-0 month) on the other were expected to show similar 
alpha diversity, since their fecal samples for OS0 and YS0 were collected before SFN diet was 
administered. OC0 and OS0, YC0 and YS0 showed a visible difference in both the Phylogenetic 
Diversity Index and Species Richness (Figure 1, Table S1). Second, OS2 (Old-SFN-2 month) 
was the group with the largest variance of alpha diversities. While the diversity and richness of 
old controls, young controls and young SFN treated mice decreased considerably after two 
months, the group OS2 rather increased both in diversity and richness. Interestingly, the gut 
microbiome in young mice on SFN diet showed a similar pattern over time to old control mice, 
which might indicate that SFN diet doesn’t alter the gut microbiome in young animals. Significant 
differences in alpha diversity were observed between OC2 (Old-Control-2 month) and YC2 
(Young-Control-2 month) (Table S1), but not between OS2 and YS2 (Young-SFN-2 month). 
Alpha diversity analysis of the two different age groups with and without SFN diet implies that 
SFN may recover the young gut microbiome in old mice. We had expected to find little difference 
between OC0 and OS0 and between YC0 and YS0, and indeed there were no significant 
differences found (Table S1) 
 
Beta diversity analysis. We explored four different metrics (weighted-UniFrac, unweighted-
UniFrac, Bray-Curtis, and Jaccard) to get a broader view in comparing community structures. 
Similar to the alpha diversity analysis, we expected small beta diversity between OC0 and OS0, 
and between YC0 and YS0. Significant differences were observed in unweighted-UniFrac but not 
in weighted-UniFrac, which might indicate that differences between OC0 and OS0, and between 
YC0 and YS0 are generally driven by rare organisms. Interestingly, weighted-UniFrac showed 
different patterns in beta diversity from other distances (unweighted-UniFrac, Jaccard, Bray-
Curtis), which indicates that SFN diet changed the microbial community structure by increasing 
the abundance of specific taxa. Figure 2 shows principal coordinate analysis (PCoA) based on 
beta diversity measures. The weighted-Unifrac distance accounted for the variance explained the 
most with the first two principal components (50.9+12.8=63.7% of the variance) whereas 
unweighted-UniFrac accounted for 40.9%, Bray-Curtis for 37.9% and Jaccard for 26.8% of the 
variance. Figure 2 shows that the group OS2 is clearly separated from the other old groups (OC0, 
OC2, OS0) and is closer to the groups YC2 and YS2 with weighted-UniFrac, Bray-Curtis, Jaccard 
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measures. SFN-induced beta diversity separation of old group was not obvious with unweighted-
UniFrac distance (Figure 2D). Nonetheless, differences between OS2 and YC2 with all diversity 
measures considered, and the difference between OS2 and YS2 with weighted UniFrac were 
statistically significant (Table S2). Beta diversity analysis implies again that SFN diet alters and 
may restore the young gut microbiome in old mice. 
 
Taxonomic profiling. To further uncover microbial composition characteristics in different groups, 
we analyzed ASVs assigned for phylum, class and genus in Figure 3. At the phylum level (Figure 
3A), Firmicutes, Bacteroides and Verrucomicrobia were the most predominant phylum groups. At 
the class level (Figure 3B), Clostridia (belonging to Firmicutes at the phylum level), 
Erysipelotrichia (Firmicutes), Verrucomicrobiae (Verrucomicrobia), Bacteroidia (Bacteroidetes) 
and Bacilli (Firmicutes) were the most predominant classes. At the genus level (Figure 3C), 
Akkermansia (belonging to Verrucomicrobiae at the class level), Allobaculum (Erysipelotrichi), 
Bacteroides (Bacteroidia), Lactobacillus (Bacilli), Odoribacter (Bacteroidia), Oscillospira 
(Clostridia), Parabacteroides (Bacteroidetes), Prevotella (Bacteroidetes), Ruminococcus 
(Clostridia) and Turicibacter (Erysipelotrichi) were predominant genera. The abundances of these 
microbial taxa changed significantly across groups. At the phylum level, SFN diet increased 
Firmicutes and decreased Bacteroidetes in old mice. This effect was not noticeable in young mice 
as compared to old mice. Within the phylum Firmicutes, two classes, Erysipelotrichi and Clostrida 
showed the opposite trend in the SFN diet group. Erysipelotrichi occupied a large portion of the 
gut microbiota in stool sample equally in OS2, YC2 and YS2, whereas Clostrida was decreased 
in these groups. Bacteroidia belonging to the phylum Bacteroidetes accounted for a smaller 
proportion of gut microbiota in OS2 compared to all other groups, which might be due to SFN 
administration in old mice. We observed that the YC2 and YS2 groups contained many more 
sequences annotated at the genus which might be a characteristic of the gut microbiome in young 
mice. Interestingly, OS2 showed a similar number of sequences annotated at the genus to young 
mice, unlike OC2. Within the class Erysipelotrichi, Allobaculum was greatly increased in OS2 
compared to OC2 (Figure 3C). But, Allobaculum was also increased equally in young control and 
SFN groups at 2 months. Therefore, the genus Allobaculum might be a characteristic of the gut 
microbiome in young mice, and the SFN diet restored Allobaculum in the old gut microbiome. 
Akkermansia decreased and Oscillospira was increased in abundance in old and young mice due 
to the SFN diet. It is noted that young groups at the baseline (YC0 and YS0) somehow showed 
significant differences in abundance of Prevotella and Bacteroides (genera of the phylum 
Bacteroidetes). Prevotella are beneficial bacteria that degrade dietary fiber into short chain fatty 
acids (SCFAs). A high Prevotella-to-Bacteroides ratio is associated with a loss of body weight 
and body fat [14]. This evidence might support the contention that there is no unique optimal 
young gut microbiota composition. Based on all the evidence shown above, we conclude that 
SFN diet restored the young gut microbiome in old mice by increasing the abundance of specific 
taxa. This recovery of the microbiome may contribute to reversing functional and physiological 
effects of aging. 
 
