[1] D.A. Bazylinski, R.B. Frankel, K.O. Konhauser, Modes of biomineralization of magnetite by microbes, Geomicrobiol. J. 24 (2007) 465-475.
[2] S.C. McBain, H.H. Yiu, J. Dobson, Magnetic nanoparticles for gene and drug delivery, Int. J. Nanomed. 3 (2008) 169.
[3] R. Hachani, M. Lowdell, M. Birchall, N.T.K. Thanh, Tracking stem cells in tissue-engineered organs using magnetic nanoparticles, Nanoscale, 5 (2013) 11362-11373.
[4] J. Estelrich, M.J. Sinchez-Martin, M.A. Busquets, Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 10 (2015) 1727–1741.
[5] D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, I.B. Shim, M.H. Lee, Y.K. Lee, Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies, Curr. Appl. Phys. 6 (2006) e242-e246.
[6] S.A. Mohamed, M.H. Al-Harbi, Y.Q. Almulaiky, I.H. Ibrahim, R.M. El-Shishtawy, Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles, Electronic Journal of Biotechnology, 27 (2017) 84-90.
[7] Y. Hou, H. Kondoh, M. Shimojo, E.O. Sako, N. Ozaki, T. Kogure, T. Ohta, Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite, J. Phys. Chem. B 109 (2005) 4845-4852.
[8] S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation, Desalination 262 (2010) 86–93
[9] P. Jian, H.E. Yahui, W. Yang, L. Linlin, Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field, J. Memb. Sci. 284 (2006) 9-16.
[10] S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Preparation and characterization of activated carbon from Amygdalus Scoparia shell by chemical activation and its application for removal of lead from aqueous solutions, Cent. Eur. J. Chem. 8 (2010) 1273–1280
[11] W. Duan, F. Meng, H. Cui, Y. Lin, G. Wang, J. Wu, Ecotoxicity of phenol and cresols to aquatic organisms: a review, Ecotoxicol. Environ. Saf. 157 (2018) 441-456.
[12] S.Z. Mohammadi, H. Hamidian, Z. Moeinadini, High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples, J. Indust. Eng. Chem. 20 (2014) 4112–4118.
[13] S.Z. Mohammadi, Z. Darijani, M.A. Karimi, Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles, J. Alloy. Compd. 832 (2020) 154942
[14] V. Javanbakht, S.M. Ghoreishi, Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite, Adsorpt. Sci. Technol. 35 (2017) 241-260.
[15] S.Z. Mohammadi, N. Mofidinasab, M.A. Karimi, A. Beheshti, Removal of methylene blue and Cd(II) by magnetic activated carbon–cobalt nanoparticles and its application to wastewater purification, Int. J. Environ. Sci. Technol. 17(2020) 4815–4828.
[16] S.Z. Mohammadi, N. Mofidinasab, M.A. Karimi, F. Mosazadeh, Fast and efficient removal of Pb(II) ion and malachite green dye from wastewater by using magnetic activated carbon–cobalt nanoparticles, Water Sci. Technol. 82 (5) (2020) 829–842.
[17] J.L. Cain, S.R. Harrison, J.A. Nikles, D.E. Nikles, Preparation of α-Fe particles by reduction of ferrous ion in lecithin/cyclohexane/water association colloids, J. Magn. Magn. Mater. 155 (1996) 67-69.
[18] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of iron oxide in carbon monoxide atmosphere—reaction-controlled kinetics, Fuel Process. Technol. 86 (2004) 33-47.
[19] L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li, M.M. Xing, Nanosilver particles in medical applications: synthesis, performance, and toxicity, Int. J. Nanomedicine 9 (2014) 2399.
[20] M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman, J. Amin, Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Molecules 18(7) (2013) 7533-7548.
[21] A.T. Ubando, W.H. Chen, P.L. Show, H.C. Ong, Kinetic and thermodynamic analysis of iron oxide reduction by graphite for CO2 mitigation in chemical‐looping combustion, Int. J. Energy Res. 44 (2020) 3865-3882.
[22] S. Mtaallah, I. Marzouk, B. Hamrouni, Factorial experimental design applied to adsorption of cadmium on activated alumina, J. Water Reuse Desalination 8 (2018) 76-85.
[23] Hasanuzzaman, P.K. Dan, S. Basu, Optimization of ring-spinning process parameters using response surface methodology, J. Text. Inst. 5 (2015) 510-522.
[24] A.Z. Varzaneh, J. Towfighi, A.H.S. Kootenaei, A. Mohamadalizadeh, Effect of cerium and zirconium nanoparticles on the structure and catalytic performance of SAPO-34 in steam cracking of naphtha to light olefins, React. Kinet. Mech. Catal. 115 (2015) 719-740.
[25] P. Onsekizoglu, K.S. Bahceci, J. Acar, The use of factorial design for modeling membrane distillation, J. Membr. Sci. 349 (2010) 225-230.
[26] S. Kamsonlian, B. Shukla, Optimization of process parameters using response surface methodology (RSM): removal of Cr (VI) from aqueous solution by wood apple shell activated carbon (WASAC), Res. J. Chem. Sci. 3 (2013) 31-37.
[27] N.A. Anuwar, P.F.M. Khamaruddin, Optimization of Chemical Activation Conditions for Activated Carbon from Coconut Shell Using Response Surface Methodology (RSM) and Its Ability to Adsorb CO2, Adv. Eng. Res. 20 (2020) 234-248.
[28] L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim. Acta A 130 (2014) 295-301.
[29] J.K. Xu, F.F. Zhang, J.J. Sun, J. Sheng, F. Wang, M. Sun, Bio and nanomaterials based on Fe3O4, Molecules 19 (2014) 21506-21528.
[30] E. Vetchinkina, E. Loshchinina, M. Kupryashina, A. Burov, T. Pylaev, V. Nikitina, Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes, PeerJ 6 (2018) 5237.
[31] N. Duran, A. B. Seabra, Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications, Curr. Nanosci. 14 (2018) 82-94.
[32] D. Mohan, P. Singh, A. Sarswat, P.H. Steele, C.U. Pittman, Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars, J. Colloid Interface Sci. 448 (2015) 238-250.
[33] N. Yang, S. Zhu, D. Zhang, S. Xu, Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Mater. Lett. 62 (2008) 645-647.
[34] L. Shao, Z. Ren, G. Zhang, L. Chen, Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal, Mater. Chem. Phys. 135 (2012) 16-24.
[35] E. Darezereshki, F. Bakhtiari, A.B. Vakylabad, Z. Hassani, Single-step synthesis of activated carbon/γ-Fe2O3 nano-composite at room temperature, Mater. Sci. Semicond. Process. 16 (2013) 221-225.
[36] P. Kalendova, M. Meloun, L. Ceslova, Effect of long-term storage on degradation of 21 phenolic compounds in green tea, Sci. Pap. Univ. Pardubice A. 26 (2020) 97-110.
[37] S.B. Daffalla, H. Mukhtar, M.S. Shaharun, Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems, PloS One 15 (2020) e0243540.
[38] G. Issabayeva, S.Y. Hang, M.C. Wong, M.K. Aroua, A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents, Rev. Chem. Eng. 34 (2018) 855-873.
[39] T.A. Krasnova, N.V. Gora, O.V. Belyaeva, A.K. Gorelkina, N.S. Golubeva, I.V. Timoshchuk, The use of semi-coke for phenol removal from aqueous solutions, Carbon Letters, (2021) 1-10. Carbon Lett. (2021). https://doi.org/10.1007/s42823-020-00216-z