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Abstract
Background: The E. coli pET system is the most widely used protein over-expression system worldwide. It
relies on the assumption that all cells produce target protein and it is generally believed that integral
membrane protein (IMP) over-expression is more toxic than their soluble counterparts.

Results: Using GFP-tagged proteins, high level over-expression of either soluble or IMP targets results in >
99.9 % cell loss with survival rate of only < 0.03 %. Selective pressure generates three phenotypes: large
green, large white and small colony variants. As a result, in overnight cultures, ~50 % of the overall cell
mass produces no protein. Genome sequencing of the phenotypes revealed genomic mutations that
causes either the loss of T7 RNAP activity or its transcriptional downregulation. The over-expression
process is bactericidal and is observed for both soluble and membrane proteins.

Conclusions: We demonstrate that it is the act of high-level over-expression of exogenous proteins in E.
coli that sets in motion a chain of events leading to > 99.9 % cell death. These results rede�ne our
understanding of protein over-production and link it to the adaptive survival response seen in the
development of antimicrobial resistance. 

Background
The Escherichia coli pET system[1] uses a genome encoded T7 RNA polymerase (T7 RNAP) to control the
production of the target mRNA (Supplementary Fig. 1). The pET system is extensively used in
biotechnology, pharmaceutical and scienti�c research �elds involving the production of biofuels[2],
bioproducts[3], metabolites[4] genetic research[5], long-term evolution studies[6], multi-omics research[7]
and metabolic engineering[8]. For successful exogeneous protein production, the T7 RNAP and the
recombinant target protein is regulated via the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG).
The recommended IPTG concentration ranges from 0.4 to 1 mM[1]. For over 30 years since its
introduction[9], the fundamental principle for this process is that, after IPTG addition, all cells produce T7
RNAP and the target mRNAs. In order to increase the production of more target mRNA, and thus more
target protein, trial and error screening of protein production-based variables are required due to our lack
of understanding of the system such as altering culture growth temperature, varying the length of time of
protein over-expression, changes in culture medium, changing inducer concentration, the use of additives
for example glycerol, speci�c ions or even changing the expression system

Protein structural studies require µg to mg of puri�ed protein for structural determination. The pET
system is the most widely used method of protein production in E. coli[10,11]. Over-production of integral
membrane proteins (IMPs) has proved problematic due to low expression levels, folding problems, lack of
activity after overexpression and potential toxicity to cells. To overcome these issues, mutant strains have
been developed including C41(DE3) and C43(DE3)[12]. The effectiveness of the C41(DE3) strain was
based on the lacUV5 promoter site mutations that drops the expression level of the T7 RNAP mRNA down
to that of the weaker lac wildtype promoter[13–15]. C43(DE3) also had a mutation in the lacI IPTG
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binding site that lowered its a�nity for IPTG thus reducing protein induction levels[14,15]. C44(DE3) and
C45(DE3) mutants contain stop codons within the T7 RNAP gene[16] which are naturally overridden. This
process occurs infrequently hence these mutants produce full length T7 RNAP mRNA but at a reduced
level as compared with BL21(DE3). Mutant56(DE3) was found to have a T7 RNAP mutation that lowered
the a�nity of the polymerase for its T7 promoter site[17]. Introduction of a mutation into the sigma 70
factor (rpoD-E575V) of BL21 decreased the a�nity for the endogenous RNA polymerase thus leading to
down regulation of the target IMP mRNA[18]. Another approach involves controlling the activity T7 RNAP
using titratable amounts of the inhibitor, T7 lysozyme, as implemented in the Lemo21(DE3) strain[13,19].
An alternative method of controlling T7 RNAP activity is to co-express either the pLysS or pLysE plasmids.
These plasmids allow for the constitutive expression of T7 lysozyme which is a natural inhibitor of the
polymerase. Therefore, by inhibiting the polymerase less target protein is generated. In addition, the levels
of T7 RNAP mRNA have been controlled using a mutant lacI repressor that is less responsive to IPTG[20].
Likewise, the BL21-AI strain was developed to tightly regulate the expression of T7 RNAP and was used to
successfully overexpress a ‘toxic’ viral ion channel[21]. These mutants and modi�ed strains were
developed for the over-expression of IMPs in E. coli, with the goal of decreasing the amount of
recombinant IMP mRNA via lowering of the polymerase mRNA levels. It has been assumed that this
approach works because over-expression of IMPs is generally believed to be toxic thus decreasing IMP
expression levels allows E. coli to survive.