Linear discriminant effect size analysis (LEfSe). To identify distinctive features between 
groups, a linear discriminant analysis (LDA) effect size (LEfSe) analysis [15] was performed 
(Figure 4). LEfSe analysis showed that the genus Allobaculum, the order Erysipelotrichales, the 
class Erysipelotrichi and the phylum Firmicutes were significantly enriched in OS2 compared to 
OC2. In addition, LEfSe analysis also showed that the genus Adlercreutzia, the order 
Coriobacteriales, the class Coriobacteriia, and the phylum Actinobacteria were significantly higher 
in OS2 compared to OC2. However, the genus Adlercreutzia is from the class Actinobacteria and 
its abundance is negligible compared to other classes and genera in Figure 3B and Figure 4B. 
None of the significantly enriched features in OS2 compared to OC2 were identified as enriched 
features in YC2 and YS2 compared to OS2 (Figure S1). On the other hand, LEfSe analysis 
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identified the family S24-7, the order Bacteroidales, the class Bacteroidia, and the phylum 
Bacteroidetes as enriched in OC2 compared to OS2. 
 
Potential functional annotations of gut microbiota in two age groups with and without SFN 
diet. We used the PICRUSt2 software [16] for stringent prediction of metagenomes and functional 
metabolic pathways from the 16S survey data, yielding output as MetaCyc [17] pathway 
abundances. PCoA analysis was executed with predicted functional profiles by KEGG Orthology 
[18] (Figure 5A) and metabolic pathways based on the MetaCyc database (Figure 5B). The 
analyses included only the microbiome data collected at 2 months after initiation of diet treatment. 
The first two principal components of PCoA explain 43% of variance with the KEGG Orthology 
profile and 51% of variance with the metabolic pathway profile. Interestingly, both profiles showed 
an orthogonal relationship between OS2 and OC2 (Figure 5). Especially, the MetaCyc pathway 
profile showed that three groups (OS2, YC2 and YS2) were horizontally positioned along the first 
principal component whereas OC2 was positioned along the second principal component (Figure 
5B). Figure 5C represents the LEfSe result which displays the effect size of each differentially 
abundant MetaCyc metabolic pathway between OC2 and OS2 with LDA score cutoff of 3. 
Comparing OC2 to OS2, we identified 43 significant metabolic pathways among a total of 323. 
Prominent observations are as follows: amino acid metabolism related pathways, L-lysine 
biosynthesis II, superpathway of L-phenylalanine biosynthesis, superpathway of L-tyrosine 
biosynthesis, superpathway of L-lysine L-threonine and L-methionine biosynthesis I, 
superpathway of L-methionine biosynthesis (transsulfuration), superpathway of S-adenosyl-L-
methionine biosynthesis were significantly enriched in OS2 compared to OC2. Two central 
metabolism related pathways, incomplete reductive tricarboxylic acid (TCA) cycle and pyruvate 
fermentation to propanoate I were enriched in OC2 compared to OS2. 
 
Microbiome and metabolome data integration analysis reveals microbiome dependent 
metabolic changes. We explored two orthogonal approaches, MIMOSA [19] and MelonnPan [20] 
which are fundamentally different. MIMOSA uses a metabolic model framework that integrates 
metabolic potential from bacterial genomes and metabolome composition into a unified analysis. 
Community-wide metabolic potential (CMP) scores are predicted based on the microbial 
metabolic genes for each metabolite and sample, and then are compared to the actual 
metabolome data obtained experimentally. MelonnPan calculates the correlation between the 
microbiome and metabolome composition to identify bacterial populations that might be 
responsible for metabolite patterns using an elastic regularization technique. Our focus was to 
identify well-predicted metabolites by changes in the microbial community due to the SFN diet in 
old mice, which resulted in 565 metabolites among 4158 putative metabolites in negative ion 
mode and 192 metabolites among 4197 putative metabolites in positive ion mode. First, to 
perform MIMOSA, we mapped the corresponding metabolite names to KEGG identifiers by 
mapping the compound IDs to the Human Metabolome Database (HMDB), which includes cross-
references to KEGG compound identifiers. Only 10 metabolites out of 565 significant metabolites 
in negative ion mode and 6 metabolites out of 192 significant metabolites in positive ion mode 
were identified with unique KEGG compounds. With log-transformed metabolite values, MIMOSA 
identified only one metabolite, Phosphatidylcholine. Figure S2A represents the relationship 
between the CMP score estimated by a rank-based method and the experimentally measured 
metabolite value for each sample. Of the metabolite values, 23% (model R-squared of 0.233) was 
explained by taxa that can contribute to phosphatidylcholines. For phosphatidylcholine, MIMOSA 
identified 29 contributing taxa, among which 6 taxa were selected based on an abundance cutoff 
of 10, sample frequency of 20% and contribution of 5% to model R-squared (Figure S2B). 
MIMOSA identified the genus Parabacteroides as the major contributing taxon for 
phosphatidylcholine, followed by the family S24-7.  
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To run MelonnPan, we limited our analysis to OTUs which are prevalent in at least 20% of the 
samples, with relative abundance larger than the mean of abundances of OTUs (=4.209726) and 
with a variance larger than the mean of variances of OTUs (=63.0079). This resulted in the 
analysis of 186 OTUs out of a total of 929 OTUs. We normalized the abundance of the selected 
OTUs and log-transformed metabolite values into relative abundance. MelonnPan fitted a per-
metabolite elastic net model to the normalized data and determined the tuning parameters (the 
elastic net mixing parameter and sparsity parameter) in the elastic net model using 10-fold cross 
validation, which led to an optimal subset of OTUs whose abundances predict a given metabolite. 
Metabolites with a Spearman correlation coefficient between experimentally measured metabolite 
values and predicted metabolite values across samples > 0.3 were defined as well-predicted by 
MelonnPan. For each well-predicted metabolite, we kept only OTUs whose coefficients in the 
fitted elastic net model were ≥ 0.0002. Phosphatidylcholine by MIMOSA, was also predicted by 
MelonnPan (data not shown because coefficients in the fitted elastic net model < 0.0002). Among 
well-predicted metabolites, 61 metabolites had coefficients of organisms larger than 0.0002 in the 
fitted elastic net models. We kept only organisms which are annotated at the genus level where 
the same genus occurred more than once for a given metabolite, then we kept the one with the 
largest absolute coefficient. Figure 6 represents coefficients of organisms for well-predicted 
metabolites which have no known involvement in drug and plant metabolism. The genus 
Oscillospira was the most associated with well-predicted metabolites. The genera which were 
also majorly associated with well-predicted metabolites were Ruminococcus gnavus, Allobaculum, 
and Akkermansia muciniphila. The genera Anaeroplasma, Lactococcus, Mucispirillum, 
Schaedleri,Pasabacteroides, Rc4-4, Smb53, and Turicibacter were not associated with any of 
these endogenous metabolites (Figure 6), nor were they found in any abundance in OS2 (Figure 
3C).  
 

