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Abstract

Background: Energy metabolism reprogramming (EMR) exerts a critical role in tumor progression and
activation of tumor-associated immune cells. Understanding the structural changes upon metabolic
networks of both cancer cells and immune settings is vital for the potential and effective incorporation of
metabolism-targeted therapeutics clinically.

Methods: In the present study, we used 33 tumor types’ transcriptome data from TCGA & UCSC and
proteomic data from CPTAC to elaborate the EMR under the “Warburg Effect” in cancer. We assessed the
role of metabolic enzymes in prognosis by redrawing the metabolic network and proportional hazards
model (Cox) analysis. Based on machine learning, we identified determinants of tumor immune subtypes
and used a scoring scheme for the correlation between immune cell infiltration and metabolic enzymes.
Considering the immunophenotype relationship, we illustrated a novel bioinformatics horizontal
alignment method.

Results: Systematic profiling of EMR would shed light on the common and divergent metabolic
characteristics between tumor cells as well as the tumor-associated microenvironment, and whether the
metabolic characteristics of these cells remain stable or change in course of tumor progression,
indicating metabolic plasticity.

Conclusions: This article reviewed the recent understanding of metabolic changes in tumor progression
and tumor-associated microenvironment’ phenotype and function, which could help clinical doctors to
understand EMR in tumor progression and treatment resistance.

Introduction

Since the proposal of the “Warburg effect” by a German scientist Warburg in the early years of the 19th
century’, the structural differences between metabolic networks of tumor cells and normal cells are
becoming more attractive for biochemists?3. Since the advances in both gene sequencing and protein
mass spectrometry technology, forming an emerging research field, gluconic metabonomics*®.
Meanwhile, immune cells infiltrating the tumor microenvironment showed the characterization of multi-
dimensional maps of metabolic structural changes by the unique composition of metabolic flows.
Wherein research on glucose metabolism is the most profoundly. As mechanisms behind the involvement
of glucose metabolism in tumor occurrence & development and immune cell infiltration have been
elucidated, along with a better understanding of glucose, amino acid, and lipid metabolic networks, other

"6 Up to the present, although researchers are

researchers put forward with the “Post-Warburg effect
extremely familiar with the basic knowledge frame of glucose metabolism and there are voluminous
studies of related metabolic enzymes and their encoding genes’, the more intricate metabolic networks
perplex the identification of key targets optimal for interventions®. Relative studies often concentrate on a
single enzyme or the nearby upstream or downstream pathways to investigate changes in the metabolic

flux and speculate possible alternations in metabolic networks as a whole by measuring expression
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changes in metabolic substrates or products®. Although these studies have demonstrated the regulatory
mechanisms of controlling glucose metabolism in various proliferative and non-proliferative cells via
revealing changes in metabolic demands'?, gain-of-function mutations in tumor cells, and structural
alternations, such as mutations of regulatory elements of genes in the receptor promoter'’, alternative
splicing of encoding genes'?'3, and isozyme replacement'4, can help glucose metabolism out of
dependence on growth factors physiologically’®. Recent studies demonstrated the fact that the single
control of some links in the glucose metabolism in tumor cells, including knockdown of mitochondrial
pyruvate carrier (MPC)'®, knockdown of the tricarboxylic acid (TCA)-cycle enzymes to reduce the
activity'”, or a shift in PKM2 to PKM1 by alternative splicing®, can obtain satisfactory outcomes in in vitro
experiments with interventions'8. However, in real patients, tumor cells obtain nutrients and restore
metabolism already being inhibited via structural compensation of altering metabolic flux through
alternative pathways'?; the residual tumor cells will gain even stronger survival ability to escape from
immune surveillance after a short period of the “cask effect”2921. With the advent of next-generation
sequencing (NGS) and next-generation of protein profiling, multidimensional diagrams depicting
metabolic reprogramming-related alternations in common tumor-associated microenvironment have been
created??23. In addition, recent studies demonstrate inter- and intra-cancer heterogeneity of innate and
acquired immune resistance through visualized Figures and tables?*. Recent years witnessed the
development of immunotherapy with checkpoint inhibitors and other immunotherapies including
vaccines and chimeric antigen receptor-T (CAR-T) cells?®, highlighting an attractive focus, the interactions
between tumor immunity infiltration and “metabolic reprogramming”2®. Particularly for survival, the
growing tumor must alter immune responses and/or establish a localized microenvironment in response
to the immune stress via inhibiting the tumoricidal activity of immune cells?/28. In the tumor-associated
microenvironment, regional hypoxia, low pH, loss of collagenase resulting from structural changes in the
expression profiles of metabolic enzymes are even accompanied by the dual effect of

immunosuppression and/or “cancer immunoediting” that facilitates tumor growth?®. There are three

phases of this effect, respectively, elimination, balance, and escape®°. In the tumor-specific immune

microenvironment, the single role of abnormal glucose metabolism network, TCA cycle, glycolysis, and

lactose metabolism seemingly assist tumor cells in escaping from the immune surveillance®’.

Results

|. Differences in glucose metabolism between tumor cells
with “metabolic reprogramming” versus normal cells

We performed parallel comparisons of mRNA expression levels of 26 genes encoding metabolic enzymes
between 33 common tumor types in the TCGA database and used CPTCA database was for verification.
Through comparing between Figure.1A (mMRNA expression levels of genes encoding metabolic enzymes
in normal cells) and Figure.1B (MRNA expression levels of genes encoding metabolic enzymes in tumor
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cells), it can be found that the transformation between anaerobic glycolysis and aerobic oxidation of
glucose seemed to be more dependent on phosphoenolpyruvate carboxykinase (PCK/PEPCK) encoded by
PCK1/2. Combining with metabolic enzyme protein expression level (Figure.1C), though PCK/PEPCK was
not expressed or lowly expressed in most of the samples, it showed significant upregulation in some
patients. (The difference in PCK/PEPCK gene expression will be explained in more detail in Figure.3.)
Although the expression pattern of PCK1/2 in a variety of tumors is obviously different, it is most obvious
in tumors such as PCK1 in BRCA, CHOL, COAD, KICH, KIRC, KIRP, LIHC, READ and PCK2 in CHOL, COAD,
KICH, KIRC, KIRR, LIHC. It is not difficult to see from these data that the significant differential expression
of PCK/PEPCK is more common in the digestive system and urinary system tumors in daily clinical
practice.

