- Radic, and D. J. Moss, and B. J. Eggleton, “Nonlinear optics in communications: From crippling impairment to ultrafast tools”, Chapter 20, p759-828 in Optical Fiber Telecommunications V: Components and Sub-systems, Ed. Ivan P. Kaminow, Tingye Li, and Alan E. Willner, Academic Press, Oxford, UK, February 2008.
- Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,”
*Nat. Photon*., vol. 4, no. 8, pp. 535-544, 2010.
- Li, P. G. Patki, Y.B. Kwon,
*et al*. “All-optical regenerator of multi-channel signals,” *Nature Communications*, vol. 8, Article number: 884, 2017.
- Li,
*et al*., “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” *Optics Express*, vol. 19, no. 21, pp. 20364-20371, 2011. DOI: 10.1364/OE.19.020364.
- Li,
*et al*., “Error-free All-Optical Demultiplexing at 160Gb/s via FWM in a Silicon Nanowire,” *Optics Express*, vol. 18, no. 4, pp. 3905-3910, 2010. DOI: 10.1364/OE.18.003905.
- Ji,
*et al.,* “1.28-Tb/s Demultiplexing of an OTDM DPSK Data Signal Using a Silicon Waveguide,” *Photonics Technology Letters*, vol. 22, no. 23, pp. 1762-1764, 2010.
- Monat,
*et al*., “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” *Optics Express*, vol. 18, no. 7, pp. 6831-6840, 2010. DOI: 10.1364/OE.18.006831.
- Corcoran,
*et al*., “Optical Signal Processing on a Silicon Chip at 640Gb/s Using Slow-Light,” *Optics Express*, vol. 18, no. 8, pp. 7770-7781, 2010. DOI: 10.1364/OE.18.007770.
- G. Ta’eed,
*et al*., “Integrated all-optical pulse regenerator in chalcogenide waveguides,” *Optics Letters*, vol. 30, no. 21, pp. 2900-2902, 2005. DOI: 10.1364/OL.30.002900.
- Rochette,
*et al*., “Bit-error-ratio improvement with 2R optical regenerators,” *IEEE Photonics Technology Letters*, vol. 17, no. 4, pp. 908-910, 2005.
- Ferrera,
*et al*., “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” *Optics Express*, vol. 22, no. 18, pp. 21488 – 21498, 2014. DOI: 10.1364/OE.22.021488.
- Monat,
*et al*., “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” *Nature Communications*, vol. 5, Article:3246, 2014. doi:10.1038/ncomms4246.
- Li,
*et al*., “All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator,” *Optics Express*, vol. 19, no. 23, pp. 22410-22416, 2011.
- D. Vo,
*et al*., “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” *IEEE Journal of Lightwave Technology*, vol. 29, no. 12, pp. 1790-1796, 2011.
- Ferrera,
*et al*., “All-optical 1st and 2nd order integration on a chip,” *Optics Express*, vol. 19, no. 23, pp. 23153-23161, 2011.
- Corcoran,
*et al*., “Silicon nanowire based radio-frequency spectrum analyzer,” *Optics Express*, vol. 18, no. 19, pp. 20190-20200, 2010. DOI: 10.1364/OE.18.020190.
- Corcoran,
*et al*., “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” *Nature Photonics*, vol. 3, no. 4, pp. 206-210, 2009. doi:10.1038/nphoton.2009.28.
- J. Moss, H. M. van Driel, and J. E. Sipe, “Dispersion in the anisotropy of optical third-harmonic generation in silicon,”
*Opt. Lett*., vol. 14, no. 1, pp. 57-59, 1989.
- E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological Theory of Optical Second- And Third-Harmonic Generation Form Cubic Centrosymmetric Crystals,”
*Phys. Rev. B*, vol. 35, no. 3, pp. 1129-1141, 1987.
- J. Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, “Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs,”
*Phys. Rev. B*, vol. 41, no. 3, pp. 1542-1560, 1990.
- J. Moss, H. M. van Driel, and J. E. Sipe, “Third harmonic generation as a structural diagnostic of ion implanted amorphous and crystalline silicon,”
*Appl. Phy. Lett*., vol. 48, no. 17, pp. 1150, 1986.
- J. Moss,
*et al*., “Ultrafast all-optical modulation via two-photon absorption in silicon-insulator waveguides,” *Electronics Letters*, vol. 41, no. 6, pp. 320-321, 2005. DOI:10.1049/el:20058051
- R. E. Lamont,
*et al*.,“Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration,” *Photonics Technology Letters*, vol. 18, no. 10, pp. 1185-1187, 2006. DOI:10.1109/LPT.2006.874718.
- Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,”
*Optics Express*, vol. 16, no. 22, pp. 18524-18534, 2008. DOI: 10.1364/OE.16.018524.
- D. Pelusi, F. Luan, E. Magi, M.R.E. Lamont, D. J. Moss, B.J. Eggleton, J.S. Sanghera, L. B. Shaw, and I.D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire”, Optics Express vol.16, 11506-11512 (2008).
- Lee,
*et al*., “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” *Optics Express*, vol. 15, no. 3, pp. 1277-1285, 2007. DOI:10.1364/OE.15.001277
- Tomljenovic-Hanic, M. J. Steel, C. M. d. Sterke and D. J. Moss, “High-Q cavities in photosensitive photonic crystals”,
*Optics Letters*, 32, no. 5, pp. 542-544, 2007.
- Grillet,
*et al*., “Nanowire coupling to photonic crystal nanocavities for single photon sources,” *Optics Express*, vol. 15, no. 3, pp. 1267-1276, 2007. DOI:10.1364/OE.15.001267
- G. Ta’eed,
*et al*., “Ultrafast all-optical chalcogenide glass photonic circuits”, *Optics Express*, vol. 15, no. 15, pp. 9205-9221, 2007.
- Freeman,
*et al*., “Chalcogenide Glass Photonic Crystal Devices”, *Photonic and Electromagnetic Crystal Structures, Photonics and Nanostructures-Fundamentals and Applications, Science Direct Elsevier Publishing*, vol. 6, no. 1, pp. 3-11, 2008. doi:10.1016/j.photonics.2007.11.001.
- Grillet,
*et al*., “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes”, *Optics Express*, vol. 14, no. 1, pp. 369-376, 2006.
- G. Ta’eed,
*et al*., “Self-phase modulation based integrated optical regeneration in chalcogenide waveguides”, *IEEE Journal of Selected Topics in Quantum Electronics*, vol. 12, no. 3, pp. 360-370, 2006.
- Shokooh-Saremi,
*et al*., “High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer: experiment and modeling”, *Journal of the Optical Society of America B (JOSA B)*, vol. 23, no. 7, pp. 1323-1331, 2006.
- R. E. Lamont,
*et al*., “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide”, *Electronics Letters*, vol. 43, pp. 945-947, 2007.
- Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides”,
*Opt. Express*, vol. 16, pp. 12987–12994, 2008.

