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Abstract
Glioblastoma is a highly aggressive brain tumor with poor prognosis despite surgery and chemoradiation. The visual sequelae of
glioblastoma have not been well characterized. This study assessed visual outcomes in glioblastoma patients through neuro-
ophthalmic exams, imaging of the retinal microstructures/microvasculature, and perimetry.

A total of 19 patients (9 male, 10 female, average age at diagnosis 69 years) were enrolled. Best-corrected visual acuity ranged from
20/20–20/50. Occipital tumors showed worse visual �elds than frontal tumors (mean deviation − 14.9 and − 0.23, respectively, p < 
0.0001). Those with overall survival (OS) < 15 months demonstrated thinner retinal nerve �ber layer and ganglion cell complex (p < 
0.0001) and enlarged foveal avascular zone starting from 4 months post-diagnosis (p = 0.006). There was no signi�cant difference
between eyes ipsilateral and contralateral to radiation �elds (average doses were 1370 cGy and 1180 cGy, respectively, p = 0.42). A
machine learning algorithm using retinal microstructure and visual �elds predicted patients with long (≥ 15 months) progression-
free and overall survival with 78% accuracy.

Glioblastoma patients frequently present with visual �eld defects despite normal visual acuity. Patients with poor survival duration
demonstrated signi�cant retinal thinning and decreased microvascular density. A machine learning algorithm predicted survival;
further validation is warranted.

Introduction
Glioblastoma is a primary central nervous system (CNS) tumor classi�ed by the World Health Organization (WHO) as a grade IV
astrocytoma. It constitutes 14.3% of all primary CNS tumors and is the most prevalent (49.1%) malignant brain tumor [1]. A
comprehensive global meta-analysis of primary CNS tumors indicates a worldwide prevalence of glioblastoma at 17.7% [2]. Despite
its lower incidence compared to common cancers such as lung, breast, prostate, and colon [3], glioblastoma has an exceptionally
grim prognosis, with an overall survival (OS) of approximately 15 months [4]. Biomarkers are essential for monitoring the treatment
response and predicting outcomes, guiding patient care and counseling [5].

The ophthalmic features of glioblastoma patients have not been well studied. Prior investigations have revealed that patients with
glioblastoma experienced lower health-related quality-of-life, both physically and mentally [6]. Visual disturbance as a presenting
symptom of glioblastoma occurred in less than 5% of cases within 6 months before diagnosis [7]. A recent literature review reported
that most neuro-ophthalmic sequelae in CNS neoplasms are associated with tumor location [8]. In cases of glioblastoma occurring
as a malignant optic glioma, visual loss with or without pain was the predominant presenting concern [9–11]. However, for patients
with cerebral glioblastoma, the impact on vision is less understood.

Optical coherence tomography (OCT) and OCT angiography (OCTA) are bioimaging techniques with the potential to assist in the
monitoring of visual sequelae of brain tumors. OCT/OCTA captures two-dimensional images of retinal microstructure. The
technology relies on low-coherence interferometry with infrared wavelengths (700–1,300 nm) and generates spatial resolution of 1–
2 um [12]. There is a growing understanding that OCT/OCTA reveals how the retinal cell layers respond to CNS structural changes
from injury through retrograde trans-synaptic degeneration (RTSD) [13–15]. Existing research correlated ganglion cell layer (GCL)
thinning with RTSD following ischemic stroke [16]. Similarly, CNS changes in multiple sclerosis manifest in the retina as reduced
optic nerve head perfusion seen with OCTA [17]. Additionally, research in Alzheimer's type dementia (AD) reveals signi�cantly lower
vascular density in retinal zones and an enlarged foveal avascular zone (FAZ) using OCT/OCTA [18]. Ultimately it has been
demonstrated that analysis of the retina with OCT/OCTA is an effective means of studying the CNS.