As shown in Figure.1, we found an interesting phenomenon that there were tremendous fluctuations in
the component percentage of enzyme genes associated with glycolysis in tumor cells. Even after
adjustment, there still existed a broad range of differences in some enzyme gene expression between not
only distinct clinical stages in the same tumor but also different tumor types. Specifically, the fluctuations
of the three enzymes, phosphofructokinase, aldolase, and enolase respectively encoded by PFKM,
ALDOC, and ENO1/2 were most prominent, indirectly reflecting a stronger perception and ability of tumor
cells in response to energy state disturbance. The cascade amplification of glucose metabolic flux is
affected by the blocking effect of PCK/PEPCK, together with the structurally stable expression of GAPDH,
phosphoglycerate kinase and phosphoglycerate mutase. In addition, tumor cells also take advantage of
the metabolism with the involvement of the encoding genes, FPKM, ALDOC, and GAPDH, in order to
mediate the transition between fructose-1, 6-diphosphate, dihydroxyacetone phosphate, and
glyceraldehyde 3-phosphate. Tumor cells use this minor cycle in glycolysis as a “water-hammer arrestor”
to protect them against sudden changes in the living environment or living stress from antitumor agents
targeting glucose metabolic enzymes3233. Actually, changes in the ATP/AMP ratio can allosterically
regulate the expression of key metabolic enzymes3?, controlling glucose metabolism ceasing at the
glycolysis phase or pushing glucose flowing toward the TCA cycle and the electron transport chain of
oxidative phosphorylation. By this means, the outlet of glucose metabolic flux has been changed and
thus tumor cells can ultimately survive in different contexts®®.

. Differences between distinct tumor energy metabolic
pattern

In Figure.2, dotted caisson diagrams depict the levels of different metabolic enzymes in 18 solid
malignant tumours. Groups are sorted according to metabolic enzyme coding genes based on the source
of organization, respectively. Due to the data in the CPTAC database, the objective data content and the
data that can be used for horizontal comparison only exist in a few tumors originating from the brain,
breast, colorectal, lung, ovary, stomach, bladder, kidney, etc. These recorded data are not as rich as the
data in TCGA, and there are more vacancies. Therefore, we only use the protein data in the CPTAC
database to verify the conclusions of TCGA gene expression data.
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1. Relationships between glucose metabolism and “hazard
rate” for tumor patients

The selected 26 genes encoding metabolic enzymes, as gene markers, were reversely labeled into 33
tumors from the database to plot hazard ratios of different genes encoding metabolic enzymes for each
tumor patient (Figure.3). The overall high expression of metabolic enzyme gene profiles indicated
exuberant glucose metabolism in tumor cells. In combination with EMR, the obtained results suggest that
the hazard ratios of metabolic enzyme gene profiles depend on the glucose metabolic background of
distinct tumors, showing positive association with stemness indices. The analyses of the hazard ratios of
26 enzymes showed that ACO1 (p<0.001; HR=0.894), ACO2 (p <0.001; HR = 0.923), IDH3G (p = 0.017;
HR = 0.928), MDH1 (p <0.001; HR =0.875), PCK (p <0.001; HR=0.917) and SUCLG1 (p<0.001; HR =
0.838) were negatively associated with hazard ratios (Figure.3B). Instead, the hazard ratios of ALDOA (p
<0.001; HR=1.113), ALDOC (p < 0.001; HR = 1.059), ENO1 (p < 0.001; HR = 1.262), GAPDH (p < 0.001; HR =
1.314), IDH1 (p<0.001; HR = 1.084), IDH3B (p = 0.007; HR = 1.093), PFKP (p < 0.001; HR = 1.075), PGAM1
(p<0.001;HR=1.424), PGK1 (p<0.001; HR = 1.258), PKM (p < 0.001; HR=1.186), SDHB (p < 0.001; HR =
1.188), SDHD (p<0.001; HR=1.117) and TPI1 (p <0.001; HR = 1.242) were positively and significantly
correlated with survival hazard ratios in patients (p < 0.05) (Figure.3B). Based on the hazard ratios,
patients were stratified into the high-risk group and the low-risk group. First, a total of 16 metabolic
enzymes in the glucose metabolic profiles affecting the prognosis of patients were assessed (Figure.4A).
Figure.4B showed the hazard ratios for the survival distribution of each patient. With a mortality rate of
55.15%, the high-risk group was at a higher risk of death. The mortality of the low-risk group was 37.13%.
The Chi-square test presented a significant difference in mortality between the two groups (p < 0.05). ROC
curves were plotted, and the mean AUC was 0.683 (P < 0.05) (Figure.4C). Besides, we employed ROC
curve analysis to compare survival prediction values based on mRNA expression traits of all glucose
metabolic enzyme profiles. The results showed that LDHA (AUC = 0.603), PGAM1 (AUC = 0.598) and
GAPDH (AUC = 0.591) had greater survival prediction value. Moreover, after we excluded enzymes with
low survival prediction values and only retained those with an AUG > 0.5, the mean AUC of ROC curves
was 0.73 (P<0.01) (Figure.4C).

IV. Associations between glucose metabolism, immune
subtypes, and immune cell infiltration

The analysis of immune subtypes demonstrated that in six different subtypes C1-6 (C1: wound healing,
C2: IFN-g dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, and Cé: TGF-
B dominant)3637, there existed strong associations between all of the 26 enzyme-encoding genes in the
pan-cancer glucose metabolic pathways and immune subtypes (Figure.5, p<0.001). The overexpression
of ACO2, ALDOC, ENO2 and PFKP, together with the down-regulation of LDHA, PCK2, PGK1 and TPI1 was
tightly associated with C5 (immunologically quiet, manifested by the lowest lymphocyte level, increased
macrophage reactions, and the predominance of M2 macrophages), indicating that the expression levels
of the eight enzyme-encoding genes were related to immune escape. This trait indicates that the tumor
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immune subtypes can be altered via inhibiting or overexpressing the mentioned glucose metabolic
enzymes. Concerning this phenomenon, we comprehensively analyzed the proportions of distinct
immune cells in the cancer immune microenvironment. As indicated from Figure.6, the effector cells that
mediated the acquired immunity, including plasma cells (p < 0.01), resting natural killer (NK) cells (p <
0.01), monocytes (p<0.01), M2 macrophages (p <0.01), activated mast cells (p <0.01), and neutrophils
(p<0.017), showed low proportions. By contrast, T follicular helper cells (p <0.01), T regulatory cells
(Tregs) (p<0.01), activated natural killer (NK) cells (p = 0.025), MO macrophages (p <0.01), resting
dendritic cells (p = 0.012), resting mast cells (p < 0.01) that mediated the congenital immunity, exhibited a
significantly weaker killing effect on tumor cells than those that mediated the humoral and cellar immune
responses, regardless of their high expression levels.