[36] J. S. Levy, A. Gondarenko, M. A. Foster,* et al.*, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” *Nature Photonics*, vol. 4, 1, pp. 37-40, 2010.

[37] L. Razzari, D. Duchesne, M. Ferrera,* et al.*, “CMOS-compatible integrated optical hyper-parametric oscillator,” *Nature Photonics*, vol. 4, no. 1, pp. 41-45, 2010.

[38] D. J. Moss, R. Morandotti, A. L. Gaeta,* et al.*, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” *Nature Photonics*, vol. 7, no. 8, pp. 597-607, 2013.

[39] M. Ferrera, L. Razzari, D. Duchesne,* et al.*, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” *Nature Photonics,* vol. 2, no. 12, pp. 737-740, 2008.

[40] A. Pasquazi, *et al*., “Sub-picosecond phase-sensitive optical pulse characterization on a chip”, *Nature Photonics*, vol. 5, no. 10, pp. 618-623 (2011). DOI: 10.1038/nphoton.2011.199.

[41] D. Duchesne, M. Peccianti, M. R. E. Lamont,* et al.*, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” *Optics Express,* vol. 18, no, 2, pp. 923-930, 2010.

[42] M. Ferrera, *et al*., “On-chip CMOS-compatible all-optical integrator”, *Nature Communications*, vol. 1, Article 29, 2010. DOI:10.1038/ncomms1028

[43] A. Pasquazi, *et al.*, “All-optical wavelength conversion in an integrated ring resonator,” *Optics Express,* vol. 18, no. 4, pp. 3858-3863, 2010.