As an emerging tool in brain tumor research, machine learning (ML) has successfully predicted therapy response to laser interstitial
thermal therapy with a �rst order dynamics algorithm [19]. It has also been used to predict tumor segmentation and the location of
tumor recurrence following standard treatment using multi-modal fusion and nonlinear correlation learning [20]. Another
investigation focused on how DNA repair functions can be used to generate an individualized model of 1, 2, 3, 5, and 10 years
survival and recurrence rates with the LASSO-COX algorithm for patients with low-grade glioma [21].

We hypothesize that serial neuro-ophthalmic exams and advanced ophthalmic imaging can assess visual outcome and assist in the
prediction of survival outcomes. This study aims to investigate how glioblastoma, and its treatment, affect vision by observing neuro-
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ophthalmic exams and measuring retinal structural and vascular changes using OCT/OCTA. We additionally seek to determine
whether survival outcome can be predicted by analyzing this ophthalmic data using machine learning models.

Methods

Study participants
Patients with pathology-con�rmed glioblastoma were recruited from the University of California, Davis Comprehensive Cancer Center
(UCDCCC). Normal controls were recruited through clinic at the University of California, Davis Eye Center. The controls were not age
or sex matched. The study design was approved by the UC Davis Institutional Review Board and adhered to the tenets of the
Declaration of Helsinki (IRB #1923252-1).

Data were collected from March 3, 2020, through October 12, 2023. Eligibility criteria included: biopsy con�rmed diagnosis of
glioblastoma, ≥ 18 years old, and at least one visit to the neuro-ophthalmology clinic. Exclusion criteria consisted of a known history
of glaucoma or age-related macular degeneration, dense media opacity precluding measurements, history of ocular trauma or
concomitant ocular diseases, uncontrolled diabetes, or hypertension. For control participants, inclusion criteria included patients
with a normal eye exam. Exclusion criteria for control patients included a history of glioblastoma or intracranial mass.

All patients were treated according to standard of care (SOC) protocol [22]. Eligible patients were consented and enrolled by certi�ed
clinical research coordinators. Oncology data included clinical demographics and treatment information such as age at diagnosis,
date of diagnosis, resection dates, tumor location and markers, SOC protocol intervention timelines, date of second-look surgery, and
date of death if applicable.

Neuro-ophthalmic exam and imaging
All participants received serial neuro-ophthalmic examinations, including standard assessment Snellen best corrected visual acuity
(BCVA), intraocular pressure (IOP), color perception using Ishihara color plates, pupil exam, ocular motility and alignments,
examination of the anterior segment and fundus. OCT of the optic disc and macula were performed using Zeiss Cirrus (Carl Zeiss,
Inc) for retinal nerve �ber layer thickness (RNFL) and ganglion cell/inner plexiform layer thickness (GCIPL). OCTA images were
captured using the Avanti Optovue OCTA system (Optovue, Inc). Measurements were automated using the manufacturer’s software
(Optovue RTVue) from 2 OCT images per eye. Data outcomes collected included microvascular densities of the radial peripapillary
capillaries (CapRPC), internal limiting membrane-inner plexiform layer (ILM-IPL), inner plexiform layer-outer plexiform layer (IPL-OPL),
and foveal avascular zone (FAZ). The Humphrey visual �eld Analyzer 3 (Zeiss, Inc.) was used to collect visual �elds mean deviation
(HVF MD).

Retinal dosing calculations
In the RayStation software, retinal contours were delineated to facilitate retrospective dose calculations. Each retina was outlined as
the posterior half of the eye wall, with a thickness of 3 mm. Treatment plans for all cases employed a volumetric arc technique
(VMAT) for administering the treatment. The dose parameters considered included the mean dose to each retina and the maximum
dose to 0.03% of the retinal volume.