 
 

Discussion  
To our knowledge, this study is the first attempt to investigate the impact of SFN on 

structural and functional changes in the gut microbiota and metabolome in an animal model of 
aging.  
 
Age-dependent microbial signatures of the mouse gut microbiome. First, in comparing OC2 
to YC2, we determined that the gut microbiome of old mice was composed of more bacteria which 
were not annotated at the genus level, showing much lower taxonomic resolution compared to 
the microbiota in young mice. Gut microbial alpha diversity, a holistic estimator generally 
decreases when people age, likely due to changes in physiology, diet, medication, and lifestyles. 
Decreased diversity is considered an indicator of an unhealthy microbiome and has been linked 
to different chronic conditions such as obesity and type 2 diabetes [21]. A decline in gut microbiota 
diversity was also observed in our dataset (Figure 1). As in the human gut microbiome, Firmicutes 
and Bacteroidetes were predominating bacterial phyla in our data. We observed a decrease of 
the ratio of Firmicutes to Bacteroides with age (Figure 3A), which is also seen in aging humans 
[22] and is known to be associated with several conditions such as weight gain, obesity, insulin 
resistance, gut permeability, inflammatory bowel disease, and depression [23, 24]. At the class 
level, gram-negative Bacteroidia (Bacteroidetes phylum) and gram-positive Clostridia, Bacilli, and 
Erysipelotrichi (all from the Firmicutes phylum) were dominant classes and altered in old mice. 
Especially, a decreased abundance of Erysipelotrichi in the old gut microbiome was the most 
visible. At the genus level, beneficial bacteria Allobaculum, Lactobacillus, Odoribacter, 
and Ruminococcus were decreased in the old mouse gut microbiome. A study of calorie 
restriction [25] found that Allobaculum and Lactobacillus made a significant contribution to the 
decrease of Firmicutes during aging. At the genus level, we found SCFAs-producing taxa, 
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Allobaculum, Lactobacillus, Odoribacter, and Ruminococcus enriched in YC2 compared to OC2. 
Among them, Allobaculum (from the Erysipelotrichi class) is a SCFA-producing genus in the gut 
which has recently been reported to be an important functional phylotype [26, 27] and especially, 
protects intestinal barrier function by producing SCFAs. Ruminococcus is related to 
polysaccharide fermentation into SCFAs and bile acid dihydroxylation. The members of the genus 
Allobaculum are already known to be inversely correlated with dietary-induced inflammation 
markers [28].  
 
Odoribacter is a butyrate producer that belongs to the phylum Bacteroidetes [29-32]. The 
decrease of these SCFA producers in old-control mice might suggest an increase in the possibility 
of inflammaging, i.e. increased chronic, low-grade inflammation. The beneficial microbe, 
Akkermansia (Phylum Verrucomicrobia) produces both propionate and acetate [33, 34] and is 
inversely correlated with several disease states. On the other hand, certain members of this genus 
(Akkermansia muciniphila) may also exacerbate infection via mucin degradation. Contrary to our 
expectations, Akkermansia was enriched in old mice (Figure 3C). 
 
SFN diet-dependent microbial signatures in the mouse gut microbiome. Gut microbiota have 
emerged as an attractive therapeutic target to promote healthy aging and anti-aging effects which 
may result in improved quality of life [35]. The gut microbiota respond to dietary interventions very 
quickly, and short-term changes in the diet can alter the overall structure of the gut microbiota. 
We have recently shown that an SFN-containing diet reduces the effects of aging on cardiac and 
skeletal muscle function (unpublished data). In this study, we investigated the impact of SFN diet 
on the mouse gut microbiota, which may contribute to these anti-aging effects. SFN diet increased 
the diversity of the gut microbiota in old mice (Figure 1). Further, SFN diet encouragingly 
reshaped the gut microbial community structure of old mice to where they approach the one of 
young mice for all four beta diversity measures (Figure 2). Together, these results demonstrate 
the possibility of anti-aging effects of SFN on the gut microbiota.  
 
At the phylum level, the SFN-diet enriched Firmicutes depleting Bacteroides in old mice which are 
known to be associated with a healthy gut microbiome. The ratio of Firmicutes to Bacteroidetes 
in the human gut microbiota changes with age, undergoing a significant increase from birth to 
adults and a significant decrease from adults to elderly, to where there is no significant difference 
between infants and elderly [36]. In our study, the ratio of Firmicutes to Bacteroidetes in young 
mice fed SFN was similar to the one in young control mice. In old mice, on the other hand, SFN 
diet increased the ratio of Firmicutes to Bacteroidetes. Our study pointed to the class 
Erysipelotrichi and the genus Allobaculum as major contributors to the SFN-induced enrichment 
of the phylum Firmicutes in the old gut microbiota. Increased numbers of Erysipelotrichi are 
associated with a phenotype of impenetrable mucus layer in the mouse [37]. Moreover, exercise 
increases butyrate-producing Erysipelotrichaceae along with several taxa in animals and adults 
regardless of diet [38]. Allobaculum, one of the most prevalent genera in young gut microbiota 
(Figure 3C), showed a significant change in abundance with SFN administration in the old mice 
(Figure 4). Allobaculum is a genus of gram-positive, non-spore-forming bacteria, strictly 
anaerobic and non-motile with tryptophan-catabolizing functions and suggested to be the most 
active glucose utilizer [39]. Allobaculum has been suggested to be beneficial for host physiology, 
and its increase was associated with low-fat feeding compared with high-fat diet feeding in a 
mouse model [40].  Allobaculum was depleted in mice with age-related mitochondrial dysfunction 
[41]. The end products of Allobaculum fermentation are SCFAs, specifically butyrate  which has 
been shown to have epigenetic consequences as a histone deacetylase inhibitor, possess anti-
inflammatory and anti-carcinogenic properties [42]. Therefore, increases in Allobaculum due to 
the SFN diet may contribute to an increased intestinal barrier function and reduced inflammation 
in old mice. Oscillospira, one of the most abundant genera, is an under-studied anaerobic 
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bacterial genus from Clostridial cluster IV in the Firmicutes phylum. Oscillospira showed an 
increased abundance in OS2 compared to OC0 mice. A study of Oscillospira metabolism [43] 
inferred that Oscillospira species are butyrate producers and found that their abundance was 
decreased in inflammation-related diseases. Given the strong evidence linking Oscillospira to 
human leanness or body mass index in both children and adults [44-47], further studies are 
necessary to ascertain the clinical significance of Oscillospira in human health and aging. 
 