[44] A. Pasquazi, Y. Park, J. Azana,* et al.*, “Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide,” *Optics Express,* vol. 18, no. 8, pp. 7634-7641, 2010.

[45] M. Peccianti, M. Ferrera, L. Razzari,* et al.*, “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” *Optics Express,* vol. 18, no. 8, pp. 7625-7633, 2010.

[46] D. Duchesne, M. Ferrera, L. Razzari,* et al.*, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” *Optics Express,* vol. 17, no. 3, pp. 1865-1870, 2009.

[47] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del'Haye, X. X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” *Physics Reports*, vol. 729, pp. 1-81, Jan 27. 2018.

[48] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator”, *Nature*, vol. 450, pp. 1214–1217, 2007.

[49] M. Peccianti, *et al*., “Demonstration of an ultrafast nonlinear microcavity modelocked laser”, *Nature Communications*, vol. 3, pp. 765, 2012. DOI:10.1038/ncomms1762

[50] M. Kues, *et al*., “Passively modelocked laser with an ultra-narrow spectral width”, *Nature Photonics*, vol. 11, no. 3, pp. 159, 2017. DOI:10.1038/nphoton.2016.271

[51] A. Pasquazi, L. Caspani, M. Peccianti,* et al.*, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” *Optics Express,* vol. 21, no. 11, pp. 13333-13341, 2013.

[52] A. Pasquazi, M. Peccianti, B. E. Little,* et al.*, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” *Optics Express,* vol. 20, no. 24, pp. 27355-27362, 2012.

[53] C. Reimer, L. Caspani, M. Clerici,* et al.*, “Integrated frequency comb source of heralded single photons,” *Optics Express,* vol. 22, no. 6, pp. 6535-6546, 2014.

[54] C. Reimer, *et al*., “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip”, *Nature Communications*, vol. 6, Article 8236, 2015. DOI: 10.1038/ncomms9236

[55] L. Caspani, C. Reimer, M. Kues,* et al.*, “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs,” *Nanophotonics,* vol. 5, no. 2, pp. 351-362, 2016.

[56] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” *Science,* vol. 351, no. 6278, pp. 1176-1180, 2016.

[57] M. Kues, *et al*., “On-chip generation of high-dimensional entangled quantum states and their coherent control”, *Nature*, vol. 546, no. 7660, pp. 622-626, 2017.

[58] P. Roztocki, M. Kues, C. Reimer, B. Wetzel, S. Sciara, Y. Zhang, A. Cino, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Practical system for the generation of pulsed quantum frequency combs,” *Optics Express,* vol. 25, no. 16, pp. 18940-18949, 2017.

[59] Y. Zhang, *et al*., “Induced photon correlations through superposition of two four-wave mixing processes in integrated cavities”, Laser and Photonics Reviews, vol. 14, no. 7, pp. 2000128, 2020. DOI: 10.1002/lpor.202000128

[60] M. Kues, C. Reimer, A. Weiner, J. Lukens, W. Munro, D. J. Moss, and R. Morandotti, “Quantum Optical Micro-combs”, *Nature Photonics*, vol. 13, no.3, pp. 170-179, 2019.

[61] C. Reimer, *et al*.,“High-dimensional one-way quantum processing implemented on d-level cluster states”, *Nature Physics*, vol. 15, no.2, pp. 148–153, 2019.

[62] P. Marin-Palomo, *et al*., “Microresonator-based solitons for massively parallel coherent optical communications”, *Nature*, vol. 546, no. 7657, pp. 274, 2017.

[63] J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, *et al*., “Coherent terabit communications with microresonator Kerr frequency combs”, *Nature Photonics*, vol. 8, no. 5, pp. 375-380, 2014.

[64] B. Corcoran, *et al*., “Ultra-dense optical data transmission over standard fiber with a single chip source”, *Nature Communications***, **vol. 11, Article:2568, 2020. DOI:10.1038/s41467-020-16265-x.

[65] X. Xu, *et al*., “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, *Laser and Photonics Reviews, *vol. 14, no. 8, 2000070, 2020. DOI:10.1002/lpor.202000070.

[66] X. Xu, *et al*., “11 TOPs photonic convolutional accelerator for optical neural networks”, *Nature, *Vol. 589, no. 7840, pp. 44-51. 2021.