Data analysis
The data were then processed and analyzed with Microsoft Excel, and Prism GraphPad (Version 10.1.0). Measurements entered as
Snellen BCVA were automatically converted to Logarithm of the Minimum Angle of Resolution (LogMAR) values using the Excel
equation described by Tiew, Lim, and Sivagnanasithiyar [23]. The time since diagnosis for the neuro-ophthalmology visit was grouped
into 0–3 months, 4–6 months, 7–9 months, 10–12 months, and 13–23 months intervals. Data points for each eye were treated as
repeated measurements for the study participant. The PivotTable function in Excel was used to calculate average values for visual
data and OCT and OCTA measures within speci�c groups. The data were then transferred to Prism GraphPad to create visual
summaries of the data. Average values were calculated for BCVA, HVF MD, and IOPs at each time range since diagnosis. Similarly,
data was calculated for patients with OS < 15 months or OS ≥ 15 months at each time range post-diagnosis, which is the standard
duration of survival in patients with glioblastoma. Finally, average data for eyes contralateral and ipsilateral to tumors were also
calculated for each time range. Kaplan-Meier analysis was used to calculate progression free survival (PFS) and OS. Two-sided p
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values were generated using Microsoft Excel and Prism (Version 10.1.0). The P values were not adjusted because multiple
comparisons were not made.

Machine learning algorithm
Initial data exploration was conducted using correlation analysis to identify relationships between the various clinical features and
the overall survival and event free survival of the patients. This step was crucial for understanding the data structure and guiding
subsequent analysis. Next, partial least squares discriminant analysis (PLSDA) was employed to predict two survival metrics:
progression free survival (PFS, ≥ 15 months) and overall survival (OS, ≥ 15 months). This method distills the data into components
that best explain the variance related to the outcomes [24]. The choice of PLSDA for our predictive modelling is rooted in its inherent
suitability for classi�cation problems, especially when handling features that may exhibit multicollinearity, e.g., the RNFL and GCC.
The models were trained and tested using a leave-one-patient-out cross-validation approach. The performance of the models was
evaluated using overall accuracy and were also visualized using a confusion matrix. The contribution of each individual feature in the
PLSDA models was also computed and visualized to assess the stability of the models.

Results

Patient demographics and tumor characteristics
A total of 23 patients with glioblastoma who received neuro-oncology care at the UCDCCC were identi�ed during the study period.
Four patients were excluded due to lack of neuro-ophthalmic examinations. A total of 38 eyes from 19 patients were included.
Median time from tumor diagnosis to �rst eye examination was 3.6 months (ranging 0–15 months).

Table 1 contains patient demographics, tumor characteristics, and major events in their treatment courses. A total of 8 patients had
radiographic progression (one with biopsy con�rmed pseudoprogression (PsP) and 7 with biopsy con�rmed recurrence. Nine
patients died during the study period. The median PFS was 15 months (ranging 2–31 months) (Fig. 1A), and the median OS was 18
months (ranging 2–33 months) (Fig. 1B).
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Table 1
Patient demographics and tumor information.

Patient Age at

Dx/gender

WHO
grade

IDH MGMT EGFR ATRX XRT

duration
(w)

