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Abstract
Pervious concrete, which has pores to allow permeation of water and air, is being used as one of the
solutions for combating the problems induced by urbanization. For the purpose of evaluating the main
factors affecting the performance attributes of pervious concrete, a total of 24 pervious concrete groups
with varied mortar volumes and water/cement ratios were made for porosity, water permeability and cube
strength measurements. Based on the test results and regression analysis, it was found that
interconnected porosity plays major role in the water permeability, while the open porosity and W/C ratio
are together the key factors governing the cube strength.

1. Introduction
Urbanization augments a large amount of impervious ground surfaces. However, overuse of impervious
ground surfaces would induce many problems, such as the urban waterlogging, heat island effect,
blockage of underground water cycle [1–5]. Pervious concrete, which contains pores to allow permeation
of water and air, is being used as one of the solutions for combating the above problems [6–10].

As the most characteristic feature of pervious concrete, porosity has been paid much attention by many
scholars [11–13]. Montes et al. [14] developed a porosity test method for �eld-obtained cores of pervious
concrete based on the Archimedes principle. Deo and Neithalath [15] found that there is good relation
between the porosity and mechanical properties of pervious concrete. Martin III et al. [16] observed that
the vertical porosity distribution of pervious concrete has great effects on the permeability. Yu et al. [17]
applied 2D or 3D computed tomography (CT) technology to study the pores characteristics of pervious
concrete. da Costa et al. [18] indicated that by controlling bulk density and compaction effort, the porosity
of pervious concrete can be designed.

Permeability, describing the ability to transfer water through pores, has also been wildly studied [19–21].
Haselbach et al. (2017) investigated the permeability of sand-clogged pervious concrete pavement
system. Pieralisi et al. [23] proposed an integrated model, which combines discrete element modeling and
computational �uid dynamics, to assess the permeability of pervious concrete. Hatanaka et al. [24]
developed a nonlinear permeability model for pervious concrete and proved that the use of pervious
concrete pavement can reduce and delay a peak runoff of heavy rain. Zhang et al. [25] compared the
advantages and disadvantages of the constant-head and falling-head permeability measurement
methods. Ong et al. [26] pointed out that the increase in non-Darcy permeability coe�cient can of
pervious concrete is correlated to a higher effective porosity. Shan et al. [27] reported that the particle size
and gradation of sediment can signi�cantly affect the lateral permeability of pervious asphalt concrete.

However, the increase of water permeability often leads to the decrease of strength, seeking the way of
strength enhancement has become the research direction of many scholars [29–30]. For instance, López-
Carrasquillo and Hwang [31] reported that nano-sized silica and iron can improve the compressive
strength and abrasion resistance of pervious concrete, while Adil et al. [32] observed that the use of silica
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fume has similar effects. Liu et al. [33] used silane polymer emulsion treatment method to increase the
strength of recycled aggregate pervious concrete while maintaining its permeability. Wang et al. [34]
found that steel slag can be applied as natural aggregate substitution to enhance the mechanical
properties of pervious concrete. Shen et al. [35] indicated that using ultra-high performance paste is an
effective way to promote the strength of pervious concrete.

For the purpose of �nding out the main factors affecting the performance attributes of pervious concrete,
a series of pervious concrete groups with varied mortar volumes and water/cement ratios were made for
porosity, water permeability and cube strength measurements. Based on the test results, regression
analysis was carried out.

2. Experimental Details

2.1 Mix proportion and raw materials
Totally 24 pervious concrete groups were produced for testing. For these concrete groups, two mix
parameters are mortar volume (MV) and water/cement (W/C) ratio. The MV, i.e. the volume of mortar (�ne
aggregate + cement + water), as a percentage of the volume of concrete without considering voids, was
set at 15%, 20%, 25%, 30%, 35% or 40%. The W/C ratio, i.e. the water to cement ratio by mass, was varied
from 0.25 to 0.40 in steps of 0.05. Besides, the cement/�ne aggregate ratio by mass for each concrete
group was �xed at 1.0, while the water reducer dosage (liquid mass of water reducer as a percentage by
mass of cement content) was set at 0.6%. For identi�cation, each concrete group was given a code of A-
B, in which A means the MV (%) and B means the W/C ratio, as shown in the �rst columns of the Table 1.
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Table 1
Test results

Mix no. Interconnected

porosity

(%)

Open

porosity

(%)