SFN diet-dependent microbial functional signatures in the mouse gut microbiome. PCoA 
analysis based on Euclidian distance demonstrated that the old group fed the SFN diet showed 
metabolic pathway profiles that were more similar to the ones of young animals than the mice in 
the old control group (Figure 5). Therefore, the SFN diet could be reasonably presumed to shape 
the metabolic capability of the aging gut microbiome toward a younger gut microbiome. Noticeably, 
the TCA cycle, one of the essential functions of mitochondria [48] and a central hub for energy 
metabolism and macromolecule synthesis, and pyruvate fermentation to propanoate I were 
significantly enriched in the old control group. A comparison study of the human gut microbiota 
between centenarian, elderly and young individuals, based on the premise that centenarians are 
a model of healthy aging, identified these two metabolic pathways enriched in the centenarian 
group compared to the young and elderly groups  [49]. Since pyruvate is the major precursor for 
the synthesis of three major SCFAs, acetate, propionate, and butyrate that are related to a strong 
gut epithelium, this study interpreted the enrichment of the TCA cycle and pyruvate fermentation 
to propanoate I as a signature of longevity and healthy microbiome. On the other hand, increased 
metabolism of SCFAs such as pyruvate, butanoate and propanoate in obese rodent models may 
provide an extra energy source and induce insulin resistance [50]. In the current study, metabolic 
pathways of amino acids such as L-lysine, L-tyrosine, L-methionine, L-threonine, and L-
phenylalanine were significantly enriched in the old group on SFN diet compared to the old control 
group. Among those amino acids, lysine, tyrosine, methionine, and phenylalanine are suggested 
to play an important role in the regulation of aging [51]. Interestingly, L-lysine is an essential 
ketogenic amino acid and critical building block for proteins. An increase in L-lysine in the human 
gut was also observed in young compared to  centenarian and elderly groups [49]. Our metabolic 
pathway analysis was done with inferred functional profiles. There are questions that still remain 
unanswered and may need further study. For example, does SFN diet activate all genes in TCA 
cycles or L-lysine biosynthesis II or is there a selectivity for particular ones?   
 
SFN diet-dependent microbiome-dependent metabolites. To identify microbe-associated 
metabolites, we applied metabolic model-based (MIMOSA) and multiple regression with penalty 
term-based (MelonnPan) methods for our paired data. Both methods identified 
phosphatidylcholine (C00157) as a metabolite associated with microbiome structure where 
phosphatidylcholine showed an increased fecal concentration in the old group fed the SFN diet 
compared to the old control group. Phosphatidylcholine is one of the major phospholipids 
comprising the cellular membrane and is known to have several health-promoting properties.  
Phosphatidylcholine showed a lifespan-extending effect under oxidative stress (one of the major 
causal factors of aging) and delayed age-related decline of motility in a worm model [52]. MIMOSA 
identified Parabacteroides and several members from the family S24-7 as major contributors to 
phosphatidylcholine. Note that Parabacteroides did not show a significant differential abundance 
between the SFN-treated and control old mice in the current study. Among 61 differentially 
abundant metabolites between old SFN-treated and old control mice as identified by MelonnPan, 
several are not related to drug or plant metabolism. LysoPE(18:4(6z,9z,12z,15z/0:0) and 
phaseolic acid showed an increased concentration with SFN treatment in old mice and are in 
positive association with Allobaculum, Oscillospira, Ruminococcus/Ruminoccus gnavus, where 
Allobaculum is one of the SFN diet-induced anti-aging microbial signatures. Phaseolic acid is a 
hydroxycinnamic acid. Hydroxycinnamic acids and their derivatives have been reported to 
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possess properties of antioxidant, anti-inflammatory, antimicrobial, and anti-tyrosinase activities 
[53] which might suggest that phaseolic acid can be exploited as an anti-aging agent. Glycinamide 
ribonucleotide is an intermediate in de novo purine biosynthesis [54]. It showed an increased 
concentration in SFN-treated old mice and positive associations with Adlercreutzia, Allobaculum, 
and Oscillospira, where Adlercreutzia and Allobaculum were both SFN-diet induced anti-aging 
microbial signatures. Lastly, Glaucarubin concentration was increased with SFN treatment in old 
mice, and this metabolite was positively associated with Allobaculum. Glaucarubin is found in fats 
and oils. Zarse et al reported that Glaucarubin may promote metabolic health and lifespan in 
mammals and possibly humans [55]. Many studies reported protective effects of SFN against 
brain diseases [56]. Among the SFN-diet induced metabolite signatures, taurocyamine is known 
as an endogenous alkaline shifter which effectively reduces the extent of brain intracellular lactic 
acidosis brought about by anoxic insult  [57], and is an inhibitor of taurine transport and a glycine 
receptor antagonist in the brain [58]. Taurocyamine is positively associated with Allobaculum and 
Ruminococcus. MelonnPan does not utilize prior information of genomic metabolic capability and 
solely depends on abundance of species/functions and metabolite concentration. In the analysis 
of integrated metabolome/microbiome data, it might be a good strategy to use MelonnPan first to 
identify a subset of metabolites within untargeted metabolomics data, followed by the use of 
targeted metabolomics data of those metabolites identified by MelonnPan to investigate the 
relationship between the microbiome and metabolome using MIMOSA.  
 