[67] J. Feldmann, et al., “Parallel convolution processing using an integrated photonic tensor core”, arXiv preprint arXiv:2002.00281, 2020.

[68] D. T. Spencer, *et al*., “An optical-frequency synthesizer using integrated photonics”, *Nature*, vol. 557, no. 7703, pp. 81-85, 2018.

[69] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” *Science,* vol. 361, no. 6402, 2018.

[70] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” *Nature Photonics,* vol. 13, no. 3, pp. 158-169, Mar. 2019.

[71] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator”, *Physical Review Letters*, vol. 107, no. 6, pp. 063901, 2011.

[72] T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs”, *Science*, vol. 332, no. 6029, pp. 555-559, 2011.

[73] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, *et al*., “Temporal solitons in optical microresonators”, *Nature Photonics*, vol. 8, no. 2, pp. 145-152, 2014.

[74] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs”, *Nature Photonics*, vol. 5, no. 12, pp. 770, 2011.

[75] X. Xue, P. H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency”, *Laser & Photonics Reviews*, vol. 11, no. 1, 2017.

[76] X. Xue, M. Qi, and A. M. Weiner, “Normal-dispersion microresonator Kerr frequency combs”, *Nanophotonics*, vol. 5, no. 2, pp. 244-262, 2016.

[77] C. Grillet, *et al*., “Amorphous Silicon Nanowires with Record High Nonlinearity, FOM, and Optical Stability”, *Optics Express*, vol. 20, no. 20. pp. 22609-22615, 2012.

[78] J. W. Choi, B. Sohn, G. F. R. Chen, D. K. T. Ng, and D. T. H. Tan, “Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides,” *APL Photonics*, HIBSP2019, pp. 110804, 2020.

[79] J. Capmany, and D. Novak, “Microwave photonics combines two worlds,” *Nat. Photonics,* vol. 1, no. 6, pp. 319-330, 2007.

[80] J. P. Yao, “Microwave photonics,” *Journal of Lightwave Technol.,* vol. 27, no. 1-4, pp. 314-335, Jan-Feb. 2009.

[81] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” *Nature Photonics,* vol. 13, no. 2, pp. 80-90, Feb. 2019.

[82] J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” *IEEE Photonics Journal,* vol. 2, no. 3, pp. 359-386. 2010.

[83] J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,”* Journal of Lightwave Technol.,* vol. 24, no. 1, pp. 201-229, 2006.

[84] V. R. Supradeepa* et al.*, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” *Nat. Photonics,* vol. 6, no. 3, pp. 186-194, Mar.2012.

[85] J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF Photonics: An Optical Microcombs' Perspective,” *IEEE J. Sel. Top. Quantum Electron*., vol. 24, no. 4, pp. 6101020, Jul-Aug. 2018. DOI: 10.1109/JSTQE.2018.2805814.

[86] V. Torres-Company, and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” *Laser Photonics Rev,* vol. 8, no. 3, pp. 368-393, May. 2014.

[87] Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” *Nat Photonics,* vol. 1, no. 8, pp. 463-467, Aug. 2007.

[88] Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” *Opt. Lett*., vol. 42, no. 22, pp. 4631-4634, Nov 15. 2017.

[89] Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link performance optimization of chip-based Si3N4 microwave photonic filters,” *J. Lightwave Technol.*, vol. 36, no. 19, pp. 4361-4370, 2018.

[90] Y. Liu, Y. Yu, S. X. Yuan, X. B. Xu, and X. L. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” *Opt. Lett*., vol. 41, no. 21, pp. 5078-5081, Nov 1. 2016.

[91] D. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” *Optica*, vol. 2, no. 2, pp. 76-83, Feb 20. 2015.

[92] A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip Brillouin gain,” *J. Lightwave Technol*., vol. 35, no. 4, pp. 846-854, Feb 15. 2017.

[93] D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” *Opt. Lett*., vol. 38, no. 21, pp. 4300-4303, Nov 1. 2013.

[94] X. Q. Zhu, F. Y. Chen, H. F. Peng, and Z. Y. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” *Opt. Express*, vol. 25, no. 8, pp. 9232-9243, Apr 17. 2017.