adjuvant TMZ
status

Disease
status

at end of
study

1 71/F 4 wild
type

methylated positive retained 6.0 did not start due
to

thrombocytopenia

recurrence

2 47/F 4 wild
type

methylated positive not
done

6.3 completed C6D5 deceased

3 69/M 4 wild
type

unmethylated positive retained 6.0 completed C6D5 recurrence,
deceased

4 71/F 4 wild
type

unmethylated negative retained 5.9 did not start due
to

thrombocytopenia

alive

5 68/M 4 wild
type

methylated not
done

retained 6.1 completed C6D5 recurrence,
deceased

6 52/F 4 wild
type

unmethylated positive retained 2.9 completed C6D5 alive

7 59/F 4 wild
type

methylated positive not
done

6.0 Completed C3D5,
stopped

recurrence

8 52/F 4 wild
type

unmethylated positive retained 5.3 completed C3D5,
ongoing

alive

9 60/M 4 wild
type

unmethylated not
done

retained 6.4 completed C1D5,
stopped

deceased

10 70/M 4 wild
type

unmethylated positive retained 6.4 completed C4D5,
stopped

recurrence,
deceased

11 47/M 4 mutant methylated not
done

lost 6.9 completed C6D5 alive

12 58/F 4 wild
type

methylated not
done

not
done

6.6 completed C6D5 recurrence,
deceased

13 67/F 4 wild
type

methylated positive retained 6.0 completed C3D5,
stopped

deceased

14 76/M 4 mutant methylated positive retained 6.0 completed C5D5,
stopped

recurrence,
deceased

15 74/M 4 wild
type

unmethylated positive retained 5.6 completed C3D5,
stopped

deceased

16 65/M 4 wild
type

methylated positive retained 6.1 completed C4D5,
ongoing

alive

17 73/F 4 wild
type

methylated positive retained 5.3 completed C6D5 alive

18 55/M 4 wild
type

methylated positive retained 6.0 completed C6D5 PsP, alive

19 71/F 4 wild
type

unmethylated positive retained 6.4 opted not to begin alive

Neuro-ophthalmic exam and association with tumor location
The BCVA of this cohort was better than 20/40 throughout the study period (Fig. 1C). Four patients had BCVA worse than 20/40, an
equivalent of greater than 0.3 in LogMAR. The other �fteen patients had BCVA equal to or better than 20/40 throughout the study
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period. IOP of all subjects ranged from 7-23mmHg across the study period (Fig. 1D).

Most patients had moderate to severe visual �eld defects with HVF MD worse than − 2.0 dB (Fig. 1E). Only �ve patients had at least
one normal visual �eld exam with HVF MD of -2.0 dB or better. Visual �eld defects were associated with tumor locations, with the
most signi�cant impairments observed in occipital tumors, demonstrating an average HVF MD of -14.9 dB, followed by temporal
tumors at -11.5 dB, and parietal tumors at -10.2 dB. Frontal tumors exhibited the best visual �eld outcome with an average normal
HVF MD of -0.23 dB (p < 0.0001). Figure 1F shows the distribution of each major tumor location.

Retinal thinning and decreased microvascular density in patients with poor
survival
The average RNFL thickness in patients with OS < 15 months was lower than that of patients in the OS 15–33 months group (p < 
0.0001) Fig. 2A. This difference was observed at 0–3 months (p = 0.0132), 4–6 months (p = 0.0031), 7–9 months (p = 0.0047), and
10–12 months (p = 0.0040). The average GCC thickness in the OS < 15 months group was lower than that of the OS 15–33 group (p 
< 0.0001) (Fig. 2B). This difference was observed at 0–3 months (p = 0.0287), and 4–6 months (0.0012), but not at 7–9 months (p = 
0.0526), or 10–12 months (p = 0.0620). Patients with long and short OS had the same CapRPC measurements on average (p = 
0.8220) (Fig. 2C). For ILM-IPL, patients with long and short OS averaged the same measurements (p = 0.0836) (Fig. 2D). Similarly for
IPL-OPL, patients with long and short OS averaged the same measurements (p = 0.7980) (Fig. 2E). When comparing all times post
diagnosis for FAZ the OS < 15 group averaged the same as the OS 15–33 group (p = 0.4337) (Fig. 2F). However, at all times greater
than four months post diagnosis, the average FAZ of patients with short OS was greater than patients with long OS (p = 0.0062).
Despite this, there was not a consistent trend in FAZ. At 0–3 months FAZ was smaller in patients with short OS (p = 0.0260), at 4–6
months there was no difference between long and short OS (p = 0.3280). At 7–9 months the FAZ was smaller in patients with long
OS (p = 0.0490), and at 10–12 months, there was no difference between long and short survival (p = 0.0782).

Radiation dosing has no measurable effect on the retina or visual acuity.