We investigated the mechanism of protein over-expression using superfolder Green Fluorescent
Protein[22] (sfGFP)-tagged versions of both soluble and membrane proteins. These were expressed under
varying IPTG concentrations and colony forming units (CFUs) were counted. This allowed
characterisation of expression levels of all target proteins and correlated the CFUs with their phenotypes.
Our data demonstrates that it is the act of over-expression of all of our target proteins, and not just
integral membrane proteins, that is toxic to E. coli. In response to this toxicity, E. coli undergoes selective
pressure producing an adaptive selective response that utilises mutant strains to decrease or remove T7
RNAP expression.

Results And Discussion
Three surviving phenotypes after the loss of > 99.9 % of viable cell culture

To test if all transformed BL21(DE3) cells over-express target protein (Supplementary Fig. 1), E. coli was
streaked onto LB agar plates with increasing IPTG concentration (Fig. 1a). A variety of sfGFP-tagged
IMPs along with soluble sfGFP were streaked for comparison including an ammonium transporter (amtB)
[23], three drug transporters (bcr[24], mdtL[25], mdtG[25]), a sugar transporter (setB[26]) and the soluble
protein sfGFP[22]. No exogenous overexpressed protein was observed at 0 mM IPTG. The expression of
sfGFP is clearly visible throughout and, as anticipated, IMPs expression is signi�cantly lower. Against
expectation, as the IPTG concentration increased to 1 mM, the number of CFU counts dramatically fell
from a con�uent growth to only two CFUs in some cases (Fig. 1a; setB-sfGFP). Phenotypically, the CFUs
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formed three categories described as large and green (LG), large and white (LW) or small colony variants
(SCVs; Fig. 1b, 1c, Supplementary Fig. 2). This applied to both IMPs and the soluble protein.  

Next, these results were quanti�ed using the well characterised protein targets sfGFP and mdfA[27,28].
Both proteins were chosen because they have been overexpressed to milligram quantities su�cient for
structure determination by X-ray crystallography[29,30]. Two E. coli protein production strains, BL21(DE3)
and BL21-Gold(DE3)pLysS (Agilent Technologies), were chosen. Surprisingly, both the soluble protein
(Fig. 2a) and the IMP (Fig. 2b) behave identically with the CFU numbers remaining high from 0 to 0.1 mM
IPTG concentrations followed by a collapse in numbers at IPTG concentration above 0.1 mM. In addition,
both E. coli strains behaved identically (Fig. 2) suggesting that the strain does not account for this sharp
drop in CFUs. Calculating the percentage drop for the soluble sfGFP protein, by averaging the CFU count
between the 0 – 0.1 mM IPTG counts (Fig 2a, red bar; 26.19 million) and averaging between 0.2 – 1.0
mM IPTG counts (Fig2a, green bar; 3000 CFUs) gives a population decrease of 99.99 %. Similarly, for the
IMP mdfA the 0 – 0.1 IPTG counts averaged 31.42 million CFUs (Fig, 2b, red bar) while the 0.2 – 1.0 mM
IPTG CFUs averaged 9713 (Fig. 2b, green bar) which equates to a fall of 99.97 %. Hence, for both IMP and
the soluble targets, exogeneous protein production can only come from < 0.03 % of the initial total
number of bacteria.  

Theoretically, when using >0.1 mM IPTG, high expression levels of the T7 RNAP (Supplementary Fig. 1)
could result in the observed ‘toxic’ effect (Fig. 2). To test this, fresh, untransformed BL21(DE3) cells (no
expression vector present) were plated at an OD600 of 0.2 on LB agar plates containing 0 and 0.4 mM
IPTG and CFUs were counted. If the overproduction of T7 RNAP is causing the toxic effect, then we would
expect 3 – 9 thousand CFUs at 0.4 mM IPTG. To the contrary, both IPTG concentrations resulted in high
counts (0 mM IPTG: 29.3 ± 3.0 million (n = 6) and 0.4 mM IPTG 36.6 ± 5.0 million (n = 6)). This con�rmed
Schlegal et al (2015)[15] data hence toxicity is not due to T7 RNAP. Therefore, is the fall in CFUs because
of the presence of the vector? This can be determined from Fig. 2. The average combined CFU counts at
0 mM IPTG (expression vector present but no protein induction) for both E. coli expression strains of 27.1
± 8.4 million (n = 25) is at the same previous high level in the absence of vector. Therefore, we can
exclude IPTG, the presence of uninduced vector, the type of protein (IMP or soluble), the E. coli strain or
T7 RNAP as the cause of the toxic effect.