[95] F. Jiang, Y. Yu, H. T. Tang, L. Xu, and X. L. Zhang, “Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,” *Opt. Express*, vol. 24, no. 16, pp. 18655-18663, Aug 8. 2016.

[96] Z. J. Zhu, H. Chi, T. Jin, S. L. Zheng, X. F. Jin, and X. M. Zhang, “All-positive-coefficient microwave photonic filter with rectangular response,” *Opt. Lett*., vol. 42, no. 15, pp. 3012-3015, Aug 1. 2017.

[97] G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” *IEEE Photonic Tech L*, vol. 12, no. 9, pp. 1183-1185, Sep. 2000.

[98] J. S. Leng, W. Zhang, and J. A. R. Williams, “Optimization of superstructured fiber Bragg gratings for microwave photonic filters response,” *IEEE Photonic Tech L*, vol. 16, no. 7, pp. 1736-1738, Jul. 2004.

[99] D. B. Hunter, R. A. Minasian, and P. A. Krug, “Tunable optical transversal filter based on chirped gratings,” *Electron. Lett*., vol. 31, no. 25, pp.2205-2207, Dec 7. 1995.

[100] E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” *IEEE Journal of Microwave Theory*, vol. 58, no. 11, pp. 3269-3278, Nov. 2010.

[101] R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” *Opt. Lett*., vol. 35, no. 19, pp. 3234-3236, Oct 1. 2010.

[102] S. Mansoori, and A. Mitchell, “RF transversal filter using an AOTF,” *IEEE Photonic Tech L*, vol. 16, no. 3, pp. 879-881, Mar. 2004.

[103] Delgado-Pinar, J. Mora, A. Diez, M. V. Andres, B. Ortega, and J. Capmany, “Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator,” *Opt. Lett*., vol. 30, no. 1, pp. 8-10, Jan 1. 2005.

[104] Z. Li, and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” *Opt. Express*, vol. 17, no. 26, pp. 23712-23718, Dec 21. 2009.

[105] H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, and S. L. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” *Opt. Lett*., vol. 38, no. 16, pp. 3137-3139, Aug 15. 2013.

[106] Saitoh, M. Kourogi, and M. Ohtsu, “An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-mu m wavelength,” *IEEE Photonic Tech L*, vol. 8, no. 11, pp. 1543-1545, Nov. 1996.

[107] G. Nguyen* et al.*, “Integrated frequency comb source-based Hilbert transformer for wideband microwave photonic phase analysis,” *Opt. Express,* vol. 23, no. 17, pp. 22087-22097, Aug. 2015.

[108] Xue, *et al.*, “Programmable single-bandpass photonic RF filter based on a Kerr comb from a microring,” *Journal** of Lightwave Technol.,* vol. 32, no. 20, pp. 3557-3565, Oct. 2014.

[109] Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” *APL Photonics*, vol. 2, no. 9, 096104, Sep. 2017.

[110] Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing”, *IEEE Photonics Technology Letters*, vol. 31 no. 23 1854-1857, 2019.

[111] Xu,* et al.*, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” *Opt. Express,* vol. 26, no. 3, pp. 2569-2583, Feb. 2018.

[112] Xue, *et al.*, “Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control,” *Journal of Lightwave Technology,* vol. 36, no. 12, pp. 2312-2321, Jun. 2018.

[113] Xu,* et al.*, “Broadband RF channelizer based on an integrated optical frequency Kerr comb source,” *Journal of Lightwave Technology,* vol. 36, no. 19, pp. 4519-4526, 2018.

[114] Xu,* et al.*, “Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators,” *Journal of Optics,* vol. 20, no. 11, 115701. 2018.

[115] Xu,* et al.*, “Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator,” *Journal of Lightwave Technology,* vol. 36, no. 20, pp. 4808-4818. 2018.

[116] Xu,* et al.*, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” *Photonics Res,* vol. 6, no. 5, pp. B30-B36, 2018.

[117] Xu,* et al.*, “Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source,” *Journal of Lightwave Technology,* vol. 37, no. 4, pp. 1288-1295, 2019.

[118] Liang,* et al.*, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” *Nature Communications,* vol. 6 pp. 7957. 2015.

[119] Liu, *et al*., “Photonic microwave generation in the X-and K-band using integrated soliton microcombs” *Nature Photonics*, vol. 14, pp. 1-6, 2020.