Conclusions 
The immune system is likely influenced by the gut microbiota, and their interaction 

plausibly contributes to the process of inflammation. Ongoing studies suggest that diet has an 
effect on both the gut microbiota and systemic inflammation, with an impact on functional status 
of older adults. Manipulating the intestinal microbiota may be beneficial for maintaining health and 
treating disease and potentially mitigating aging related effects on systemic metabolism. SFN is 
known to have a wide range of biological effects including anticancer, anti-inflammatory, 
antioxidant, and anti-aging [10]. Here, we have used a mouse model of aging that allowed us to 
control for confounding factors from human data and investigated the impact of diet supplemented 
with SFN on the structure and function of the gut microbiota and metabolome. We have observed 
structural and functional changes in the microbiome that correlate with age. We demonstrated 
that SFN diet restored the structure and function of young microbiota in old mice, restoring 
beneficial microorganisms associated with health. In particular, SFN diet enriched bacteria 
associated with improved intestinal barrier function and anti-inflammatory pathways. Moreover, 
inferred metagenome-based data analyses revealed that the SFN diet decreased abundance of 
metabolites of the TCA cycle and increased amino acid metabolism related pathways in old mice. 
Integrated microbiome and metabolome analysis revealed putative metabolite biomarkers of 
SFN-induced in old mice that could be modulated by the microbiome. Probiotics have exerted 
very modest effects on the microbiome in the mice [59, 60] relative to that in humans, and even 
in humans the effectiveness of probiotics is controversial [61]. Consequently, the beneficial 
modification of the microbiome reported by SFN here should be investigated in humans as an 
alternative to probiotic use. Our observations support a novel finding that SFN diet exerts its anti-
aging effect by influencing the composition and function of the gut microbiota. Many observations 
we made in our study are consistent with earlier studies of the human gut microbiome and aging, 
suggesting there may be some parallel shifts that occur in aging human and mouse populations. 
However, translational benefits of SFN in the human gut microbiome remain to be demonstrated. 
In addition, further studies are needed to investigate potential gender differences in the effects of 
SFN diet on shaping the gut microbiota. In conclusion, according to our knowledge, our study 
represents the first effort to investigate the impact of SFN on the gut microbiome and metabolome 
during aging, providing a new prospective for potential targets for microbiota-targeted intervention.  
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Methods and Materials 
 
Study design and sample collection.  This study conformed to the Guide for the Care and Use 
of Laboratory Animals of the National Institutes of Health and the work was performed in 
accordance with a protocol (IACUC#646767-5) approved by the Central Arkansas Veterans 
Healthcare System Institutional Animal Care and Use Committee. Animals were housed in the 
Veterinary Medical Unit at the Central Arkansas Veterans Healthcare System in Little Rock, 
Arkansas. Young and old male C57BL/6 mice were obtained from aged rodent colonies of the 
National Institutes of Health (Bethesda, MD 20892). Young (6-8 weeks of age) and old (21-22 
months of age) mice were fed TD 96163 diet (Teklad, Madison, WI) (control groups) or TD 96163 
diet supplemented with sulforaphane (SFN) (442.5 mg per kg diet; treated groups), for 2 months. 
Immediately before and at the completion of the 2 months-administration of SFN and control diet 
administration, fecal pellets were collected from 5 mice per age and treatment. For this purpose, 
mice were individually placed in a Plexiglas box to obtain fresh fecal pellets. Fecal pellets were 
collected and stored at −80°C until processing. Each pellet was divided into two parts under liquid 
nitrogen. one half was shipped to the University of California Los Angeles for 16S rRNA amplicon 
sequencing and the other half to Georgetown University for metabolomics as described in Casero 
et al [62] and also described below. 
 
Sample preparation for microbiome analysis. Sample preparation and analysis were 
performed as described by us previously [62]. Briefly, genomic DNA was extracted using the 
PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) as per manufacturer’s 
instructions. 16S rRNA amplicon bacterial gene sequencing was performed using extracted 
genomic DNA as the template using a standard protocol. The PCR primers used in the study 
(F515/R806) targeted the V4 hypervariable region of the 16S rRNA gene, with the reverse primers 
including a 12-bp Golay barcode. Thermal cycling was performed in an MJ Research PTC-200 
(Bio-Rad Inc., Hercules, CA, USA) with the following parameters: 94°C for 5 min; 35 cycles of 
94°C for 20 s, 50°C for 20 s, and 72°C for 30 s; 72°C for 5 min. PCR products were purified using 
the MinElute 96 UF PCR Purification Kit (Qiagen, Valencia, CA, USA). DNA sequencing was 
performed using an Illumina HiSeq 2500 (Illumina, Inc., San Diego, CA, USA), in paired-ended 
mode. Clusters were created using template concentrations of 4 pM and PhiX at 65 K/mm2. 
Sequencing primers targeted 101 base pair reads of the 5′ end of the amplicons and 7 base pair 
barcode reads. Reads were filtered using the following parameters: minimum Q-score: 30, 
maximum number of consecutive low-quality base calls allowed before truncating: 3, and 
maximum number of N characters allowed: 0. All filtered V4 reads had a length of 150 bp. 
 
Sample preparation for metabolomics analysis. Fecal samples were processed by initially 
homogenizing in extraction solvent cocktail containing 50% methanol, 30% isopropanol, 10% 
water and 10% chloroform and internal standards to allow a broad based extraction, followed by 
protein crash using 1:1 acetonitrile [63].  The samples were centrifuged and the   supernatant was 
dried and resuspended in water containing 50% methanol for MS analysis. The samples were 
resolved using reverse phase chromatography using an Acquity UPLC (Waters Corporation, USA) 
system online Xevo–G2-QTOF-MS ( Waters Corporation USA) operating in positive and negative 
ion mode, the details of tune page parameters have been described before [64-66]. Several 
measures including randomizing the sample queue, use of pooled quality controls and standards 
were used to monitor data quality, retention time drifts and signal intensity.  
 
Bioinformatic processing with 16S rRNA amplicon sequencing data. We first removed 
adapters (barcodes, forward primer:GTGYCAGCMGCCGCGGTAA, and reverse primer: 



 12 

GGACTACNVGGGTWTCTAAT) in demultiplexed paired-end sequencing data of 40 sequencing 
libraries from one batch using Cutadapt [67], which resulted in about 3% of reduction in 
sequencing depth. For microbiome bioinformatic processing, raw sequence data were then 
imported into QIIME2 [68]. Sequencing depth ranged from 67,885 to 283,004 with a mean of 
199,196 and a median of 219,054. After inspecting the quality profiles, it was clear that the reverse 
read quality dropped off more severely than in the forward read. Accordingly, we trimmed the 
reverse reads at position 136 and removed chimeric reads by consensus method followed by 
denoising and merging with DADA2 [69] (via q2‐dada2) which resulted in a table of 1,746 
amplicon sequence variants (ASVs) for 40 samples with the total frequency of 3,341,551.  
 
