1 Kass, M. A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120, 701-713; discussion 829-730, doi:10.1001/archopht.120.6.701 (2002).
2 Heijl, A. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120, 1268-1279, doi:10.1001/archopht.120.10.1268 (2002).
3 Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126, 487-497, doi:10.1016/s0002-9394(98)00223-2 (1998).
4 Anderson, D. R. & Normal Tension Glaucoma, S. Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14, 86-90, doi:10.1097/00055735-200304000-00006 (2003).
5 Miglior, S. et al. Results of the European Glaucoma Prevention Study. Ophthalmology 112, 366-375, doi:10.1016/j.ophtha.2004.11.030 (2005).
6 Musch, D. C. et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology 116, 200-207, doi:10.1016/j.ophtha.2008.08.051 (2009).
7 The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 130, 429-440, doi:10.1016/s0002-9394(00)00538-9 (2000).
8 Garway-Heath, D. F. et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385, 1295-1304, doi:10.1016/S0140-6736(14)62111-5 (2015).
9 Pfau, M. et al. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog Retin Eye Res, 100907, doi:10.1016/j.preteyeres.2020.100907 (2020).
10 Montesano, G. et al. A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer. Ophthalmology 126, 242-251, doi:10.1016/j.ophtha.2018.08.010 (2019).
11 Henson, D. B., Chaudry, S., Artes, P. H., Faragher, E. B. & Ansons, A. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci 41, 417-421 (2000).
12 Artes, P. H., Iwase, A., Ohno, Y., Kitazawa, Y. & Chauhan, B. C. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 43, 2654-2659 (2002).
13 Wu, Z. & Medeiros, F. A. Development of a Visual Field Simulation Model of Longitudinal Point-Wise Sensitivity Changes From a Clinical Glaucoma Cohort. Transl Vis Sci Technol 7, 22, doi:10.1167/tvst.7.3.22 (2018).
14 Heijl, A., Lindgren, A. & Lindgren, G. Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 108, 130-135, doi:10.1016/0002-9394(89)90006-8 (1989).
15 Chauhan, B. C. & Johnson, C. A. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Invest Ophthalmol Vis Sci 40, 648-656 (1999).
16 Junoy Montolio, F. G., Wesselink, C. & Jansonius, N. M. Persistence, spatial distribution and implications for progression detection of blind parts of the visual field in glaucoma: a clinical cohort study. PLoS One 7, e41211, doi:10.1371/journal.pone.0041211 (2012).
17 Turpin, A., Morgan, W. H. & McKendrick, A. M. Improving Spatial Resolution and Test Times of Visual Field Testing Using ARREST. Transl Vis Sci Technol 7, 35, doi:10.1167/tvst.7.5.35 (2018).
18 Turpin, A., McKendrick, A. M., Johnson, C. A. & Vingrys, A. J. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. Invest Ophthalmol Vis Sci 44, 4787-4795, doi:10.1167/iovs.03-0023 (2003).
19 Bengtsson, B., Olsson, J., Heijl, A. & Rootzen, H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand 75, 368-375, doi:10.1111/j.1600-0420.1997.tb00392.x (1997).
20 Gardiner, S. K., Swanson, W. H., Goren, D., Mansberger, S. L. & Demirel, S. Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage. Ophthalmology 121, 1359-1369, doi:10.1016/j.ophtha.2014.01.020 (2014).
21 Chauhan, B. C., Tompkins, J. D., LeBlanc, R. P. & McCormick, T. A. Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma. Invest Ophthalmol Vis Sci 34, 3534-3540 (1993).
22 Wu, Z. & Medeiros, F. A. Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression. Transl Vis Sci Technol 7, 20, doi:10.1167/tvst.7.4.20 (2018).
23 Artes, P. H., O'Leary, N., Nicolela, M. T., Chauhan, B. C. & Crabb, D. P. Visual field progression in glaucoma: what is the specificity of the Guided Progression Analysis? Ophthalmology 121, 2023-2027, doi:10.1016/j.ophtha.2014.04.015 (2014).