V.EMR and Tumor-Associated Immune Cells

Due to the pattern of immune cells infiltrating in different tumor microenvironments is too complicated, in
order to combine with our main research field, we only use tumors originating in the liver to explain

1. The low-expression of GAPDH (Figure.7H, p < 0.05), IDH2 (Figure.7J, p < 0.05), IDH3B (Figure.7K, p <
0.05), and PGK1 (Figure.7T, p <0.001) and the high-expression of IDH3G (Figure.7L, p<0.05) and
MDH?1 (Figure.7N, p <0.001) inhibited the activity of B cells. LDHA (Figure.7M, p < 0.05)
overexpression stimulated the activity of B cells. Obviously, either SDHB (Figure.7W, p <0.01) down-
expression or overexpression could inhibit B cell activity.

2. T cells are the key participants in the host immune system to respond to tumor cells. These cells
were comprehensively analyzed in this study, and it was found that, on the one hand, the low
expression levels of ENO2 (Figure.7F, p <0.05), GAPDH (Figure.7H, p<0.01), PFKP (Figure.7R, p <
0.01), PGK1 (Figure.7T, p< 0.05) and TPI1 (Figure.7Z, p < 0.05), whereas the high expression levels of
FH (Figure.7G, p < 0.05) suppressed the activity of CD8 + T cells; in addition, the low expression of
PGAM1 (Figure.7S, p < 0.05) stimulated the activity of CD8 + T cells. On the other hand, the over-
expression of ALDOC (Figure.7D, p<0.001), IDH1 (Figure.7l, p < 0.05), PKM (Figure.7U, p < 0.001) and
SDHA (Figure.7V, p< 0.01) suppressed the activity of CD4 + T cells. Undeniably, once the
differentiated effector T cells, like CD4 + or CD8 + T cells are activated, they will raise the demands
for bioenergy and biosynthesis to satisfy the subsequent differentiation and rapid proliferation32.
The low-expression of MDH1 (Figure.7N, p<0.001), PFKP (Figure.7R, p<0.001), and PGK1 (Figure.7T,
p < 0.05) alongside the high-expression of ALDOA (Figure.7C, p<0.001), ALDOC (Figure.7D, p<0.05),
IDH3G (Figure.7L, p<0.001), and PCK1 (Figure.70, p < 0.05) inhibited the activity of macrophages.
The low-expression of PCK2 (Figure.7P, p < 0.05) and PGAM1 (Figure.7S, p < 0.05) could stimulate
macrophage activity. Tumor-associated macrophages (TAMSs) is immunosuppressive M2
macrophages, which are abundant in the tumor microenvironment.

3. Macrophages (predominantly glycolysis in M1 macrophages) can promote hereditary changes and
cancer-related inflammation through the generation of RNI, ROI, and inflammatory cytokines (e.g.,
TNF, IL-1, and IL-6), resulting in the occurrence of tumors®®. Additionally, M2 macrophages (mainly
oxidative phosphorylation) facilitate immunosuppression, extracellular matrix remodeling, the
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spillover of tumor cells*?, and metastases of metastasized tumors through the generation of anti-

inflammatory cytokines (IL-10 and TGF-B), cathepsins, and metalloproteinases (MMPs) 4142,

4. Tumor-associated neutrophils (TANs) may have both protumor and antitumor properties*3. When
lacking tumor-derived TGF-3, TANs promote CD8 + T cell responses and its antitumor activity. In the
presence of TGF-B, TANs have protumor activity*4*°. The low-expression of ENO1 (Figure.7E, p <
0.05) and SDHA (Figure.7V, p < 0.01) alongside the high-expression of FH (Figure.7G, p < 0.05), IDH3G
(Figure.7L, p<0.01), PCK1 (Figure.70, p<0.01), PGAM1 (Figure.7S, p<0.001), and PGK1 (Figure.7T,

p <0.001) inhibited neutrophil activity. The low-expression of PGAM1(Figure.7S, p <0.01)stimulated
neutrophil activity.

5. Dendritic cells (DCs) are professional antigen-presenting cells bridging innate immunity and adaptive
immunity#®. The low-expression of GAPDH (Figure.7H, p < 0.05), IDH1 (Figure.7l, p< 0.01), IDH2
(Figure.7J, p<0.05), PGK1 (Figure.7T, p<0.001), and SDHB (Figure.7W, p <0.001) as well as IDH3G
high-expression suppressed dendritic cell activity. The low-expression of PCK2 (Figure.7P, p < 0.05)
and PGAM1 (Figure.7S, p < 0.05) could stimulate dendritic cell activity.

6. In addition, not all metabolic enzymes affect immune cells in the tumor-related microenvironment. In
Figure.7, we can find that (A)ACO1, (B)ACO2, (M) LDHA, (Q)PFKM, and (X)SDHD, (Y)SUCLG1 have
very weak effects on these six main kinds of immune cells. Because of the enzymes Aconitase (ACO)
and Lactate Dehydrogenase (LDHA) encoded by these genes mainly enzymatically catalyze one-way
reactions. Alternatively, Phosphoglycerate Mutase (PFKM), Succinate Dehydrogenase (SDH) and
Succinyl-Coenzyme A (SUCLG) catalyze the weakened alternative glucose pathway.