For taxonomic assignment, we used a classifier that has been pretrained on Greengenes 
database (v13_8) with 99% operational taxonomic units (OTUs) and primers used for 
amplification and the length of sequence reads. Taxonomy was assigned to ASVs using the q2‐
feature‐classifier [70] classify‐sklearn naïve Bayes taxonomy classifier against the Greengenes 
(v13_8) 99% OTUs reference sequences [71]. ASVs were filtered out through the two steps: first, 
ASVs which belong to chloroplast at the class level or mitochondria at the family level were filtered 
out, and then only those ASVs with at least phylum-level assignment were only kept.; second, low 
abundance ASVs with frequency less than 0.0005% of reads in the total dataset were removed 
as recommended for Illumina amplicon data [72] which allowed us to perform differential 
abundance analysis with increased detection sensitivity. The two filtering steps resulted in a 
feature-table of 1,377 ASVs with the total frequency of 3,336,130 which was used for downstream 
analysis. All ASVs were aligned with Mafft [73] (via q2‐alignment) and a phylogeny was 
constructed  using Fasttree2 [74] (via q2‐phylogeny). For alpha and beta diversity analysis, alpha‐
diversity metrics (observed OTUs and Faith’s Phylogenetic Diversity [75]) and beta diversity 
metrics (weighted UniFrac [76], unweighted UniFrac [77], Jaccard distance, and Bray‐Curtis 
dissimilarity) were used. Sample ordination based on principle coordinate analysis (PCoA) were 
estimated using q2‐diversity after samples were rarefied (subsampled without replacement) 
based on rarefaction analysis by phylogenetic diversity index and species richness to the number 
of sequences of the sample with the least number of sequences (24,788).  
 
For alpha diversity significance test, the Kruskal-Wallis test was used to evaluate the effect of the 
experimental factors on the relative abundance at ASV level. Similarly, significant differences in 
beta diversity between groups were tested using permutational multivariate analysis of variance 
(PERMANOVA) with 999 Monte Carlo permutations. We generated an OTU-table by clustering 
all ASVs into OTUs using Vsearch [78] (via q2‐Vsearch) with a similarity threshold of 97% against 
the Greengenes (v13_8). The number of OTUs detected in 40 samples was 1,047, and the mean 
frequency was 70,387. After removing rare OTUs with frequency less than 0.0005% of reads in 
the total dataset and then rarefying the OTU table at a depth of 21,221 sequences per sample 
based on rarefaction analysis by phylogenetic diversity index and species richness, the resulting 
OTU-table provides a highly replicated, deeply sequenced dataset with 928 OTUs and mean 
frequency of 70,310. For functional analysis of the microbiome, we predicted functional profiles 
from the rarefied OTU-table using PICRUSt2 v.2.1.4-b software [16]. With the maximum NSTI 
cut-off of 2, PICRUSt2 predicts abundance of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Orthology (KO) gene family and Enzyme Commission (EC) number based on the KEGG 
database [18]. Afterwards, we inferred the abundances of metabolic pathways based on MetaCyc 
database [17] from the predicted abundances of EC numbers. The linear discriminant analysis 
(LDA) effect size (LEfSe) method [15] was used to identify statistically significant differences 
between groups of experimental design in taxonomic and metabolic pathway features. For 
taxonomic feature, the ASV table was collapsed at the species level. LEfSe algorithm uses 
Kruskal-Wallis rank sum test to detect features with significantly different abundances between 
the two groups, followed by LDA to estimate the effect size of each feature. A strength of the 
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LEfSe method compared with standard statistical approaches is that in addition to providing p 
values, it estimates the magnitude of the association between each feature and the grouping 
categories. A significance alpha level of 0.05 for the Kruskal-Wallis test and an effect size (LDA 
score) threshold of 3 were used for all biomarkers. The cladogram from the LEfSe method 
indicates the phylogenetic distribution representing differentially abundant taxonomic groups. The 
size of each node represents its relative abundance. 
 
Computation frameworks to integrate microbiome and metabolome for the identification 
of potential mechanistic links. We explored two different approaches to integrate microbiome 
and metabolome for the identification of potential mechanistic links: MIMOSA [19] using the 
updated software (https://borenstein-lab.github.io/MIMOSA2shiny/) and MelonnPan [20]. 
MIMOSA integrates metabolic potential from bacterial genomes and metabolome into a unified 
analysis. PICRUSt2-predicted metagenome from a reference-based OTU table rarefied 
(described above) was used for the MIMOSA analysis. MIMOSA first performs metabolic network 
modelling using the Predicted Relative Metabolic Turnover framework [79] derived from KEGG 
enzymatic reactions [18]. For each metabolite in each sample, community-wide metabolic 
potential (CMP) scores were computed as the matrix multiplication of a stoichiometric enzyme 
reaction matrix (M) and PICRUSt2-predicted metagenome matrix represented by KO-relative 
abundances (G) so that CMP scores represent the relative capacity of the community in a given 
sample to generate or deplete each metabolite. The integration with metabolomics data was 
performed by comparing CMP scores to actual LC-MS normalized metabolite abundances, by 
matching metabolite putative ids with KEGG compound ids. Due to this algorithmic step, only 
putative metabolites which are annotated by KEGG compound id, can be examined for integration 
of microbiome and metabolome by MIMOSA. Finally, MIMOSA identifies contributions of taxa 
based on the amount of variation in a metabolite explained by CMP scores analyzing the 
regression model fit. For metabolites that are significantly associated with predicted metabolic 
potential with a regression model p-value less than 0.1, the taxa with the largest contributions are 
hypothesized to be the main drivers of change of metabolite pattern across samples. However, it 
is difficult to apply or validate MIMOSA results in a data-driven manner because of its algorithmic 
limitations of applicability to metabolites not annotated with KEGG compound. In addition, 
MIMOSA depends on accurate characterization and annotation of species- and even strain-
specific metabolites so that it cannot scale well to complex communities with partially referenced 
taxa or metabolites. We applied another computational framework named MelonnPan which does 
not rely on a limited number of well-characterized taxa, enzymes, metabolites, and functional 
annotation unlike MIMOSA. MelonnPan uses elastic net regularization [80] to identify which OTUs 
are predictive for a given metabolite based on only their relative abundance profiles. For each 
metabolite, MelonnPan fits the elastic net model and optimizes the tuning parameters (i.e., both 
the elastic net mixing parameter and sparsity parameters) based on cross-validation. MelonnPan 
evaluates the predictability of each metabolite based on Spearman correlation coefficient (r) 
between the experimentally measured and predicted metabolite concentrations across samples. 
Metabolites with r > 0.3 are defined as well predicted. For significance testing on well-predicted 
metabolites, MelonnPan repeatedly shuffles the sample labels in both a metabolite table and an 
OTU table, and applies the MelonnPan to the randomized data by shuffling to link OTUs to 
metabolites and finally compares well-predicted metabolites between the original data and the 
randomized data. For multiomics integration, we focused on statistically significant metabolites 
between OC2 and OS2 since we are interested in bacterial populations that might be responsible 
for changes in metabolite pattern due to SFN diet in old mice. 
 