Genomic mutations are central to the E. coli response

To determine the potential genetic changes as a result of protein over-expression, the genomes of six
samples (1 – 6) and two controls (7 – 8) were sequenced (Supplementary Table 1). Samples 1 – 4 were
taken from single colonies that were exposed to 1.0 mM IPTG. Samples 5 and 6 were produced by
exposing cells to only 0.01 mM IPTG. This low level of IPTG was not expected to be a metabolic burden
to the cells based on the CFU counts (Fig. 2). This was con�rmed by the generation of a lawn of visible
green cells for both types of proteins (Supplementary Table 1). We assumed therefore that at 0.01 mM
IPTG all cells behaved identically therefore many cells, as part of a swipe, were used as the sample for
genome sequencing. Samples 7 and 8 contained the expression vectors but were never exposed to IPTG.
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Genomic sequencing of control samples 7 and 8 indicated that there were three missense background
mutations, not related to protein expression. (Supplementary Table 2). The genome sequencing results
con�rm that, if uninduced, the expression vector causes no major genetic changes.

In comparison with the BL21-Gold(DE3)pLysS published genome template, there were eleven mutations
of which nine were common to samples 1 – 6. These six samples were generated using two different
IPTG concentrations and two vectors hence the common mutations can be considered as background
mutations already present in our laboratory strain. The remaining two genetic changes were linked to the
observed LW and LG phenotypes.  

The lack of visible green colour from the LW colonies implies that they are not synthesising target protein.
The sequencing results con�rmed this assumption as, for both the soluble and membrane proteins, the
T7 RNAP has been disrupted by a single 1293 base pair IS10 insertion within the gene (Fig. 3). IS10 is the
transposase of the Tn10 transposon. These mutant T7 RNAP’s activity were not measured but the known
properties of IS element integration[31–33] and the lack of colour indicate a non-functional enzyme.

The percentage of LW CFUs differs between BL21(DE3) and BL21-Gold(DE3)pLysS (Supplementary Table
3). Higher LW CFU numbers for BL21-Gold(DE3)pLysS may be due to the presence of the IS10 in its
genome. The BL21(DE3) genome does not carry the IS10 insertion sequence[34,35]. A possible reason for
BL21(DE3)’s LW phenotype could be explained by C44(DE3) and C45(DE3) strains which have stop
codons within the T7 RNAP gene[16].

For sfGFP and mdfA-sfGFP, LG mutations were identical. As previously observed in C41(DE3) the
mutation resulted in the conversion of the lacUV5 promoter’s -10 site (TATAAT) back to the lacI -10
sequence (TATGTT). This change is known to result in a 10-fold lower T7 RNAP transcriptional
rate[12,13,15]. Surprisingly, the same mutation was also found in ~10 % of the multi-genome Sample 5
reads. Sample 5 was generated from sfGFP over-expression in BL21-Gold(DE3)pLysS using 0.01 mM
IPTG. The fact that identical mutations are found in the LG colonies for both the soluble protein and the
membrane protein as well as in the sample exposed to only 10 µM IPTG is consistent with the
phenomenon of adaptive mutation i.e., non-toxic selection produces mutations that relieve the selection
pressure[36]. This is supported by the presence of two additional T7 RNAP IS10 insertions identi�ed in a
2 % subset of Sample 5 (Supplementary Table 2, Fig. 3). These two additional sites are also likely to
render the T7 RNAP inactive.

High-level exogenous protein over-expression is bactericidal

As we have shown, induction of exogenous protein results in very large cell losses and a survival rate of <
0.03 %. Is the process bactericidal or bacteriostatic? Replica plating lawns of cells grown with 0.75 mM
IPTG onto LB agar with no IPTG demonstrated that the process was bactericidal (Supplementary Fig. 3).
Hence, from Fig. 2 the minimal bactericidal concentration for protein over-expression is 0.2 mM IPTG. To
clarify this point, IPTG is not an antibiotic but the bactericidal effect is only seen when IPTG is used for
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high level exogeneous protein over-expression in combination with T7 RNAP and the expression vector
containing an in-frame coding gene.