24 Artes, P. H., Nicolela, M. T., LeBlanc, R. P. & Chauhan, B. C. Visual field progression in glaucoma: total versus pattern deviation analyses. Invest Ophthalmol Vis Sci 46, 4600-4606, doi:10.1167/iovs.05-0827 (2005).
25 Heijl, A. et al. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 81, 286-293, doi:10.1034/j.1600-0420.2003.00070.x (2003).
26 Leske, M. C., Heijl, A., Hyman, L. & Bengtsson, B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 106, 2144-2153, doi:10.1016/s0161-6420(99)90497-9 (1999).
27 Chen, P. P. & Budenz, D. L. The effects of cataract extraction on the visual field of eyes with chronic open-angle glaucoma. Am J Ophthalmol 125, 325-333, doi:10.1016/s0002-9394(99)80142-1 (1998).
28 Hayashi, K., Hayashi, H., Nakao, F. & Hayashi, F. Influence of cataract surgery on automated perimetry in patients with glaucoma. Am J Ophthalmol 132, 41-46, doi:10.1016/s0002-9394(01)00920-5 (2001).
29 Koucheki, B., Nouri-Mahdavi, K., Patel, G., Gaasterland, D. & Caprioli, J. Visual field changes after cataract extraction: the AGIS experience. Am J Ophthalmol 138, 1022-1028, doi:10.1016/j.ajo.2004.08.006 (2004).
30 Rao, H. L., Jonnadula, G. B., Addepalli, U. K., Senthil, S. & Garudadri, C. S. Effect of cataract extraction on Visual Field Index in glaucoma. J Glaucoma 22, 164-168, doi:10.1097/IJG.0b013e31822e8e37 (2013).
31 Stewart, W. C., Rogers, G. M., Crinkley, C. M. & Carlson, A. N. Effect of cataract extraction on automated fields in chronic open-angle glaucoma. Arch Ophthalmol 113, 875-879, doi:10.1001/archopht.1995.01100070049024 (1995).
32 Carrillo, M. M., Artes, P. H., Nicolela, M. T., LeBlanc, R. P. & Chauhan, B. C. Effect of cataract extraction on the visual fields of patients with glaucoma. Arch Ophthalmol 123, 929-932, doi:10.1001/archopht.123.7.929 (2005).
33 Bryan, S. R., Vermeer, K. A., Eilers, P. H., Lemij, H. G. & Lesaffre, E. M. Robust and censored modeling and prediction of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 54, 6694-6700, doi:10.1167/iovs.12-11185 (2013).
34 Russell, R. A. & Crabb, D. P. On alternative methods for measuring visual field decay: Tobit linear regression. Invest Ophthalmol Vis Sci 52, 9539-9540, doi:10.1167/iovs.11-8948 (2011).
35 Oddone, F. et al. Influence of disc size on optic nerve head versus retinal nerve fiber layer assessment for diagnosing glaucoma. Ophthalmology 118, 1340-1347, doi:10.1016/j.ophtha.2010.12.017 (2011).
36 King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C. & Supowit, A. Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation. Vision Res 34, 885-912, doi:10.1016/0042-6989(94)90039-6 (1994).
37 Bryan, S. R., Eilers, P. H., Lesaffre, E. M., Lemij, H. G. & Vermeer, K. A. Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields. Invest Ophthalmol Vis Sci 56, 4283-4289, doi:10.1167/iovs.15-16691 (2015).
38 Erler, N. S. et al. Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models. Invest Ophthalmol Vis Sci 55, 2350-2357, doi:10.1167/iovs.13-12492 (2014).
39 Kleiber, C. & Zeileis, A. Applied Econometrics with R. Springer-Verlag (2008).
40 Arnalich-Montiel, F., Casas-Llera, P., Munoz-Negrete, F. J. & Rebolleda, G. Performance of glaucoma progression analysis software in a glaucoma population. Graefes Arch Clin Exp Ophthalmol 247, 391-397, doi:10.1007/s00417-008-0986-1 (2009).
41 Heijl, A., Patella, V. M. & Bengtsson, B. The Field Analyzer Primer:Effective Perimetry. (2012).