[1] Seele J, Hillermann L M, Beineke A, et al. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is a highly protective antigen against serotype 2[J]. Vaccine, 2015, 33(19):2207–2212.
[2] The protective protein Sao (surface antigen one) is not a critical virulence factor for Streptococcus suis serotype 2[J]. Microbial Pathogenesis, 2014, 67–68:31–35.
[3] Li Y, Martinez G, Gottschalk M, et al. Identification of a Surface Protein of Streptococcus suis and Evaluation of Its Immunogenic and Protective Capacity in Pigs[J]. Infection and Immunity, 2006, 74(1):305–312.
[4] Li Y, Gottschalk M, Esgleas M, et al. Immunization with Recombinant Sao Protein Confers Protection against Streptococcus suis Infection[J]. Clinical and Vaccine Immunology, 2007, 14(8):937–943.
[5] Li Y A, Ji Z, Wang X, et al. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs[J]. Veterinary Research, 2017, 48(1):89.
[6] Curtiss R, Wanda S Y, Gunn B M, et al. Salmonella enterica Serovar Typhimurium Strains with Regulated Delayed Attenuation In Vivo[J]. Infection and Immunity, 2009, 77(3):1071–1082.
[7] Collins L V, Attridge S,, Hackett J. Mutations at rfc or pmi attenuate Salmonella typhimurium virulence for mice[J]. Infection & Immunity, 1991, 59(3):1079–1085.
[8] Li Y, Wang S, Scarpellini G, et al. Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA[J]. Proceedings of the National Academy of Sciences, 2009, 106(2):593–598.
[9] Ji Z, Shang J, Li Y, et al. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice[J]. Vaccine, 2015.
[10] Curtiss R, Wanda S Y, Gunn B M, et al. Salmonella enterica Serovar Typhimurium Strains with Regulated Delayed Attenuation In Vivo[J]. Infection and Immunity, 2009, 77(3):1071–1082. [31] Foster J W, Hall H K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis.[J]. Journal of Bacteriology, 1992, 174(13):4317–4323.
[11] Riesenbergwilmes M R, Bearson B, Foster J W, et al. Role of the acid tolerance response in virulence of Salmonella typhimurium.[J]. Infection & Immunity, 1996, 64(4):1085–92.
[12] Tsolis R M, A J Bäumler, Stojiljkovic I, et al. Fur regulon of Salmonella typhimurium: Identification of new iron- regulated genes[J]. Journal of Bacteriology, 1995, 177(16):4628–4637.
[13] Troxell B, Hassan H M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria[J]. Frontiers in Cellular and Infection Microbiology, 2013, 3.
[14] Choi E, Kim H, Lee H, et al. The Iron-Sensing Fur Regulator Controls Expression Timing and Levels of Salmonella Pathogenicity Island 2 Genes in the Course of Environmental Acidification[J]. Infection and Immunity, 2014, 82(6):2203–2210.
[15] Juarez-Rodriguez M D, Yang J, Kader R, et al. Live Attenuated Salmonella Vaccines Displaying Regulated Delayed Lysis and Delayed Antigen Synthesis To Confer Protection against Mycobacterium tuberculosis[J]. Infection and Immunity, 2012, 80(2):815–831.
[16] Wang S, Li Y, Scarpellini G, et al. Salmonella Vaccine Vectors Displaying Delayed Antigen Synthesis In Vivo To Enhance Immunogenicity[J]. Infection and Immunity, 2010, 78(9):3969–3980.
[17] Wang S, Li Y, Shi H, et al. Comparison of a Regulated Delayed Antigen Synthesis System with In Vivo-Inducible Promoters for Antigen Delivery by Live Attenuated Salmonella Vaccines[J]. Infection and Immunity, 2011, 79(2):937–949.
[18] Galán, Jorge E, Nakayama K, Curtiss R. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains[J]. Gene (Amsterdam), 1990, 94(1):29–35.
[19] Nakayama K, Kelly S M, Curtiss R. Construction of an ASD+ Expression-Cloning Vector: Stable Maintenance and High Level Expression of Cloned Genes in a Salmonella Vaccine Strain[J]. Nature Biotechnology, 1988, 6(6):693–697.
[20] Zhao Z, Xue Y, Wu B, Tang X, Hu R, Xu Y, Guo A, Chen H.Subcutaneous vaccination with attenuated Salmonella enterica serovar Choleraesuis C500 expressing recombinant filamentous hemagglutinin and pertactin antigens protects mice against fatal infections with both S. enterica serovar Choleraesuis and Bordetella bronchiseptica[J]. Infect Immun, 2008 76:2157–2163
[21] Zhang X, Kelly S M, Bollen W S, et al. Characterization and immunogenicity of Salmonella typhimurium SL1344 and UK–1 delta-crp and delta-cdt deletion mutants[J]. Infection & Immunity, 1997, 65(12):5381.
[22] Curtiss R III. New Antigen delivery systems: Development of live recombinant attenuated bacterial antigen and DNA vaccine delivery vector vaccines. In: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee J, Mayer L. editors. Mucosal Immunology. 2005. pp. 1009–1037.
[23] Salerno-Goncalves R, Sztein MB, Pasetti MF, Levine MM, Tennant SM. Improved Tolerability of a Salmonella enterica Serovar Typhimurium Live-Attenuated Vaccine Strain Achieved by Balancing Inflammatory Potential with Immunogenicity[J]. Infection and Immunity, 2018, DOI: 10.1128/IAI.00440–18
[24] Gunn B M, Wanda S Y, Burshell D, et al. Construction of Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Vector Strains for Safety in Newborn and Infant Mice[J]. Clinical and Vaccine Immunology, 2010, 17(3):354–362.