Discussion

Although the theory of “Warburg effect” claims: under aerobic conditions, there is a phenomenon of
increased glucose uptake and the transform of glucose into lactic acids*’, and cancer characteristics
somewhat rely on the regulation of multiple transcriptional regulation factors in the nucleus, including
HIF-1 a/B, STAT3, and B-catenin®484°_ We therefore mapped the global glucose metabolic network,
Figure.8 presents the expression levels of proteins encoded by various enzyme genes in Figure.1, showing
that phosphoenolpyruvate, pyruvate, and oxaloacetic acid are the three important factors directing the
glucose metabolic flux in tumor cells. Pyruvate kinase and the pyruvate dehydrogenase complex are the
central links of pyruvate metabolism, catalyzing the oxidative decarboxylation of pyruvic acid to Ac-CoA
and transforming NAD* to NADH in the mitochondria®C. The key enzymes involved in the two glycolysis
types are regulated by the PDH kinase (PDK), Ac-CoA levels, nutrient levels, the NAD*/NADH ratio, and the
intracellular oxygen concentration, which together decide whether the glucose flows to the TCA cycle in
the mitochondria®'~53. Besides glycolysis, there exists a reverse cycle, gluconeogenesis, in normal cells.
By contrast, the plummet of PCK/PEPCK expression (Figure.1) in tumor cells indirectly indicates that
there only can be very slight gluconeogenesis in tumor cells. Different from normal cells, the metabolic
input of pyruvate by glycolysis into the TCA cycle in tumor cells ultimately generates little chance of
obtaining phosphoenolpyruvate via the reverse cycle®*. The structurally stable expression of TCA-cycle
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related enzymes functions as a circling gyroscope to automatically counterbalance the unstable factors
in the microenvironment. Moreover, the TCA cycle still receives Ac-CoA supported by fatty acid
metabolism, glutamine, and the anaplerotic flux of multiple amino acids (Figure.8)®. One aimis to
synthesize nonessential amino acids to balance the biomass supply in tumor cells. Additionally, it aims
to offer reducing equivalents to enter the reducing equivalent pool produced in the process of the
metabolism of sugar, fat, and protein, promoting glucose into the electron transport chain for oxidative
phosphorylation in the mitochondria ultimately. In this way, the mitochondrial functions in tumor cells
can be secured to provide a large amount of ATP for cell survival>>°.

Up to the present, although researchers are extremely familiar with the basic knowledge frame of glucose
metabolism and there are voluminous studies of related metabolic enzymes and their encoding genes’,
the more intricate metabolic networks perplex the identification of key targets optimal for interventions®.
Relative studies often concentrate on a single enzyme or the nearby upstream or downstream pathways
to investigate changes in the metabolic flux and speculate possible alternations in metabolic networks as
a whole by measuring expression changes in metabolic substrates or products®. Although these studies
have demonstrated the regulatory mechanisms of controlling glucose metabolism in various proliferative
and non-proliferative cells via revealing changes in metabolic demands'?, gain-of-function mutations in
tumor cells, and structural alternations, such as mutations of regulatory elements of genes in the receptor
promoter'?, alternative splicing of encoding genes'?'3, and isozyme replacement'#, can help glucose
metabolism out of dependence on growth factors physiologically'®. Recent studies demonstrated the
fact that the single control of some links in the glucose metabolism in tumor cells, including knockdown
of mitochondrial pyruvate carrier (MPC)'®, knockdown of the tricarboxylic acid (TCA)-cycle enzymes to
reduce the activity'’, or a shift in PKM2 to PKM1 by alternative splicing®, can obtain satisfactory
outcomes in in vitro experiments with interventions'®. However, in real patients, tumor cells obtain
nutrients and restore metabolism already being inhibited via structural compensation of altering
metabolic flux through alternative pathways'?; the residual tumor cells will gain even stronger survival
ability to escape from immune surveillance after a short period of the “cask effect’2%21. With the advent
of next-generation sequencing and next-generation of protein profiling, multidimensional diagrams
depicting immune-related alternations in common cancer genome have been created?223. In addition,
they demonstrate inter- and intra-cancer heterogeneity of innate and acquired immune resistance through
visualized figures and tables?*. Recent years witnessed the development of immunotherapy with
checkpoint inhibitors and other immunotherapies including vaccines and chimeric antigen receptor-T
(CAR-T) cells?®, highlighting an attractive focus, the interactions between tumor immunity process and
“metabolic reprogramming”2°. Particularly for survival, the growing tumor must alter immune responses
and/or establish a localized microenvironment in response to the immune stress via inhibiting the
tumoricidal activity of immune cells?’-28. In the microenvironment, regional hypoxia, low pH, loss of
collagenase resulting from structural changes in the expression profiles of metabolic enzymes are even
accompanied by the dual effect of immunosuppression and/or “cancer immunoediting” that facilitates

h29 30 In

tumor growth<”. There are three phases of this effect, respectively, elimination, balance, and escape
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the tumor-specific immune microenvironment, the single role of abnormal glucose metabolism network,
TCA cycle, glycolysis, and lactose metabolism seemingly assist tumor cells in escaping from the immune
surveillance3'°7:58_ |n addition, they can also alter the subtypes of the immune microenvironment where
tumor cells reside and the count of immunologic effector cells decreases at the same time, make most
antigen-presenting cells to be activated, and inhibit the activity of cytotoxic T cells®°. Tumor immune
surveillance can ensure the majority of malignant cells to be eliminated (or controlled) at the early stage
by the immune system®%67. Malignant transformation allows tumor cells to gradually obtain the ability to
escape from “adaptive immunity”, which is accompanied by glucose metabolic reprogramming, adaptive

.t62

reassortment, and changes in the immune microenvironment®~. A tumor is the main reason accounting

for the dynamic unbalance of the homeostasis of tissues of origin, breaking the intrinsic metabolic
patterns, and creating a new environment for the benefit of tumor cell metabolism®3. The tumor
microenvironment (TME) erodes the metabolism and function of the matrix, which also facilitates
immune cell infiltration at the early stage. Aerobic glycolysis under the “Warburg effect” usually supports
the immortal cell proliferation in cancers, and serves as the identical metabolic pathway that promotes

the optimal effector function in immune cells314.