No signi�cant differences were observed in average retinal architecture and microvasculature between eyes that were ipsilateral and
contralateral to radiation �elds throughout the study period, nor was there appreciable differences in visual acuity. Eyes that were
ipsilateral to radiation �elds had average RNFL measurements of 89, 90, 89, 92, and 97µm while eyes contralateral to radiation �elds
had average RNFL of 90, 89, 90, 98, and 96µm at major post-diagnosis times (p = 0.9079) (Fig. 3A). For GCIPL, ipsilateral eyes had
average measurements of 77, 74, 76, 75, 72µm while contralateral eyes had average GCIPL of 76, 74, 76, 76, and 73µm at major post-
diagnosis times (p = 0.9201) (Fig. 3B). For CapRPC eyes ipsilateral to radiation �elds had average measurements of 49, 48, 50, 49,
48% while contralateral eyes had average CapRPC of 48, 47, 50, 49, and 45% at major post-diagnosis times (p = 0.4691) (Fig. 3C). For
the ILM-IPL ipsilateral eyes averaged 49, 46, 48, 45, and 47% while contralateral eyes averaged 49, 45, 48, 48, and 45% at major post-
diagnosis times (p = 0.9550) (Fig. 3D). For IPL-OPL ipsilateral eyes averaged 49, 45, 48, 46, 50% and contralateral eyes averaged 47,
44, 46, 47, 44% at major times post-diagnosis (p = 0.7213) (Fig. 3E). For FAZ ipsilateral eyes averaged 0.267, 0.280, 0.313, 0.295,
0.269mm2 while contralateral eyes averaged 0.232, 0.273, 0.312, 0.262, and 0.255mm2 at major times post-diagnosis (p = 0.2585)
(Fig. 3F). In terms of the BCVA LogMAR, ipsilateral eyes averaged 0.10, 0.14, 0.16, 0.15, and 0.11 while contralateral eyes averaged
0.13, 0.16, 0.13, 0.13, and 0.09 at major times post-diagnosis (p = 0.8330). The average mean radiation dosing for eyes ipsilateral to
radiation �elds was 1368 cGy (314–2987 cGy) and for contralateral eyes was 1180 cGy (406–1925 cGy) (p = 0.4166). The average
max radiation dosing for ipsilateral eyes was 2014 cGy (419–4187 cGy) and for contralateral eyes was 579 cGy (640–2578 cGy) (p = 
0.2843).

ML model predicts PFS, OS
The PLSDA model was built using RNFL, HVF MD, and FAZ measurements taken from imaging captured throughout patients’ follow-
up course, and location of the tumor (lobe and hemisphere) achieved an overall accuracy of 78% for PFS and OS from the initial
diagnosis. For PFS, the location of the tumor along with RNFL thickness was found to have the highest weights, i.e., these features
captured the covariance between the dependent variables and the independent variable. The feature weights were also analyzed for
each of the models built using the leave-one-patient-out approach (see Fig. 4C and D), which were observed to be stable with few
outliers. In the model that predicted OS, the GCIPL, RNFL and location of the tumors were found to have the highest feature weights.
The model’s best performance was dependent on the inclusion of all features, including those with lower feature weights. The
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confusion matrix showed a stable classi�cation with equal true positives and false positives (see Fig. 4, E and F). A standard
regression demonstrated no linear relationship between OS and RNFL or OS and GCIPL.

Discussion
In this study, we analyzed data through neuro-ophthalmic examination and OCT/OCTA of the retina for predictive modeling of
survival in patients with glioblastoma. Our data suggest that patients with glioblastoma sustain signi�cant peripheral vison loss
while maintaining good central vision. Additionally, optic nerve thinning and microvascular density reduction, serving as markers for
RTSD [13–15], are strong predictors of survival duration.

Vision is critically important for patients with terminal disease. The ability to see art, nature, caregivers, and adequate ambient light
has been shown to greatly improve end of life care as noted by a comprehensive review [25]. In contrast with previous reports of
glioblastoma causing decreased visual acuity in patients with optic nerve gliomas [10], our study demonstrated that almost all non-
optic pathway glioblastoma patients fortunately had preserved central vision. In addition, our study result is similar to previous
studies demonstrating an association between brain tumors in the temporal, parietal and occipital lobes with signi�cant visual �eld
defects [26].

Previous research suggests that brain parenchymal alternations cause RTSD to the retina and optic nerve. Speci�c examples include
ischemic stroke [16], AD [18], multiple sclerosis [17], and Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) [27]. OCT/OCTA
plays a role in early detection of mild cognitive impairment and AD [18, 28, 29]. Carriers of D-CAA show thinner peripapillary RNFL
once they become symptomatic, but not before [27]. Evidence for this comes from studies of retrochiasmal diseases causing retinal
thinning and optic nerve damage as detected by OCT/OCTA. Thus, they serve as comparable models of visual pathway injury caused
by brain tumors. Our study demonstrated similar result that suggest OCT/OCTA can be used to detect RTSD in glioblastoma patients
over time.