Un-submerged

permeability

coe�cient

(mm/s)

Submerged

permeability

coe�cient

(mm/s)

Cube

strength

(MPa)

15-0.25 29.8 30.0 12.57 16.85 10.2

15 − 0.30 29.5 29.7 12.25 16.55 12.4

15-0.35 28.7 29.6 12.19 16.32 12.7

15 − 0.40 28.6 29.5 12.05 16.24 12.5

20-0.25 27.0 27.9 10.77 12.21 12.5

20 − 0.30 25.9 26.2 9.74 11.50 17.1

20-0.35 24.7 25.4 9.34 11.32 21.0

20 − 0.40 24.3 24.8 7.67 10.21 20.2

25-0.25 21.1 22.7 7.85 9.45 19.8

25 − 0.30 18.2 19.4 4.55 5.38 25.7

25-0.35 18.0 19.3 3.66 5.21 26.9

25 − 0.40 14.1 16.0 1.86 2.72 23.9

30-0.25 15.4 18.0 1.52 1.88 25.9

30 − 0.30 12.6 12.8 1.02 1.62 31.5

30-0.35 10.0 10.7 0.79 1.23 39.1

30 − 0.40 6.4 9.4 0.41 0.47 37.1

35-0.25 6.2 8.9 0.51 0.79 38.4

35 − 0.30 4.9 6.3 0.49 0.75 46.2

35-0.35 3.4 4.5 0.48 0.70 50.8

35 − 0.40 0.0 3.0 0.00 0.00 47.8

40-0.25 0.0 4.9 0.00 0.00 51.8

40 − 0.30 0.0 1.9 0.00 0.00 59.2

40-0.35 0.0 1.8 0.00 0.00 71.9

40 − 0.40 0.0 1.2 0.00 0.00 64.5
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The raw materials used include cement, �ne aggregate, coarse aggregate and water reducer. The cement
used was a high-early-strength ordinary Portland cement (PžO 42.5R) [36] with relative density of 3.08.
The �ne aggregate used was local river sand and the coarse aggregate applied was crushed granite rock.
The particle size distributions of the cement and �ne aggregate were shown in Fig. 1, and the properties
of the �ne and coarse aggregates were listed in the Table 2. The water reducer used was a
polycarboxylate-type superplasticizer (SP) with relative density of 1.03 and solid mass content of 20%
[37, 38].

Table 2
Properties of �ne and coarse aggregates

Aggregate

type

Maximum particle
size

(mm)

Density at saturated surface dry
condition

(kg/m3)

Moisture

content

(%)

Water

absorption

(%)

Fine

aggregate

1.18 2660 0.04 1.10

Coarse

aggregate

10 2690 0.08 0.40

2.2 Producing process
The mixing procedure of the previous concrete was followed the Chinese Speci�cation CJJ/T 135–2009
[39]: (1) one half of water, water reducer, �ne and coarse aggregates were added into a mixer and mixed
for 30s; (2) the cement was placed into the mixer and mixed for 40s; (3) the last water was dosaged and
further mixed for 60s.

After mixing, 150 mm cubes were cast for porosity test, water permeability test and 28-day cube strength
tests. To avoid uneven distribution of paste, no vibration was applied during casting. Instead, a heavy
metal roller was used to compact the fresh pervious concrete after the moulds were �lled up. After
casting, the cubes were covered with plastic sheets, demoulded after 1 day and then cured in a curing
room for 28 days.

2.3 Testing methods
In this study, a porosity test [40] was applied to measure the interconnected porosity (the percentage of
interconnected pores volume to the bulk volume of concrete) and open porosity (the percentage of open
pores volume to the bulk volume of concrete) of the previous concrete mixes. The theory of the porosity
test was based on water displacement method (as shown in Fig. 2), and the details of the test can be
referred to a previous paper [40].

After the porosity test, the concrete cube was transferred to water permeability test setups to carry out
water permeability test. In this study, two alternative setups were designed: the �rst one was for testing of
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water permeability at a constant water head of 300 mm under un-submerged condition, as shown in
Fig. 3(a); the second one was for evaluating of water permeability at a constant water head of 150 mm
under submerged condition, as shown in Fig. 3(b). During the test, the un-submerged and submerged
permeability coe�cients can be calculated according to Darcy’s law [41] and the details of the test can be
referred to a previous paper [40].