In liquid culture, ~50 % of all cells produce no exogenous target protein

Finally, we examined what happens in solution because this is the usual method of protein over-
production. Using the recommended protocol[1], BL21(DE3) cells transformed with the sfGFP vector were
grown in LB. Samples were taken before and after the induction of exogeneous protein over-expression
and plated on the appropriate LB agar plates (Fig. 4 and Supplementary Fig. 4).  Phenotype and CFU
numbers were counted. As expected, uninduced control samples produce CFU counts > 106 per mL with
higher OD600 values producing higher CFUs (Fig. 4a; blue circles). Plating these cells on LB agar + 0.4
mM IPTG should result in the 99.99 % decrease due to the bactericidal effect. These predictions are
plotted as red circles in Fig. 4a. The measured CFU counts, when plated on 0.4 mM IPTG plates (green
circles), con�rm this prediction. Next, exposure of the cells to 0.4 mM IPTG in the liquid medium begins
the mutant (LG, LW, SCV) selection process. Therefore, we expect that non-mutant cells would die, and, in
time, the mutant phenotypes would grow to numbers equivalent to WT levels (Supplementary Fig. 4). This
is indeed observed since, in overnight cultures, the total number of CFUs reaches the trillions (Fig. 4, open
diamonds) in line with the observed uninduced results (blue circles). The difference between these two
groups is con�rmed in the �nal phenotypes as WT cultures (blue circles) were always uniform in size and
colourless (Supplementary Fig. 2 at 0 mM IPTG) while the IPTG exposed cultures were LG, LW and SCV
variants.

Quanti�cation of the various phenotypes throughout the over-expression trial showed a re-distribution of
the proportion of mutants over time (Fig. 4b). There is a clear gradual dominance in the LG and LW
mutants, eventually resulting in an almost 50:50 LG:LW ratio in overnight cultures.

It is believed that E. coli over-expression of some exogenous target proteins can be toxic, particularly so
for IMPs[12,37]. In addition, it is often found that reliable expression protocols suddenly fail, or protein
expression levels vary from prep-to-prep. Our data shows that the manufacturer’s 0.4 mM IPTG
recommendation[1] results in selection of the LW, LG and SCV phenotypes. Larger LG and LW CFUs
compared with SCV imply a faster doubling rate. Therefore, by the end of a protein over-expression
experiment, LW and LG numbers dominate (Fig. 4b). Even though the average overnight LW proportion
was ~50 %, the measured values ranged from 30 – 70 %. The initial LW population also varied from ~3 -
16 % (Supplementary Table 3). This signi�cant variability in total amount of non-productive LW cells
would contribute to the observed prep-by-prep inconsistencies. Our work points to the variation in LW, LG
and SCV proportions rather than clonal instability[15] as the cause of variability and provides an
explanation for Miroux and Walker (1996)[12] data in which over-expression of the F-ATPase subunit b
decreased over an extended period of time due to ‘lost expression capacity’.

Conclusions
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This study used �ve IMPs and one soluble protein. Published images of BL21(DE3) over-expressing
proteins con�rm our results: Schlegel et al., 2015[15] examined four soluble proteins and three IMPs,
while Miroux and Walker[12] looked at two IMPs (Supplementary Table 3). They all produce the
combination of large CFUs and SCV strains when using > 0.1 mM IPTG.  In addition, the use of different
vectors and antibiotic selective markers allows their exclusion as the cause of toxicity. As we have
excluded a single entity as the cause, we therefore propose that it is the act of over-expressing any
exogenous target protein at high levels that is toxic. This would produce excessive amounts of
exogeneous mRNA that outcompete endogenous mRNA for ribosomes[38–40]. Thus, endogenous
cellular proteins cannot be synthesised in su�cient quantities for cell viability.

When �nding the optimum conditions to maximise target protein production a trial and error approach
using two time periods (2-4 hr or overnight) is used. Our results help to explain why two separate time
frames are employed. There are signi�cantly more SCV cells in the short 2.5 hr induction time as
compared with overnight expression (Fig. 4b). As the production capacity and the physical numbers of
the LG and SCV variants are expected to produce varying amounts of target protein, the SCVs are likely to
play a role in protein over-expression but only for short induction protocols. Importantly, for overnight
expression trials, on average the 50 % LW cells make no exogeneous protein. Consequently, new
expression protocols or additional strains may be required to optimise protein over-expression. These
should aim to prevent the unproductive growth of LW cells while boosting exogenous protein production
via LG, SCV or related strains.