Previous studies showed that multiple immune effector cells might share similar metabolic pathways
with tumor cells in the TME®®. Figure.9 showed the associations between glucose metabolism, immune
subtypes, and immune cell infiltration. Interestingly, the process of immune cell activation is
accompanied by the “adaptive reassortment of glucose metabolism”, and the distinctive “metabolic
adaptive reassortment” in immune cells is regarded as a critical trait of immune cell activation by a large
number of researchers®366.67 Subpopulations of immune cells with high metabolic activity can lead to
regional nutrient consumption, hypoxia, acidity, and metabolite accumulation in the TME, finally resulting
in the establishment of metabolic competition between cancer cells and immune cells®869.
Physiologically, immune surveillance ensures that immune cells can fast initiate an immune mechanism
to eradicate “bad cells” after they recognize these alien cells to safeguard the internal environment’°.
However, tumor cells can complete the evasion of immune surveillance in the established tumor
immunosuppressive environment (TIME)”"/2. The analysis of immune subtypes demonstrated that in six
different subtypes C1-6 (C1: wound healing, C2: IFN-g dominant, C3: inflammatory, C4: lymphocyte
depleted, C5: immunologically quiet, and C6: TGF-B dominant)3%37, there existed strong associations
between all of the 26 enzyme-encoding genes in the pan-cancer glucose metabolic pathways and
immune subtypes (Fig. 8, p<0.001). The overexpression of ACO2, ALDOC, ENO2 and PFKP, together with
the down-regulation of LDHA, PCK2, PGK1 and TPI1 was tightly associated with C5 (immunologically
quiet, manifested by the lowest lymphocyte level, increased macrophage reactions, and the
predominance of M2 macrophages), indicating that the expression levels of the eight enzyme-encoding
genes were related to immune escape. This trait indicates that the tumor immune subtypes can be altered
via inhibiting or overexpressing the mentioned glucose metabolic enzymes. Concerning this phenomenon,
we comprehensively analyzed the proportions of distinct immune cells in the pan-cancer immune
microenvironment. As supported by the metabolic enzyme gene profile analysis and immune cell sorting,
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immune subtypes, agents and molecular targets, we believe that whatever tissue the tumor is derived
from, it exhibits characteristic metabolic patterns and immune subtypes. Tumor cells inhibit functions of
immune cells via the metabolism of themselves. Tumor cells gain energy from glucose through aerobic
glycolysis and glutaminolysis, depleting glucose and L-glutamine in the tumor microenvironment and
producing lactic acids’3~7°. This process leads to low pH in the tumor microenvironment, thus
suppressing the activity of T cells and NK cells and facilitating Treg cell differentiation, MDSC
amplification, and M2 macrophage polarization’?. Tumor therapy decisions can be made based on
metabonomics and immunosorting analysis. Under such frame, precisely blocking the specific metabolic
pathways in patients in combination with agents activating specific immune cells can effectively prolong
the survival of patients with ameliorated prognosis.

Conclusions

In the present study, we explored the general metabolic requirements of glucose metabolism in cancer
cells and described cellular metabolic pattern landscapes of tumor immune infiltration. We aimed to
elucidate structural alternations in the metabolic flux of cancer cells and associations between the
infiltration by various types of B cells, T cells, and macrophages, and their subtypes in various different
immune subtypes and clinical application’®. Meanwhile, with hepatocellular carcinoma (HCC) as an
example, we investigated relationships between glucose metabolic enzymes and six major immune cells.
In summary, metabolic enzymes are critical in glucose metabolism, regulating energy metabolism
reprogramming (EMR) and adaptive mitochondrial reprogramming (AMR) in tumor cells®’’. These affect
“cancer immunoediting” that exerts dual effects®C, and they jointly play significant roles in tumor
occurrence '8, development, invasion and metastasis, immune responses, as well as the diagnosis,
treatment and prognosis for tumor patients. Finally, it is believed that with in-depth studies of
metabonomics and immune mechanism for tumor cells, researchers will obtain a deeper understanding
of interactions between intricate metabolic networks and immune responses. Moreover, the current review
may help inform cancer metabolic-immuno-therapy and facilitate the development of precision
metabolic-immuno-oncology.

Materials & Methods

Data Acquisition and Collection

The supporting data, processed data and clinical data can be found at the legacy archive of the GDC
(https://portal.gdc.cancer.gov/legacy-archive/search/f) and the Pan-cancer Atlas publication page
(https://gdc.cancer.gov/about-data/publications/pancanatlas).RTCGA Toolbox package (version 3.6) in
R (version 4.0.1) provided the data of pan-cancer cases and RNA-seq expression outcomes. Additionally,
the present study achieved the expression data of metabolic enzyme coding genes from The Cancer
Genome Atlas (TCGA: https://portal.gdc.cancer.gov) & UCSC Genome Browser Home
(https://genome.ucsc.edu) and proteomic data from CPTAC (https://cptac-data-portal.georgetown.edu) in
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terms of pan-cancer’*80. The sources of tumor tissue cover stomach, pancreas, liver, esophagus, colon,
bile duct and so on. In addition, we also employed single sample gene set enrichment analysis (SSGSEA)
(GSEA software 3.2)8 to identify immune cell types that are over-represented in the tumor
microenvironment. Finally, a deconvolution approach was applied using the tool CIBERSORT and a
custom model to modify RNA-sequencing data from TCGA & UCSC and proteomic data from CPTAC to be
used as input of the deconvolution algorithm®2. In the mentioned databases in March 2021, the current
review obtained the data employed here.