[120] Xu *et al.,* Broadband microwave frequency conversion based on an integrated optical micro-comb source”, *Journal of Lightwave Technology*, vol. 38 no. 2, pp. 332-338. 2020.

[121] Tan *et al., *“Photonic RF and microwave filters based on 49GHz and 200GHz Kerr microcombs”, *Optics Comm*. vol. 465, Article: 125563, Feb. 22. 2020.

[122] Xu *et al.,* “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, *Journal of Lightwave Technology*, Vol. 38, no. 18, pp.5116 - 5121, 2020. doi: 10.1109/JLT.2020.2997699.

[123] Xu *et al.,* “Photonic RF and microwave integrator with soliton crystal microcombs”, *IEEE Transactions on Circuits and Systems II: Express Briefs*, Vol. 67 (12), 3582-3586. 2020. DOI:10.1109/TCSII.2020.2995682.

[124] Xu *et al.,* “Photonic RF phase-encoded signal generation with a microcomb source”, *Journal of Lightwave Technology*, vol. 38, no. 7, pp. 1722-1727 (2020).

[125] Xu* et al.*, “High performance RF filters via bandwidth scaling with Kerr micro-combs,” *APL Photonics,* vol. 4, no. 2, pp. 026102. 2019.

[126] Tan *et al.,* “Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb”, *Journal of Lightwave Technology*, vol. 37, no. 24, pp. 6097 – 6104, 2019.

[127] Tan *et al.,* “RF and microwave fractional differentiator based on photonics”, *IEEE Transactions on Circuits and Systems**: Express Briefs*, Vol. 67, No. 11, pp. 2767 - 2771 (2020). DOI:10.1109/TCSII.2020.2965158.

[128] Tan *et al*., “Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source”, Journal of Lightwave Technology, Vol. 38, No. 22, pp. 6221-6226, Oct 22 (2020). DOI: 10.1109/JLT.2020.3009655.

[129] Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, *Advances in Physics X,* VOL. 6, NO. 1, 1838946 (2021). DOI:10.1080/23746149.2020.1838946.

[130] C. Cole, E. S. Lamb, P. Del'Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” *Nat. Photonics,* vol. 11, no. 10, pp. 671-676, Oct. 2017.

[131] Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled microresonator,” *Opt. Lett*., vol. 43, no. 9, pp. 2002–2005, 2018.

[132] Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator”, *Nature*, vol. 562, no. 7727, pp. 401, 2018.

[133] Xue,* et al.*, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” *Nature Photonics,* vol. 9, no. 9, pp. 594. 2015.

[134] Bao *et al.*, “Laser cavity-soliton microcombs,” *Nature Photonics,* vol. 13, no. 6, pp. 384-389, Jun. 2019.

[135] Xue, X. Zheng, and B. Zhou, “Super-efficient temporal solitons in mutually coupled optical cavities,” *Nature Photonics*, May 2019.

[136] Zhou,* et al.*, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” *Light: Science & Applications,* vol. 8, no. 1, pp. 50, 2019.

[137] H. Bao *et al.*, “Turing patterns in a fibre laser with a nested micro-resonator: robust and controllable micro-comb generation”, *Physical Review Research*, vol. 2, pp. 023395, 2020.

[138] D. Lauro, J. Li, D. J. Moss, R. Morandotti, S. T. Chu, M. Peccianti, and A. Pasquazi, “Parametric control of thermal self-pulsation in micro-cavities,” *Opt. Lett*. vol. 42, no. 17, pp. 3407-3410, Aug. 2017.

[139] Bao *et al.*, “Type-II micro-comb generation in a filter-driven four wave mixing laser,” *Photonics Research*, vol. 6, no. 5, pp. B67-B73, May 2018.

[140] Shen, Chang, L., Liu, J., *et al*., “Integrated turnkey soliton microcombs,” *Nature*, vol. 582, pp. 365-369, 2020.

[141] J. Capmany and D. Novak, “Microwave photonics combines two worlds,” * Photonics, *vol. 1, no. 6, pp. 319-330, Jun. 2007.

[142] J. P. Yao, “Microwave Photonics,” * Lightwave Technol., *vol. 27, no. 1-4, pp. 314-335, Jan. 2009.