[25] Li Y, Wang S, Xin W, et al. A sopB Deletion Mutation Enhances the Immunogenicity and Protective Efficacy of a Heterologous Antigen Delivered by Live Attenuated Salmonella enterica Vaccines[J]. Infection and immunity, 2008, 76(11):5238–5246.
[26] Gunn B M, Wanda S Y, Burshell D, et al. Construction of Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Vector Strains for Safety in Newborn and Infant Mice[J]. Clinical and Vaccine Immunology, 2010, 17(3):354–362.
[27] Karasova D, Sebkova A, Vrbas V, et al. Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential[J]. Vaccine, 2009, 27(38):0–5270.
[28] Foster J W, Hall H K. Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis.[J]. Journal of Bacteriology, 1992, 174(13):4317–4323.
[29] Riesenbergwilmes M R, Bearson B, Foster J W, et al. Role of the acid tolerance response in virulence of Salmonella typhimurium.[J]. Infection & Immunity, 1996, 64(4):1085–92.
[30] Huoying S, Javier S, Brenneman K E, et al. Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen[J]. PLoS ONE, 2010, 5(6):e11142.
[31] Troxell B, Hassan H M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria[J]. Frontiers in Cellular and Infection Microbiology, 2013, 3.
[32] Galen J E, Curtiss R. The delicate balance in genetically engineering live vaccines[J]. Vaccine, 2014, 32(35):4376–4385.
[33] Tsolis R M, A J Bäumler, Stojiljkovic I, et al. Fur regulon of Salmonella typhimurium: Identification of new iron- regulated genes[J]. Journal of Bacteriology, 1995, 177(16):4628–4637.
[34] Choi E, Kim H, Lee H, et al. The Iron-Sensing Fur Regulator Controls Expression Timing and Levels of Salmonella Pathogenicity Island 2 Genes in the Course of Environmental Acidification[J]. Infection and Immunity, 2014, 82(6):2203–2210.
[35] Shi H, Wang S, Curtiss R. Evaluation of Regulated Delayed Attenuation Strategies for Salmonella Typhi Vaccine Vectors in Neonatal and Infant Mice[J]. Clinical & Vaccine Immunology Cvi, 2013, 20(6):931–944.
[36] Kong Q, Liu Q, Jansen A M, et al. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines[J]. Vaccine, 2010, 28(37):0–6103.
[37] Zhu L, Zhao X, Yin Q, et al. Mucosal IgA and IFN-γ+ CD8 T cell immunity are important in the efficacy of live Salmonella enteria serovar Choleraesuis vaccines.[J]. Scientific Reports, 2017, 7:46408.
[38] Ministry of Agriculture C.The People’s Republic of China veterinary biological product regulation. Chemical Industry Publishing Company, Beijing, China,2000,:164–166
[39] Zhao Z, Xue Y, Wu B, Tang X, Hu R, Xu Y, Guo A, Chen H.Subcutaneous vaccination with attenuated Salmonella enterica serovar Choleraesuis C500 expressing recombinant filamentous hemagglutinin and pertactin antigens protects mice against fatal infections with both S. enterica serovar Choleraesuis and Bordetella bronchiseptica[J]. Infect Immun, 2008 76:2157–2163
[40] Li Q, Hu Y, Xu L, et al. Complete Genome Sequence of Salmonella enterica Serovar Choleraesuis Vaccine Strain C500 Attenuated by Chemical Mutation[J]. Genome Announcements, 2014, 2(5):e01022–14-e01022–14.
[41] Tsai C M, Frasch C. A sensitive silver stain for detecting lipooligosaccharide in polyacrylamide gels[J]. Analytical Biochemistry, 1981, 199:115–119.
[42] Hitchcock P. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels[J]. J Bacteriol, 1983, 154.
[43] Witholt B, Boekhout M, Brock M, et al. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli[J]. Analytical Biochemistry, 1976, 74(1):160–170.
[44] Kang, H. Y. Immune Responses to Recombinant Pneumococcal PspA Antigen Delivered by Live Attenuated Salmonella enterica Serovar Typhimurium Vaccine[J]. Infection and Immunity, 2002, 70(4):1739–1749.
[45] Schindelin J, Rueden C T, Hiner M C, et al. The ImageJ ecosystem: An open platform for biomedical image analysis[J]. Molecular Reproduction and Development, 2015, 82(7–8):518–529.
[46] Reed L J. A simple method of estimating fifty per cent endpoints[J]. Am. J. Hyg. 1938, 27.
[47] Rd C S. CHROMOSOMAL ABERRATIONS ASSOCIATED WITH MUTATIONS TO BACTERIOPHAGE RESISTANCE IN ESCHERICHIA COLI.[J]. Journal of Bacteriology, 1965, 89(1):28.
[48] Xinxin Z, Sheng L, Qinlong D, et al. Regulated delayed attenuation enhances the immunogenicity and protection provided by recombinant, Salmonella, enterica, serovar Typhimurium vaccines expressing serovar Choleraesuis O-polysaccharides[J]. Vaccine, 2018, 36(33):5010–5019.
[49] Wang S, Li Y, Scarpellini G, et al. Salmonella Vaccine Vectors Displaying Delayed Antigen Synthesis In Vivo To Enhance Immunogenicity[J]. Infection and Immunity, 2010, 78(9):3969–3980.
[50] Kang H Y, Dozois C M, Tinge S A, et al. Transduction-Mediated Transfer of Unmarked Deletion and Point Mutations through Use of Counterselectable Suicide Vectors[J]. Journal of Bacteriology, 2002, 184(1):307–312.