[1] A. Sattari, P. Hanafizadeh, and M. Hoorfar, “Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures,” Adv. Colloid Interface Sci., vol. 282, 2020, doi: 10.1016/j.cis.2020.102208.
[2] H. N. Joensson and H. Andersson Svahn, “Droplet microfluidics—A tool for single‐cell analysis,” Angew. Chemie Int. Ed., vol. 51, no. 49, pp. 12176–12192, 2012.
[3] K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, and A. J. Demello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem., vol. 5, no. 11, p. 905, 2013.
[4] C. E. Poulsen, R. C. R. Wootton, A. Wolff, A. J. deMello, and K. S. Elvira, “A microfluidic platform for the rapid determination of distribution coefficients by gravity-assisted droplet-based liquid–liquid extraction,” Anal. Chem., vol. 87, no. 12, pp. 6265–6270, 2015.
[5] S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, no. 2, pp. 198–220, 2008, doi: 10.1039/b715524g.
[6] W. Li et al., “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev., vol. 47, no. 15, pp. 5646–5683, 2018, doi: 10.1039/c7cs00263g.
[7] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Reports Prog. Phys., 2012, doi: 10.1088/0034-4885/75/1/016601.
[8] A. B. Theberge et al., “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angewandte Chemie - International Edition. 2010, doi: 10.1002/anie.200906653.
[9] S. Girardo et al., “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B, 2018, doi: 10.1039/c8tb01421c.
[10] E. Guermani et al., “Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation,” Sci. Rep., 2016, doi: 10.1038/srep30445.
[11] C. X. Zhao, “Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery,” Adv. Drug Deliv. Rev., vol. 65, no. 11–12, pp. 1420–1446, 2013, doi: 10.1016/j.addr.2013.05.009.
[12] D. Dendukuri and P. S. Doyle, “The synthesis and assembly of polymeric microparticles using microfluidics,” Adv. Mater., 2009, doi: 10.1002/adma.200803386.
[13] E. Tumarkin and E. Kumacheva, “Microfluidic generation of microgels from synthetic and natural polymers,” Chem. Soc. Rev., vol. 38, no. 8, pp. 2161–2168, 2009.
[14] H. Shieh, M. Saadatmand, M. Eskandari, and D. Bastani, “Microfluidic on-chip production of microgels using combined geometries,” Sci. Rep., 2021, doi: 10.1038/s41598-021-81214-7.
[15] C. X. Wang, S. Utech, J. D. Gopez, M. F. J. Mabesoone, C. J. Hawker, and D. Klinger, “Non-Covalent Microgel Particles Containing Functional Payloads: Coacervation of PEG-Based Triblocks via Microfluidics,” ACS Appl. Mater. Interfaces, 2016, doi: 10.1021/acsami.6b03356.
[16] L. Mazutis, R. Vasiliauskas, and D. A. Weitz, “Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release,” Macromol. Biosci., 2015, doi: 10.1002/mabi.201500226.
[17] S. Mashaghi, A. Abbaspourrad, D. A. Weitz, and A. M. van Oijen, “Droplet microfluidics: A tool for biology, chemistry and nanotechnology,” TrAC Trends Anal. Chem., vol. 82, pp. 118–125, 2016.
[18] S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip, vol. 7, no. 9, pp. 1094–1110, 2007.
[19] T. Fu, Y. Ma, D. Funfschilling, C. Zhu, and H. Z. Li, “Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction,” Chem. Eng. Sci., vol. 65, no. 12, pp. 3739–3748, 2010.
[20] S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett., vol. 82, no. 3, pp. 364–366, 2003, doi: 10.1063/1.1537519.
[21] A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett., vol. 99, no. 9, p. 94502, 2007.
[22] D. Vanswaay, T. Y. D. Tang, S. Mann, and A. DeMello, “Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water,” Angew. Chemie - Int. Ed., vol. 54, no. 29, pp. 8398–8401, 2015, doi: 10.1002/anie.201502886.
[23] M. L. Eggersdorfer, H. Seybold, A. Ofner, D. A. Weitz, and A. R. Studart, “Wetting controls of droplet formation in step emulsification,” Proc. Natl. Acad. Sci. U. S. A., 2018, doi: 10.1073/pnas.1803644115.
[24] A. J. Abrahamse, A. der Padt, R. M. Boom, and W. B. C. De Heij, “Process fundamentals of membrane emulsification: simulation with CFD,” AIChE J., vol. 47, no. 6, pp. 1285–1291, 2001.
[25] A. Sattari and P. Hanafizadeh, “Controlled preparation of compound droplets in a double rectangular co-flowing microfluidic device,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 602, no. February, p. 125077, 2020, doi: 10.1016/j.colsurfa.2020.125077.
[26] C. Priest, S. Herminghaus, and R. Seemann, “Generation of monodisperse gel emulsions in a microfluidic device,” Appl. Phys. Lett., 2006, doi: 10.1063/1.2164393.
[27] D. T. Chong et al., “Advances in fabricating double-emulsion droplets and their biomedical applications,” Microfluidics and Nanofluidics. 2015, doi: 10.1007/s10404-015-1635-8.
[28] B. Thompson, C. T. Riche, N. Movsesian, K. C. Bhargava, M. Gupta, and N. Malmstadt, “Engineered hydrophobicity of discrete microfluidic elements for double emulsion generation,” Microfluid. Nanofluidics, vol. 20, no. 5, p. 78, 2016.
[29] C. Y. Liao and Y. C. Su, “Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices,” Biomed. Microdevices, 2010, doi: 10.1007/s10544-009-9367-8.
[30] A. Perro, C. Nicolet, J. Angly, S. Lecommandoux, J. F. Le Meins, and A. Colin, “Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes,” Langmuir, 2011, doi: 10.1021/la1037102.
[31] S. Huang, S. Zeng, Z. He, and B. Lin, “Water-actuated microcapsules fabricated by microfluidics,” Lab Chip, vol. 11, no. 20, pp. 3407–3410, 2011.
[32] C. N. Lim, K. S. Koh, Y. Ren, J. K. Chin, Y. Shi, and Y. Yan, “Analysis of liquid-liquid droplets fission and encapsulation in single/two layer microfluidic devices fabricated by xurographic method,” Micromachines, vol. 8, no. 2, 2017, doi: 10.3390/mi8020049.
[33] A. S. Basu, “Droplet morphometry and velocimetry (DMV): A video processing software for time-resolved, label-free tracking of droplet parameters,” Lab Chip, vol. 13, no. 10, pp. 1892–1901, 2013, doi: 10.1039/c3lc50074h.
[34] C. Kim et al., “Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability,” Lab Chip, 2009, doi: 10.1039/b819044e.
[35] M. Samandari, F. Alipanah, S. H. Javanmard, and A. Sanati-Nezhad, “One-step wettability patterning of PDMS microchannels for generation of monodisperse alginate microbeads by in Situ external gelation in double emulsion microdroplets,” Sensors Actuators B Chem., vol. 291, pp. 418–425, 2019.