For the cube compressive strength test, three 150 mm cubes cast from each concrete mix were tested by
a 2000 kN compression testing machine at the age of 28 days. The 28-day cube strength was de�ned as
the mean value of the cube compressive strengths of the three cubes.

3. Test Results

3.1 Porosity
The test results of interconnected porosity and open porosity are tabulated in the second and third
columns of Table 1, respectively. By comparing the interconnected porosity and open porosity for each
concrete group, it is obvious that the open porosity was always higher than the respective interconnected
porosity. To study how W/C ratio and mortar volume in�uenced the interconnected/open porosities,
Figs. 4 and 5 were drawn, respectively. It can be found that when the W/C ratio was �xed, the
interconnected and open porosities gradually decreased to zero as the mortar volume increased from 15–
40%. This phenomenon was reasonable and the reason was that a larger mortar volume �lled into the
voids between the coarse aggregate particles would directly reduce the amount of un�lled voids in the
pervious concrete. On the other hand, by �xing the mortar volume, it can be observed that as the W/C
ratio increased from 0.25 to 0.40, the interconnected/open porosity generally decreased. This was
because a higher W/C ratio would make the mortar more �owable to �ll into the voids between the coarse
aggregate particles in the pervious concrete.

3.2 Permeability coe�cient
The results of un-submerged/submerged permeability coe�cient are tabulated in Table 1. From the table,
it is noted that the un-submerged permeability coe�cient varied within the range of 12.57 to 0.00 mm/s,
whereas the submerged permeability coe�cient varied within the range of 16.85 to 0.00 mm/s. Generally,
the un-submerged permeability coe�cient was lower than the respective submerged permeability
coe�cient, because under un-submerged condition, the water channels inside the pervious concrete were
not fully �lled, while under submerged condition, the water channels were fully �lled.

To further study how W/C ratio and mortar volume affected the un-submerged/submerged permeability
coe�cient, Figs. 6 and 7 were drawn, respectively. From the �gures, it is evident that at the same W/C
ratio, the un-submerged/submerged permeability coe�cient gradually decreased with the increase of
mortar volume. On the other hand, at the same mortar volume, a higher W/C ratio would lead to a lower
un-submerged/submerged permeability coe�cient. These phenomena are expected since the increases
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of mortar volume and/or W/C ratio would reduce the porosity of the pervious concrete thus making water
permeation more di�cult.

3.3 Cube strength
The cube strength results are tabulated in the last column of Table 1 and presented in Fig. 8. As expected,
the cube strength increased with the increase of mortar volume. The reason is that as the mortar volume
increased, the volume of un�lled voids decreased thus alleviating the decline in strength caused by the
presence of voids [42–44]. However, at the same mortar volume, the cube strength �rst increased as the
W/C ratio increased from 0.25 to 0.35 but declined as the W/C ratio further increased to 0.40. Hence,
there was an optimum W/C ratio of 0.35 at which the highest cube strength occurred. The low cube
strength at W/C ratio ≤ 0.35 was caused by the excessive dryness of the concrete mix, which rendered the
pervious concrete very di�cult to cast and particularly porous. The decrease of cube strength when W/C
ratio > 0.35 was normal, because a higher W/C ratio at W/C ratio > 0.35 would in general yield a lower
concrete strength [45–47].

4. Roles Of Porosity

4.1 Roles of interconnected porosity in water permeability
In pervious concrete, water permeates through the interconnected pores, it is envisaged that the water
permeability is more related to the interconnected porosity, rather than the open porosity. For the purpose
of evaluating how interconnected porosity in�uences the un-submerged and submerged permeability
coe�cients, Figs. 9 and 10 were drawn, respectively. It is obvious that as the interconnected porosity
increased, the un-submerged and submerged permeability coe�cients gradually improved. More
importantly, the data points in both �gures lie closely to a certain curve indicating that there is a well-
de�ned relation between the water permeability and interconnected porosity.

Then, regression analysis was applied. The best-�t curves and the corresponding equations were showed
directly in the �gures. Very high R2 values of 0.987 and 0.993 were achieved, showing that the
interconnected porosity play key roles in the water permeability of pervious concrete. The reason is that
the increase in interconnected porosity renders water permeation through the pervious concrete easier.