[143] S. L. Pan and J. P. Yao, “Photonics-Based Broadband Microwave Measurement,” * Lightwave Technol.*, vol. 35, no. 16, pp. 3498-3513, Aug. 2017.

[144] J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial - Optical signal processing,” * Lightwave Technol., *vol. 24, no. 7, pp. 2484-2486, Jul. 2006.

[145] D. Marpaung, M. Pagani, B. Morrison, and B. J. Eggleton, “Nonlinear Integrated Microwave Photonics,” * Lightwave Technol., *vol. 32, no. 20, pp. 3421-3427, Oct. 2014.

[146] R. A. Minasian, “Ultra-Wideband and Adaptive Photonic Signal Processing of Microwave Signals,” *IEEE J. Quantum Elect.*, vol. 52, no. 1, Jan. 2016.

[147] X. H. Zou, B. Lu, W. Pan, L. S. Yan, A. Stohr, and J. P. Yao, “Photonics for microwave measurements,” *Laser Photonics Rev., * 10, no. 5, pp. 711-734, Sep. 2016.

[148] K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Microwave photonics: radio-over-fiber links, systems, and applications,” *Photonics Res., * 2, no. 4, pp. B54-B63, Aug. 2014.

[149] S. L. Pan, D. Zhu, S. F. Liu, K. Xu, Y. T. Dai, T. L. Wang, J. G. Liu, N. H. Zhu, Y. Xue, and N. J. Liu, “Satellite Payloads Pay Off,” *IEEE Microw. Mag., * 16, no. 8, pp. 61-73, Sep. 2015.

[150] H. W. Chen, R. Y. Li, C. Lei, Y. Yu, M. H. Chen, S. G. Yang, and S. Z. Xie, “Photonics-Assisted Serial Channelized Radio-Frequency Measurement System With Nyquist-Bandwidth Detection,” *IEEE Photonics J., * 6, no. 6, Dec. 2014.

[151] X. J. Xie, Y. T. Dai, Y. Ji, K. Xu, Y. Li, J. Wu, and J. T. Lin, “Broadband Photonic Radio-Frequency Channelization Based on a 39-GHz Optical Frequency Comb,” *IEEE Photonic Tech. L.*, vol. 24, no. 8, pp. 661-663, Apr. 2012.

[152] W. S. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, “Characterization of a coherent optical RF channelizer based on a diffraction grating,” *IEEE T. Microw. Theory, * 49, no. 10, pp. 1996-2001, Oct. 2001.

[153] W. T. Rhodes, “Acousto-optic signal processing: Convolution and correlation,” * IEEE*, vol. 69, no. 1, pp. 65–79, Jan. 1981.

[154] D. B. Hunter, L. G. Edvell, and M. A. Englund, “Wideband microwave photonic channelised receiver,” * Topical Meeting on Microw. Photon.*, pp. 249–251, 2005-Oct.

[155] S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid fresnel lens system,” *IEEE T. Microw. Theory, * 54, no. 2, pp. 868-872, Feb. 2006.

[156] W. Y. Xu, D. Zhu, and S. L. Pan, “Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” * Eng., *vol. 55, no. 4, Apr. 2016.

[157] X. H. Zou, W. Z. Li, W. Pan, L. S. Yan, and J. P. Yao, “Photonic-Assisted Microwave Channelizer With Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering,” *IEEE T. Microw. Theory, * 61, no. 9, pp. 3470-3478, Sep. 2013.

[158] Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced Integrated Microwave Signal Processing With Giant On-Chip Brillouin Gain,” * Lightwave Technol., *vol. 35, no. 4, pp. 846-854, Feb. 2017.

[159] S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric Photonic Channelized RF Receiver,” *IEEE Photonic Tech. L., * 23, no. 6, pp. 344-346, Mar. 2011.

[160] O. J. Wiberg, D. J. Esman, L. Liu, J. R. Adleman, S. Zlatanovic, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, E. W. Jacobs, and S. Radic, “Coherent Filterless Wideband Microwave/Millimeter-Wave Channelizer Based on Broadband Parametric Mixers,” * Lightwave Technol., *vol. 32, no. 20, pp. 3609-3617, Oct. 2014.

[161] X. H. Zou, W. Pan, B. Luo, and L. S. Yan, “Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source,” * Lett., *vol. 35, no. 3, pp. 438-440, Feb. 2010.