Statistical Analyses

SPSS software 23.0 (IBM Corporation, Armonk, NY, USA) was employed for data analyzing. Based on
TCGA and UCSC Pan-Caner dataset, this study adopted R/Bioconductor package of edgeR®3 for
determining miRNAs with differential expression. All thresholds were set at the absolute log2(count+ 1)
fold change and the false discovery rate (FDR) < 0.05. Boxplots were adopted in terms of discrete
variables for the measurement of diversifications in expression, and influences exerted by Biological
characteristics on metabolic enzyme coding genes expression were studied by Kolmogorov-Smirnov test
(K-S test)®4. The current work presented alterations in expression between respective group by scatter
plots. GraphPad Prism 7.0 software (GraphPad Software, Inc.) was employed to analyze the differentially
expressed condition of metabolic enzyme coding genes in a range of tumor tissues. Scatter plots and
histograms were adopted for discrete parameters in order to measure diversifications in expression
between a range of tissues. Additionally, influences exerted by tumor tissue of origin on metabolic
enzyme coding genes expression were analyzed using the mean + SD. Receiver-operating characteristic
curve (ROC) was plotted by “p-ROC package” (version 1.0.7) for evaluating the diagnosing ability. We
divide cases to groups with high and low metabolic enzyme coding genes expression by the best cutoff
value of OS determined by the Youden index®°. Correlation coefficient analyses were performed using R
software. A correlation coefficient R>0.5 was considered for indicating a strong correlation. Cox analysis
was employed on the effect exerted by metabolic enzyme coding genes expression on the overall survival
and relapse-free survival of cases®®. Kaplan—Meier curves were adopted for the comparison of the
diversifications in the overall survival and relapse-free survival using survival package in R®’. Log rank
tests (corresponding to a two-sided z test) were used to compare overall survival between patients in
different groups, and hazard ratio (HR) (95% confidence interval) was provided for comparison of two
groups. The p-values were adjusted for multiple testing based on the false discovery rate (FDR) using the
Benjamini-Hochberg method. Patients for each cancer were divided in two groups based on median
immunephenoscore. Cox regression analyses were performed and illustrated as forest plot showing
log2(HR) and 95% confidence interval and texted the proportional hazard assumptions.

Immune Cellular Fraction Estimates

The relative fraction of 22 immune cell types within the leukocyte compartment were estimated using
CIBERSORT®8, appling CIBERSORT to TCGA & UCSC and CPTAC data. CIBERSORT (cell-type identification

Page 11/31



by estimating relative subsets of RNA transcripts)®® uses a set of 22 immune cell reference profiles to
derive a base (signature) matrix which can be applied to mixed samples to determine relative proportions
of immune cells®?. Several key immune genes in the signatures cluster can be used to classify and
analyze the subtypes of immune infiltration(C1-C6)°".

Correlation Between Metabolic Enzymes and Immune Infiltrating Cells

A retrospective dataset of patients with LIHC-cancer from TCGA & UCSC and proteomic data from CPTAC
database was analysed for the infiltration levels of six types of immune cells using Tumor IMmune

Estimation Resource (TIMER) (https://cistrome.shinyapps.io/timer/)°2. The RNA sequencing data was
applied to select metabonomics features to build the metabolic enzymes signatures for extrapolating the
infiltration levels of immune cells in the training cohort. The developed metabolic enzymes were
examined in the testing cohort based on Pearson’s correlation. In addition, we used software CellMiner

(https://discover.nci.nih.gov/cellminer/home.do)®? to screen and analyze drugs in metabolic enzyme
related homicide cases.

Abbreviations

TCGA and UCSC Tumor Type

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

READ Rectum adenocarcinoma Esophageal carcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Esophageal carcinoma

GBM  Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma
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KIRP

LAML

LGG

LIHC

LUAD

LUSC

MESO

oV

PAAD

PCPG

PRAD

READ

SARC

SKCM

STAD

STES

TGCT

THCA

THYM

UCEC

UCS

UvVM

Kidney renal papillary cell carcinoma
Acute Myeloid Leukemia
Brain Lower Grade Glioma
Liver hepatocellular carcinoma

Lung adenocarcinoma

Lung squamous cell carcinoma
Mesothelioma

Ovarian serous cystadenocarcinoma

Pancreatic adenocarcinoma
Pheochromocytoma and Paraganglioma
Prostate adenocarcinoma

Rectum adenocarcinoma

Sarcoma

Skin Cutaneous Melanoma

Stomach adenocarcinoma

Stomach and Esophageal carcinoma
Testicular Germ Cell Tumors

Thyroid carcinoma

Thymoma
Uterine Corpus Endometrial Carcinoma
Uterine Carcinosarcoma

Uveal Melanoma

Glucose Metabolizing Enzymes
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AOC Aconitase

ALDOA Aldolase A

ENO Enolase

FH  Fumarate Hydratase

GAPDH Glyceraldehyde-3-phosphate Dehydrogenase
IDH Isocitrate Dehydrogenase

LDHA Lactate Dehydrogenase

MDH Malate Dehydrogenase

PCK/PEPCK  Phosphoenolpyruvate Carboxy-kinase
PFKM Phosphoglycerate Mutase

PFKP  Phosphofructokinase

PKM  Pyruvate Kinase M

PGK  Phosphoglycerate Kinase

SDH  Succinate Dehydrogenase

SUCLG Succinyl-Coenzyme A

TPI  Triose Phosphate Isomerase

Others

Immune Subtypes

C1 Wound Healing

C2 IFN-g Dominant

C3 Inflammatory

C4 Lymphocyte Depleted

C5 Immunologically Quiet
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C6 TGF-B Dominant

AA Amino Acid Residues

Ac-CoA Acetyl Coenzyme-A

AMR  Adaptive Mitochondrial Reprogramming
ATP  Adenosine Triphosphate

CAR-T Chimeric Antigen Receptor-T

Cox  Proportional Hazards Model

EMT  Epithelial-Mesenchymal Transition
EMR  Energy Metabolism Reprogramming
FADH2 Flavine Adenine Dinucleotide

FDR  False Discovery Rate

GSEA  Gene Set Enrichment Analysis
HIF-1Ta  Hypoxia Inducible Factor-1a
HIF-1B8  Hypoxia Inducible Factor-13

HCC  Hepatocellular Carcinoma

CTLA-4 Cytotoxic T-Lymphocyte-Associated Protein 4
LDH  Lactate Dehydrogenase

PD-1 Programmed Cell Death Protein 1
pH Hydrogen lon Concentration

PKM1 M1 Isoform of Pyruvate Kinase
PKM2 M2 Isoform of Pyruvate Kinase
MPC  Mitochondrial pyruvate carrier
MiR/miRNA MicroRNA

MMP  Metalloproteinases
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NADH  Nicotinamide Adenine Dinucleotide
NGS Next-generation Sequencing