 
 
 

https://borenstein-lab.github.io/MIMOSA2shiny/
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Figures Legends 
      

Figure 1. Alpha diversity in the different experimental groups. (A) phylogenetic diversity 
index, and (B) species richness. The boxes denote interquartile ranges (IQR) with the median as 
a black line and whiskers extending up to the most extreme points within 1.5 times IQR. Outliers 
are noted as points. Note that O means Old and Y stands for Young; C means control diet and S 
indicates SFN diet; 0 means 0 months (immediately before diet administration) and 2 stands for 
2 months after initiation of diet administration. Alpha diversity significance test results are 
summarized in Table S1. 
 
Figure 2. Principal Coordinate Analysis (PCoA) of the gut microbial communities in the 
different experimental groups. (A) Bray-Curtis distance, (B) Jaccard distance, (C) weighted-
UniFrac distance, (D) unweighted-UniFrac distance. The individual samples are indicated by 
symbols according to age (old, young) and color-coded according to the groups. The colored 
ellipses indicate the 70% confidence interval of each group. The weighted-UniFrac distance 
accounted for the variance explained the most compared to other diversities. Notations of the 
groups are the same as in Figure 1. 
 
Figure 3. Gut microbial composition. (A) at the phylum level, (B) at the class level and (C) at 
the genus level. Each bar represents abundance of different kinds of bacteria in gut microbiota of 
each sample. Group notations are the same as in Figure 1. 
 
Figure 4. Identification of bacterial biomarkers between SFN-treated old mice (OS2) and 
old control mice of the same age (OC2), using LEfSe analysis. (A) The distribution bar chart 
of LDA values shows the species with linear discriminant analysis (LDA) scores greater than 3 
and the species with significantly different abundances in different groups. The length of the 
histogram represents the impact size of significantly different species. (B) The circle radiating 
from inside to outside represents the classification from the phylum to the genus level. Each small 
circle at different classification levels represents a sub-classification level.  The diameter of the 
small circle is proportional to the relative abundance. Group notations are the same as in Figure 
1. LDA scores <0 indicate that corresponding features are enriched in OC2. 
 
Figure 5. Comparative analyses of the inferred functional profiles of the gut microbiome. 
(A) Principal coordinate analysis (PCoA) of inferred functional profiles by KEGG Orthology in 
different experimental groups, (B) PCoA of inferred metabolic pathway profiles based on the 
MetaCyc database. The colored ellipses indicate 70% confidence intervals for each group. (C) 
Metabolic pathways with a significant difference between old control mice (OC2) and old mice 
treated with SFN (OS2) (p < 0.05 by the Wilcoxon test) using linear discriminant effect size 
analysis. LDA scores <0 indicates that corresponding features are enriched in OC2. 
 
Figure 6. Results of MelonnPan analysis. Comparative analysis of old control and old SFN diet 
groups using MelonnPan yielded 61 endogenous metabolites showing significant change in 
abundance, with coefficients of operational taxonomic units in the fitted elastic net models larger 
than 0.0002. The metabolites shown in the heatmap have no known involvement in drug and plant 
metabolism.  
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Supplementary Figures Legends 
 
 
Figure S1. Identification of bacterial biomarkers using linear discriminant effect size 
analysis. (A) Comparison of old SFN-treated mice (OS2) with young SFN-treated mice (YS2). 
(B) Comparison of OS2  and young mice that received control diet for 2 months (YC2). The 
distribution bar chart of LDA values shows the species with LDA scores greater than 3 and the 
species with significantly different abundances in different groups. The length of the histogram 
represents the size of the impact of significantly different species. The circle radiating from inside 
to outside represents the classification from the phylum to the genus level. Each small circle 
represents a classification at that level at different classification levels. Those taxa in each level 
are colored by farm for which it is more abundant. The diameter of the small circle is proportional 
to the relative abundance. Note that no differentially abundant species between YC2 and YS2 
were identified.  
 
 
Figure S2. MIMOSA analysis results. (A) MIMOSA identified Phosphatidylcholine (C00157) as 
well-predicted with a model p-value < 0.1 and a positive model slope. The scatter plot indicates 
the relationship between experimentally measured values and community-wide metabolic 
potential (CMP) for each sample for Phosphatidylcholine. (B) MIMOSA identified 29 organisms 
contributing to Phosphatidylcholine, which were narrowed down to 6 organisms based on 
abundance, sample frequency and contribution. Contribution bar plots are colored by the lowest 
taxonomy rank.  
 
 
Figure S3. The log-transformed concentration profiles of well-predicted metabolites by 
MelonnPan in Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22 

Tables 
 
Table 1. Experimental design and study groups. 
 

Group Age Diet 
Time 
(month) 

Number of  
subjects 

YC0 Young Control 0 5 

YC2 Young Control 2 5 

YS0 Young SFN 0 5 

YS2 Young SFN 2 5 

OC0 Old Control 0 5 

OC2 Old Control 2 5 

OS0 Old SFN 0 5 

OS2 Old SFN 2 5 
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Supplemental Tables 
 
Table S1. Alpha diversity significance test. The Kruskal-Wallis test was used to calculate p-
value between experimental groups for phylogenetic diversity index and species richness. A p-
value <0.05 is flagged with an asterisk. 
  