[162] F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. Patent 724 583 3B1, 2007.

[163] X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband Photonic RF Channelization Based on Coherent Optical Frequency Combs and I/Q Demodulators,” *IEEE Photonics J., * 4, no. 4, pp. 1196-1202, Aug. 2012.

[164] Z. Li, X. M. Zhang, H. Chi, S. L. Zheng, X. F. Jin, and J. P. Yao, “A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb,” * Commun., *vol. 285, no. 9, pp. 2311-2315, May. 2012.

[165] R. Y. Li, H. W. Chen, Y. Yu, M. H. Chen, S. G. Yang, and S. Z. Xie, “Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning,” * Lett., *vol. 38, no. 22, pp. 4781-4784, Nov. 2013.

[166] H. Hao, Y. T. Dai, F. F. Yin, Y. Zhou, J. Q. Li, J. Dai, W. Z. Li, and K. Xu, “Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion,” *Opt. Lett., *vol. 42, no. 24, pp. 5234-5237, Dec. 2017.

[167] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” * Photonics, *vol. 6, no. 7, pp. 480-487, Jul. 2012.

[168] L. Caspani, C. Xiong, B. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, David J. Moss, “On-chip sources of quantum correlated and entangled photons”, *Nature*: Light Science and Applications, vol. 6, e17100 (2017); doi: 10.1038/lsa.2017.100.

[169] F. Da Ros, E. P. da Silva, D. Zibar, S. T. Chu, B. E. Little, R. Morandotti, M. Galili, D. J. Moss, and L. K. Oxenlowe, “Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide,” *APL Photonics*, vol. 2, no. 4, Apr. 2017.

[170] X. X. Xue and A. M. Weiner, “Microwave photonics connected with microresonator frequency combs,” * Optoelectron., *vol. 9, no. 2, pp. 238-248, Jun. 2016.

[171] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” * Lett., *vol. 38, no. 1, pp. 37-39, Jan. 2013.

[172] Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” * Rev. A., *vol. 87, no. 5, May. 2013.

[173] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” * Phys., *vol. 13, no. 1, pp. 94-102, Jan. 2017.

[174] Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, and A. M. Weiner, “Thermal tuning of Kerr frequency combs in silicon nitride microring resonators”, *Opt. Express*, vol. 24, no. 1, pp. 687-698, Jan. 2016.

[175] Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” *Nat. Photonics*, vol. 4, no. 1, pp. 55-57, Jan. 2010.

[176] Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy”, *Nat. Commun.*, vol. 5, pp. 3375, Feb. 2014.

[177] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” * Photonics, *vol. 10, no. 1, pp. 27-37, Jan. 2016.

[178] G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Micro-resonator soliton dual-comb spectroscopy,” *Science*, vol. 354, no. 6312, pp. 600-603, Nov. 2016.

[179] N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” * Lett.*, vol. 42, no. 3, pp. 514-517, Feb. 2017.

[180] T. C. Briles, T. Drake, D. Spencer, J. R. Stone, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, X. Yi, K. Y. Yang, K. Vahala, K. Srinivasan, S. Diddams, and S. Papp, “Optical Frequency Synthesis Using a Dual-Kerr-Microresonator Frequency Comb,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper SW4N.3.

[181] B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” *IEEE Photonics Technology Letters,* 16, no. 10, pp. 2263-2265. 2004.

[182] J. Wu, T. Moein, X. Xu, and D. J. Moss, “Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires,” APL Photonics, vol. 3, 046102 (2018). DOI:/10.1063/1.5025833.

[183] J. Wu, T. Moein, X. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics, vol. 2, 056103 (2017).

[184] H. Arianfard, J. Wu, S. Juodkazis, and D. J. Moss, “Advanced Multi-Functional Integrated Photonic Filters Based on Coupled Sagnac Loop Reflectors”, Journal of Lightwave Technology, 39, Issue: 5, pp. 1400-1408 (2021). DOI: 10.1109/JLT.2020.3037559.

[185] H. Arianfard, J. Wu, S. Juodkazis and D. J. Moss, “Three Waveguide Coupled Sagnac Loop Reflectors for Advanced Spectral Engineering”, Journal of Lightwave Technology, Vol. 39, Early Access (2021). DOI: 10.1109/JLT.2021.3066256.