0S Overall Survival

ROC Receiver Operating Characteristic Curve
TAM  Tumor-associated Macrophages

TAN Tumor-associated Neutrophils

TCA Tricarboxylic Acid Cycle

TCGA The Cancer Genome Atlas

TCR T Cell Receptor

TIME  Tumor Immunosuppressive Environment
TIMER  Tumor IMmune Estimation Resource
TME Tumor Microenvironment

Treg Regulatory T Cell
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Figure 1

The expression differences of metabolic enzyme coding genes in different tissues (A) Average mRNA
expression level of metabolic enzyme coding genes in normal cells. (B) Average mRNA expression level
of metabolic enzyme coding genes in tumor cells. (C) Average mRNA expression level of Pan-cancer
metabolic enzymes. The phenomenon that there were tremendous fluctuations in the component
percentage of enzyme genes associated with glycolysis in tumor cells. Even after adjustment, there still
existed a broad range of differences in some enzyme gene expression between not only distinct clinical
stages in the same tumor but also different tumor types. Specifically, the fluctuations of the three
enzymes, phosphofructokinase, aldolase, and enolase respectively encoded by PFKM, ALDOC, and
ENO1/2 were most prominent, indirectly reflecting a stronger perception and ability of tumor cells in
response to energy state disturbance. The cascade amplification of glucose metabolic flux is affected by
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the blocking effect of PCK/PEPCK, together with the structurally stable expression of GAPDH,
phosphoglycerate kinase and phosphoglycerate mutase.
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Figure 2

Metabolic enzymes coding genes across 18 solid cancers In the tumors from the microenvironment with
sufficient blood supply and abundant glucose and oxygen contents, for example, a liver-derived tumor,
kidney-derived tumors, and lung-derived, glucose uptaken by tumor cells can fast enter the pentose
phosphate pathway, providing the sources of pentose sugars and synchronously ensuring that part of
glucose is split into pyruvate in glycolytic metabolism, followed by the entry of pyruvate into the TCA
cycle for ATP synthesis. However, a fast transformation of glucose to lactic acids only exists in high-
grade tumors. Obviously, in tumors of low-grade origins like LIHC and KICH, the transformation of glucose
to lactic acids is not vibrant. This may relate to the biological behavior, i.e., expansive growth, at the early
stage of multiple low-grade tumors, including the two types. Consequently, regional LDHA enzyme
expression and lactic acid contents reflect the tumor grade to some extent. As for tumors derived from the
microenvironment with sufficient blood supply and glucose and oxygen contents, they will select glucose
metabolic flux toward either glycolysis or the TCA cycle. Similar to CHOL, COAD, STES, and UCEC,
although intermediate products also support the syntheses of macromolecules except for ATP during
glycolysis, only a small amount of glucose flows to the alternative pathways6,58,59. Additionally, more
glucose flows to the mitochondria to ensure ATP synthesis60. Such an alternation of metabolic flux
benefits in situ proliferation and growth of tumor cells, which can also be found in the main biological
behavior of invasive and extensive growth in these tumors at the early stage. Finally, in terms of tumors in
the microenvironment with insufficient blood supply and glucose and oxygen contents, for instance, GBM,
the original metabolic pattern is almost completely changed. Briefly, high-grade tumors often have a low
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flux of alternative pathways of glucose metabolism, although it contradicts with the high proliferation,
such a shift of metabolic flux can alter the tumor microenvironment through the transformation of
pyruvic acids to lactic acids via lactic dehydrogenase, low oxidation-reduction levels, high glycolytic
activity, and lactic acid generation, resulting in acid and anoxic tumor environment.

A ACO1 ACOZ  ALDOA ALDOC ENO1 EMD2 FH GAPDH  IDH1Y IDHz2 IDH3B IDH3G  LOHA MDH! PCK1I  PCK2 PFKM PRKP
ACC |' . - ACC - | ] - p
BLCA 4 BLCA
BACA l BRACA 1
CESC cEsC 4 1 e -
CHOL . - - .- CHOL - + -
coap coan ,
DLBC ol — - o . DLBC — b - . —
ESCA 3 <4 ESCA e [ e
e . GBM L + .
HNSC HNSC ! b
KICH - - —-— . KIGH 4 } . - e
KIRC - KIRC
KIRP ! - - - - KIRP - -
LAML - po - - LAML - - o o
LG - " fo - = - LGG = - - - -
LIHC LIHC [
= = - = { .
MESO . l» MESO I .
o o !
FAAD | - PAAD - g -
PCPG | o ad - — PCPG e ol e ——
FRAD L - . PRAD ] - . ——
READ } - - - - READ - | - .-
SARC BARC d
SHCM If SKCM I:
STAD 1 STAD J
TeCT N - —t— . - - —— TGET [ - —h— - — JUR. -
THCA -— - —t— -~ -— THEA = - -+ -l 4-—
THYM . Jo— — - —-— THYM = s —4 S ——
UCEC o UCEC 1 f
ucs + E - ucs L il p
wM i + . - UM - . } -+ o —_— -
ehiar 1 % @& H W oe b om e e H L) H L) H 1 @ eh IR ] @1 n o eh T %ol abgn 1 @ 41 1 W w8 410 1 18 o0 s g1 wome 41 1 @ w8 &1 H L] H LY
. .
Hazard Ratio Hazard Ratio
PGAM1 PGK1 PHM SDHA SDHB SDHD SUCLGY I B
s e B 1 - - —— !
BACA o ' ACO1 <0.001 0.894(0:851-0.939) b 1
i " L * ACO2 <0.001 0.523(0.884-0.964) =}
coAD b ! ALDOA <0.001 1.113(1.086-1.161) " B
e T - 1 | ALDOC <0001 1.059(1.040-1.079) '™
g:gc 1 ENCH <0.001 1.262(1.218-1.308) | HH
b
KCH e L5 [ - GAPDH <0.001 1.314(1.262-1.368) i -
ﬁl: 0H1 <0).001 1.084(1.045-1.115) |
o
u:\u. o = - - . IDH3B 0.007 1.083(1.024-1 166) :|.._|
e 9 L N - IDHAG 0017 0.928(0.873-0.987) -
v o : LOHA <0.001 1.201(1:248-1.336) ! -
}nlgco - 1 MDHA =0.001 0.875(0.821-0.933) [ ]
ov PCK2 <0.001 0.917(0.685-0.950) N
ol 4 o [e { PFKP <0.001 1.075(1.046-1.108) L.
PRAD - 3 e | PGAMI <000 1.424(1.362-1.489) 1 -
by h T L PGK1 <0001 1.258(1.210-1.308) : )
SKCM : PHM <0.001 1.186(1.141-1.232) T EM
eor o= fa— e SOHB <0.001 1.188(1.110-1.271) |
THYM ™= T T SDHD 0001 1.117(1.062-1.175) | -
UCEC SUCLGY <0.001 0.838(0.783-0.897) b
m o A - ‘ - TR <0.001 1.242(1.191-1.294) ' [
I T T T T 1 T 1
I T I B Tl T Bl T N s - A - M e S T o R Y 00 02 04 06 08 10 12 14
: Hazard ratio
Hazard Ratio