Many biomarkers have been studied to guide management and continue to drive research in glioblastoma treatment. MGMT
methylation in glioblastoma is a good prognostic marker because these tumors have a signi�cantly better response to
temozolomide therapy compared to unmethylated tumors [30]. Other studies have identi�ed that MARCO-expressing macrophages,
typically present in IDH-wild type glioblastomas only, are associated with worse prognosis [31]. Four additional genes, IFI30, HLA-
DMA, P4HB and RCN1 are possible markers of prognosis and the focus of future studies [32]. Our study provided additional evidence
that it is possible to use the neuro-ophthalmic exam and imaging biomarkers to predict glioblastoma prognosis. We found that a
thinner RNFL was associated with reduced OS (p < 0.0001). Also, a thinner GCIPL was associated with reduced overall survival (p < 
0.0001). These �ndings suggest that there is increased RTSD to the retina in glioblastoma with a faster rate of progression,
conferring poorer prognosis. This possibility is supported by studies which have shown that thinning of the GCIPL and RNFL
detected by OCT correlate with brain tumors causing mass effect symptoms on the optic chiasm and intracranial optic nerves [33].

Additionally, we observed that after four months post-diagnosis the average FAZ in the OS < 15 months group (0.333 mm2) is
enlarged compared to the OS 15–33 months group (0.263 mm2) (p = 0.0062). Contrast this to a similar �nding; eyes ipsilateral to a
choroidal melanoma have an enlarged deep FAZ compared to the contralateral eye [34]. These �ndings suggest that malignant
masses of the head can reduce vascularity in the retina.

Radiation Retinopathy (RR) is a recognized consequence of radiation dosing in the treatment of head and neck neoplasms. Following
treatment, retinopathy can manifest either one month or up to 15 years later and is linked to a signi�cant progressive decline in
visual acuity [35]. The potential to compromise vision, and consequently a patient’s quality of life, is a crucial factor when assessing
treatment options. A systematic review determined that RR predominantly occurs at doses exceeding 50 Gy [36]. Our patients
received doses below this threshold, with an average maximum dose of 20 Gy for ipsilateral eyes and 6 Gy for contralateral eyes. We
did not observe evidence of a signi�cant decline in visual acuity, possibly indicating a correlation with dosing. Additionally, we
acknowledge that through prolonged observation, signs of RR may become detectable; however, this proves challenging in patients
with glioblastoma.

Predictive modeling is an actively developing �eld in brain tumor research. In this study, we introduce a predictive model based on
PLSDA using data obtained in the neuro-ophthalmology clinic. Retinal features combined with tumor location provided the best
performance showing a mean accuracy of 78% for PFS and OS prediction. Comparatively, the two best studies modeling survival as
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a continuous outcome report concordance index (c-indices) of 0.70 [37]. In 2017 a study that examined patient age, sex, race, MGMT
methylation, performance status, resection extent, and tumor site used a Cox proportional hazard model to achieve a c-index of
0.695 ± 0.023 standard error for 1 year survival [38]. In 2018, another study employed similar inputs including patient age, sex,
Karnofsky Performance Status, MGMT methylation, and subventricular zone tumor location classi�cation through a Radiation
Therapy Oncology Group nomogram to achieve a c-index of 0.70 at 12 months survival [39]. For time-to-event models, many studies
report a c-index of 0.70 [37]. In 2020 a study employed 14 different machine learning models to learn from 13 factors within the
following categories: surgical, demographic, socioeconomic, clinical, and neuro-radiographic to achieve a range of 66–70%
concordance index across all models [40]. A c-index of 0.82 has been reported in a single study from 2013 which employed a
multivariable analysis studying patient age, Eastern Cooperative Oncology Group (ECOG) performance status, and corticosteroids
use [41]. While this represents the highest c-index in the literature we identi�ed, the results have not been repeated since the original
study in 2013. Our results indicate that ocular parameters combined with traditional patient demographics, tumor details and
surgical features can generate high performing predictive models of survival in glioblastoma. Despite this, the false negative rate in
our study for PFS was concerning (nearly 85%), indicating that the model erroneously predicted most samples as progression free. A
larger study is needed to understand why the prediction of PFS is harder than OS, where we do not see a high false negative rate.