4.2 Roles of open porosity and W/C ratio in cube strength
There is no doubt that the W/C ratio and porosity have signi�cant in�uences on the strength of cement-
based materials [48–50]. Nevertheless, the porosity should be the open porosity, not the interconnected
porosity, because the in�uence of porosity on strength is not dependent on whether the pores are
interconnected or not. For the purpose of evaluating how open porosity and W/C ratio in�uence the cube
strength, Fig. 11 was drawn. It is observed that when the open porosity increased, the cube strength
gradually decreased. On the other hand, the cube strength changed with the W/C ratio in a manner that
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the W/C ratio of 0.35 was optimum and either decreasing the W/C ratio or increasing the W/C ratio would
cause the cube strength to decrease.

Then, multi-variable regression analysis was applied. The best-�t curves and the corresponding equations
were showed directly in the �gure. Farley high R2 value of 0.938 was obtained, indicating that the open
porosity and W/C ratio play key roles in the strength of pervious concrete.

5. Concurrent Strength-permeability Performance
For pervious concrete, there is a corner that decreasing the mortar volume to increase the porosity would
improve the water permeability but simultaneously diminish the strength. Therefore, achieving both high
water permeability and high strength is a di�cult task. To assess the concurrent strength-permeability
performance of the pervious concrete mixes tested, Figs. 12(a) and 12(b) were drawn. In these two
�gures, each curve plotted is for one mortar volume (MV).

First of all, it can be found that each curve has a peak giving the maximum cube strength. Somehow, all
the peaks occur at a W/C ratio of 0.35, regardless of the MV. These peaks may also be taken as the
combinations of PV and W/C ratio giving the best strength-permeability performance. Then, it should be
noted that at MV ≥ 30%, it is not possible to obtain an un-submerged water permeability coe�cient of
higher than 1.9 mm/s or a submerged water permeability coe�cient of higher than 2.7 mm/s. On the
other hand, at PV ≤ 25%, it is not possible to get a cube strength of higher than 25 MPa. To strike a
balance between water permeability and strength, it is recommended to set the MV as 25% and the W/C
ratio as 0.35, which together would give un-submerged/submerged water permeability coe�cients of
3.66 mm/s and 5.21 mm/s, and a cube strength of 26.9 MPa.

6. Conclusions
In this study, a series of pervious concrete mixes with the W/C ratio changing from 0.25 to 0.40 and the
mortar volume changing from 15–40%, were made for carrying out the porosity test, water permeability
test and compressive strength test. Based on the test results, some conclusions are listed below:

(1) The interconnected porosity is lower than the open porosity, the un-submerged water permeability is
lower than the submerged water permeability.

(2) The W/C ratio and mortar volume, as the fundamental mix parameters, have major effects on the
interconnected porosity, open porosity, un-submerged water permeability, submerged water permeability
and cube strength.

(3) Correlations of the un-submerged/submerged water permeability coe�cients to the interconnected
porosity by regression analysis yielded very high R2 values, showing that the interconnected porosity is
the key factor governing the water permeability of pervious concrete.
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(4) Correlation of the cube strength to the open porosity and W/C ratio by regression analysis yielded a
very high R2 value, proving that the open porosity and W/C ratio are together the key factors governing
the compressive strength of pervious concrete.

(5) The best strength-permeability performance generally occurs at a W/C ratio of 0.35. Striking a balance
between strength and permeability, it is recommended to set the paste volume at 25%, which together
with a W/C ratio of 0.35, would give water permeability coe�cients of around 3 to 5 mm/s and a cube
strength of about 27 MPa.
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Figure 1

Particle size distribution of cement and �ne aggregate
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Figure 2

Schematic diagram of porosity test
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Figure 3

Schematic diagram of water permeability test (a) Un-submerged condition (300 mm water head) (b)
Submerged condition (150 mm water head)
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Figure 4

Interconnected porosity versus mortar volume for different W/C ratios
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Figure 5

Open porosity versus mortar volume for different W/C ratios
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Figure 6

Un-submerged permeability coe�cient versus mortar volume for different W/C ratios
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Figure 7

Submerged permeability coe�cient versus mortar volume for different W/C ratios
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Figure 8

Cube strength versus mortar volume for different W/C ratios
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Figure 9

Effect of interconnected porosity on un-submerged permeability coe�cient
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Figure 10

Effect of interconnected porosity on submerged permeability coe�cient
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Figure 11

Combined effects of open porosity and W/C ratio on cube strength



Page 26/26

Figure 12

Cube strength versus permeability coe�cient