Figure 3

Cox analysis for the assessment of the predictive effect on OS and the relapse-free survival. As gene
markers, the selected 26 genes encoding metabolic enzymes were reversely labeled into 33 tumors from
the database to plot hazard ratios of different genes encoding metabolic enzymes for each tumor patient.
Using the COX tool in “p-ROC package” to analyses the results of multivariate survival for pan-cancers.
Forest plots showing log2 hazard ratio (95% confidence interval). Adjusted p < 0.05.
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Figure 4

Risk score and ROC curves. (A) 16 metabolic enzymes in the glucose metabolic profiles affecting the
prognosis of patients were assessed. (B) Based on the hazard ratios, patients were stratified into the high-
risk group and the low-risk group. With a mortality rate of 55.15%, the high-risk group was at a higher risk
of death. The mortality of the low-risk group was 37.13%. The Chi-square test showed a significant
difference in mortality between the two groups (p <0.05). (C) ROC curves were plotted, and the mean AUC
was 0.683 (P <0.05). Besides, we also used ROC curve analysis to compare survival prediction values
based on mRNA expression traits of all glucose metabolic enzymes profiles. After we excluded enzymes
with low survival prediction values (AUG<0.5) and only retained those with an AUG>0.5, the mean AUC of
ROC curves was 0.73. (P <0.01) Abbreviations: AUC, area under the curve; ROC, receiver-operating
characteristic curve.
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Figure 5

The analysis results of immune subtypes. The result showed that in six different subtypes C1-6 (C1:
wound healing, C2: IFN-g dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically
quiet, and C6: TGF-B dominant), there existed strong associations between all of the 26 enzyme-encoding
genes in the pan-cancer glucose metabolic pathways and immune subtypes. Note: * p<0.05, ** p<0.01,
*** n<(0.001.
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Figure 6

The different proportions of distinct immune cells in the pan-cancer immune microenvironment.
Subpopulations of immune cells with high metabolic activity can lead to regional nutrient consumption,
hypoxia, acidity, and metabolite accumulation in the TME, finally resulting in the establishment of
metabolic competition between cancer cells and immune cells. As indicated from the proportions of
distinct immune cells in the pan-cancer immune microenvironment, the effector cells that mediated the
acquired immunity, including plasma cells (p <0.01), resting natural killer (NK) cells (p <0.01), monocytes
(p <0.01), M2 macrophages (p <0.01), activated mast cells (p <0.01), and neutrophils (p <0.01), showed
low proportions. By contrast, T follicular helper cells (p <0.01), T regulatory cells (Tregs) (p <0.01),
activated natural killer (NK) cells (p=0.025), MO macrophages (p <0.01), resting dendritic cells (p=0.012)
and resting mast cells (p <0.01) those who mediated the congenital immunity, exhibited a significantly
weaker killing effect on tumor cells than those that mediated the humoral and cellar immune responses,
regardless of their high expression levels.
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POST-Warburg effect In glucose metabolism, cancer cells subtly divide glucose metabolism patten into
three separate parts of glycolysis, tricarboxylic acid cycle (TAC) and oxidative phosphorylation
(OXPHOS). The PCK is considered to be the interception of glucose metabolism and the metabolic
pathway is transferred to the pentose phosphate pathway (PPP), the uronic acid pathway (UAP), the
polyol pathway (PYP), etc. for the synthesis of the subsequent five-carbon ribose and non-essential
amino acids. The TCA circle is backed up by glycolysis, fatty acid and amino acid metabolism. In
addition, its main purpose is to provide raw materials for the synthesis of non-essential amino acids. This
effect is also reinforced by a weakened gluconeogenesis, and the secondary purpose is to supply REDOX
equivalents. The regulation of whether the metabolic flux enters the pentose phosphate pathway by
tumor cells relates to not only a single link in glycolysis but also procedures from the transformation of

fructose-1,6-diphosphate to glyceraldehyde-3-phosphate to the transformation of phosphoenolpyruvic
acid to pyruvic acid with the involvement of various enzymes. During the process, PKM, PFKP, ALDOA,
PGAMT1, GAPDH, ENO1, and TPI1 even structurally regulate the flux of glycolytic metabolism toward the
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synthesis of pentose sugars, satisfying the high glucose uptake in aerobic glycolysis and metabolism
and thereby promoting biosynthesis in tumor cells. The results demonstrate that the change of glucose
metabolism flow in tumor tissue may not only be the independent action of certain enzymes, but also the
synergistic effect of certain enzymes.
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Figure 9

Metabolic Instruction of Different Immunity Cells. Metabolic reprogramming of immune cells in the pan-
cancer immune microenvironment. Metabolic reprogramming of immune cells in the cancer-associated
immune microenvironment. In the tumor microenvironment (TME), regional hypoxia, low pH, loss of
collagenase resulting from structural changes in the expression profiles of metabolic enzymes are even
accompanied by the dual effect of immunosuppression and/or “cancer immunoediting” that facilitates
tumor growth. The Figure indicated that multiple immune effector cells might share similar metabolic
pathways with tumor cells in the TME. Interestingly, the process of immune cell activation is
accompanied by the “adaptive reassortment of glucose metabolism”, and the distinctive “metabolic
adaptive reassortment” in immune cells is regarded as a critical trait of immune cell activation by a large
number of researchers.
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