We also learned that of the features considered by the ML model, the characteristics associated with patient 18, the only patient with
pseudoprogression, long survival and a particular type of glioblastoma (IDH wild type, MGMT methylated, EGFR positive, ATRX
retained), had signi�cant impact on the model’s predictions. These features include the HVF MD, FAZ, and occipital location of the
tumor. These highlighted features give direction for future studies. In the continuation of this study, we will aim to re�ne our model
towards distinguishing pseudoprogression from true tumor recurrence. This would signi�cantly impact the �eld by reducing the
burden of second-look surgery on patients following treatment, thus improving the quality of their lives. We believe that the identi�ed
biomarkers, including retinal nerve �ber layer thickness and foveal avascular zone, present a promising avenue for predicting survival
outcomes. These �ndings hold great potential for clinicians in tailoring treatment strategies and counseling patients, ultimately
improving the overall management and care of glioblastoma patients.

A major limitation of this study is the small sample size of participants, and eye data at speci�c times post-diagnosis. We are
cognizant that the PLSDA model trained in this study is susceptible to over�tting and poor generalizability due to limitations in data
validation and testing. This limitation re�ects the natural course of the disease, as many glioblastoma patients opt for hospice care
following or during initial treatment, leading them to understandably discontinue eye clinic visits for neuro-ophthalmic examinations.
Furthermore, the fact that there was only one patient with pseudoprogression limits our ability to directly compare this disease
outcome with true recurrence. In future studies we seek to expand our sample size by including additional patients with PsP to
explore the predictive potential of neuro-ophthalmic markers.

Conclusions
Visual �eld defects are the most common visual sequelae in patients with glioblastoma, while visual acuity remains relatively
preserved. Optic nerve thinning and decreased retinal microvascular density are the most prominent outcome predictors for survival.
A predictive model was established using features of visual �eld defects, retinal nerve �ber layer thickness, foveal avascular zone
and tumor location demonstrating a 78% accuracy in predicting overall survival, whether better or worse than 15 months. A larger
study is necessary to validate the results of this study.
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Figure 1

Visual characteristics and survival in a cohort of patients with glioblastoma. A) Progression free survival (PFS). B) Overall survival
(OS). C) Best corrected visual acuity over time. D) Intraocular pressure (IOP) measurements over time. E) Humphrey visual �eld
mean deviation (HVF MD) over time. F) Distribution of tumor location.
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Figure 2

Comparison of retinal features in patients of glioblastoma demonstrating trends of retinal thinning and enlarged foveal avascular
zone in patients with shorter progression free survival. A) retinal nerve �ber layer (RNFL) thickness, B) ganglion cell inner plexiform
layer (GCIPL) thickness, C) radial peripapillary capillaries (CapRPC) measurement, D) inner retina, E) outer retina, and F) foveal
avascular zone (FAZ) measurement over time.
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Figure 3

Comparison of retinal features between eyes ipsilateral and contralateral to radiation �elds. A) retinal nerve �ber layer (RNFL)
thickness, B) ganglion cell inner plexiform layer (GCIPL) thickness, C) radial peripapillary capillaries (CapRPC) measurement, D) inner
retina, E) outer retina, and F) foveal avascular zone (FAZ) measurement over time.
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Figure 4

Machine learning model using neuro-ophthalmic features to predict survival outcome. A) Average feature importance in PLS-DA
Model (PFS), B) average feature importance in PLS-DA Model (OS), C) individual patient feature importance in PLSDA Model (PFS),
D) individual patient feature importance in PLSDA Model (OS), E) confusion matrix for prediction accuracy in computed models
(PFS), F) confusion matrix for prediction accuracy (OS).