P-value for Phylogenetic 
Diversity Index 

P-value for 
Species Richness 

OC0  OC2 0.175 0.117 

OC0 OS0  0.251 0.251 

OC0 OS2 0.917 0.602 

OC0 YC0  0.009* 0.059 

OC0 YC2 0.347 0.754 

OC0 YS0  0.009* 0.175 

OC0 YS2 0.754 0.347 

OC2 OS0  0.754 0.347 

OC2 OS2 0.602 0.754 

OC2 YC0 0.009* 0.009* 

OC2 YC2 0.009* 0.016* 

OC2 YS0  0.009* 0.009* 

OC2 YS2 0.076 0.175 

OS0 OS2 0.754 0.917 

OS0 YC0  0.009* 0.009* 

OS0 YC2 0.028* 0.142 

OS0  YS0  0.009* 0.009* 

OS0 YS2 0.465 0.602 

OS2 YC0  0.175 0.175 

OS2 YC2 0.602 0.754 

OS2 YS0 0.465 0.465 

OS2 YS2 0.917 0.754 

YC0 YC2 0.009* 0.009* 

YC0 YS0 0.175 0.175 

YC0 YS2 0.076 0.009* 

YC2 YS0 0.016* 0.016* 

YC2 YS2 0.117 0.175 

YS0  YS2 0.076 0.028* 
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Table S2. Beta-diversity significance test. The p-values of significant differences in beta 
diversity between experimental groups were calculated using permutational multivariate analysis 
of variance (PERMANOVA) with 999 Monte Carlo permutations. A p-value <0.05 is flagged with 
an asterisk. 
  

Bray Curtis unweighted UniFrac weighted UniFrac Jaccard 

OC0  OC2 0.008* 0.014* 0.272 0.006* 

OC0 OS0  0.040* 0.020* 0.184 0.021* 

OC0 OS2 0.010* 0.006* 0.009* 0.007* 

OC0 YC0  0.009* 0.011* 0.045* 0.007* 

OC0 YC2 0.009* 0.006* 0.007* 0.009* 

OC0 YS0  0.010* 0.008* 0.096 0.010* 

OC0 YS2 0.006* 0.010* 0.040* 0.009* 

OC2 OS0  0.006* 0.006* 0.276 0.006* 

OC2 OS2 0.019* 0.164 0.004* 0.110 

OC2 YC0 0.011* 0.009* 0.027* 0.005* 

OC2 YC2 0.010* 0.012* 0.017* 0.008* 

OC2 YS0  0.006* 0.009* 0.035* 0.009* 

OC2 YS2 0.115 0.079 0.033* 0.056 

OS0 OS2 0.009* 0.006* 0.009* 0.012* 

OS0 YC0  0.010* 0.008* 0.009* 0.007* 

OS0 YC2 0.012* 0.013* 0.020* 0.005* 

OS0  YS0  0.017* 0.006* 0.035* 0.010* 

OS0 YS2 0.005* 0.007* 0.030* 0.008* 

OS2 YC0  0.010* 0.012* 0.007* 0.008* 

OS2 YC2 0.008* 0.007* 0.006* 0.011* 

OS2 YS0 0.008* 0.007* 0.007* 0.010* 

OS2 YS2 0.054 0.158 0.005* 0.102 

YC0 YC2 0.007* 0.009* 0.010* 0.004* 

YC0 YS0 0.063 0.025* 0.164 0.063 

YC0 YS2 0.007* 0.010* 0.016* 0.012* 

YC2 YS0 0.018* 0.006* 0.009* 0.008* 

YC2 YS2 0.107 0.006* 0.585 0.012* 

YS0  YS2 0.018* 0.012* 0.007* 0.012* 

 



Figures

Figure 1

Alpha diversity in the different experimental groups. (A) phylogenetic diversity index, and (B) species
richness. The boxes denote interquartile ranges (IQR) with the median as a black line and whiskers
extending up to the most extreme points within 1.5 times IQR. Outliers are noted as points. Note that O
means Old and Y stands for Young; C means control diet and S indicates SFN diet; 0 means 0 months
(immediately before diet administration) and 2 stands for 2 months after initiation of diet administration.
Alpha diversity signi�cance test results are summarized in Table S1.



Figure 2

Principal Coordinate Analysis (PCoA) of the gut microbial communities in the different experimental
groups. (A) Bray-Curtis distance, (B) Jaccard distance, (C) weighted-UniFrac distance, (D) unweighted-
UniFrac distance. The individual samples are indicated by symbols according to age (old, young) and
color-coded according to the groups. The colored ellipses indicate the 70% con�dence interval of each
group. The weighted-UniFrac distance accounted for the variance explained the most compared to other
diversities. Notations of the groups are the same as in Figure 1.



Figure 3

Gut microbial composition. (A) at the phylum level, (B) at the class level and (C) at the genus level. Each
bar represents abundance of different kinds of bacteria in gut microbiota of each sample. Group
notations are the same as in Figure 1.



Figure 4

Identi�cation of bacterial biomarkers between SFN-treated old mice (OS2) and old control mice of the
same age (OC2), using LEfSe analysis. (A) The distribution bar chart of LDA values shows the species
with linear discriminant analysis (LDA) scores greater than 3 and the species with signi�cantly different
abundances in different groups. The length of the histogram represents the impact size of signi�cantly
different species. (B) The circle radiating from inside to outside represents the classi�cation from the
phylum to the genus level. Each small circle at different classi�cation levels represents a sub-
classi�cation level. The diameter of the small circle is proportional to the relative abundance. Group



notations are the same as in Figure 1. LDA scores <0 indicate that corresponding features are enriched in
OC2.

Figure 5

Comparative analyses of the inferred functional pro�les of the gut microbiome. (A) Principal coordinate
analysis (PCoA) of inferred functional pro�les by KEGG Orthology in different experimental groups, (B)
PCoA of inferred metabolic pathway pro�les based on the MetaCyc database. The colored ellipses



indicate 70% con�dence intervals for each group. (C) Metabolic pathways with a signi�cant difference
between old control mice (OC2) and old mice treated with SFN (OS2) (p < 0.05 by the Wilcoxon test) using
linear discriminant effect size analysis. LDA scores <0 indicates that corresponding features are enriched
in OC2.

Figure 6

Results of MelonnPan analysis. Comparative analysis of old control and old SFN diet groups using
MelonnPan yielded 61 endogenous metabolites showing signi�cant change in abundance, with
coe�cients of operational taxonomic units in the �tted elastic net models larger than 0.0002. The
metabolites shown in the heatmap have no known involvement in drug and plant metabolism.
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