The cellular response to a bactericidal antibiotic is > 99.9 % drop in viable bacteria. This attack produces
a selective pressure resulting in the development of antibiotic resistance (Fig. 5). Additional
characteristics include the selection of mutants and SCVs[41,42]. Our results show a bactericidal
population drop of > 99.9 % (Fig. 2, Fig. 4, Supplementary Fig. 3). Survivors contain mutations in the T7
RNAP (Fig. 3) or the lacUV5 promoter (Table 3) and SCV formation is observed (Fig. 1, Supplementary
Fig. 2). Similar �ndings of slow growth and SCV formation are known to occur when cells are stressed
e.g., during antibiotic exposure[41,42]. Tashiro et al (2017)[43] demonstrated that a slow growing,
antibiotic resistant E. coli SCV was formed from Tn1000 transposon gene insertion while a mutation in
the yigP gene generated E. coli SCVs[44] resulting in antibiotic resistance.

Based on our results, the terms ‘toxic’ or ‘toxicity’ that are extensively used to describe some proteins
during over-expression experiments, are incorrect. Most of these proteins are in fact not toxic as they have
been over-expressed to high levels using C41(DE3) strain which functionally only has the lacUV5 to lacI
promoter mutation i.e., no other major biochemical or genetic changes occur [11,12,15]. Thus, many of
the so-called ‘toxic’ proteins are harmless. This misconception stems from historical protocols which
have focussed on soluble proteins. The situation is different for membrane proteins. The over-expression
of integral membrane proteins which, due to their nature, their �nal cellular destination, their folding and
insertion processes, automatically means that expression levels are generally much lower than for
soluble proteins. Thus, membrane protein over-expression has been tackled after their soluble
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counterparts. Therefore, the initial over-expression protocols were poorly optimised for membrane
proteins.

The underlying protein over-expression mechanism is similar to the development of antimicrobial
resistance based on our demonstration of the following six observations: (1) the presence of a selective
pressure (Fig. 5 and main text), (2) the drop in CFU population by > 99.9 % (Fig. 2), (3) demonstrating that
it is bactericidal (Fig. 1, Supplementary Fig. 3), (4) the process is concentration dependent (Fig. 2), (5) it
involves the generation of mutants that are resistant (genome sequencing Supplementary Tables 1 and
2) and (6) low IPTG concentrations preparing cells for an attack as do antibiotics at concentrations below
their minimal bactericidal/inhibitory concentrations (Supp Table 1 and 3 and main text). However, in
contrast to antibiotics, IPTG is not toxic to E. coli. In this case, the selective pressure is the process of
high-level protein over-expression. It is this pressure that generates the three phenotypes LG, LW and SCV.
This data shows, for the �rst time, how each phenotype relates to exogenous protein over-expression (Fig.
4).

In conclusion, all biological experiments ultilising the pET system, will need to consider the presence of
genomic mutations driven by the protein over-expression process. We suggest that this can be overcome
by genome sequencing veri�cation of the production strain, using alternative expression strains such as
HMS174(DE3)[45], using the weaker inducer lactose[46,47], controlled-down regulation of T7 RNAP
production[19,20], making use of alternative mutant expression strains, using a cell-free system[48] or a
combination of new strains and weaker induction. In light of our new results, we suggest two possible
adaptations to the existing protein over-expression protocols with the aim of reducing the total number of
unproductive LW phenotypes. Firstly, using an IPTG concentration of < 0.1 mM IPTG (Fig. 2) will prevent
the dramatic loss of total cell population hence almost all cells will be able to produce the target protein.
Secondly, using > 0.1 mM IPTG will result in LW, LG and SCV. However, limiting the total over-expression
time to 4 – 8 hrs (Fig. 4) will lower the total LW numbers therefore boosting numbers of the productive LG
and SCV phenotypes.   

Methods
E. coli K12 MG1655 genomic DNA preparation

The integral membrane protein genes were cloned using E. coli K12 MG1655. The template genomic DNA
was puri�ed using a modi�ed procedures and buffers from a Fermentas GeneJET Plasmid Miniprep kit
(Cat. No. K0502). From a 3 mL LB overnight culture of E. coli K12 MG1655 grown at 37 °C and 180 rpm,
the cell pellet was resuspended, lysed and then the solution neutralised as per the manual instructions. At
this stage, the sample was vigorously shaken using a vortex for 20 secs. Bench top centrifugation at
maximum speed for 3 minutes allowed for the separation of cell wall and precipitated materials, leaving
the fragmented genomic DNA in solution. To the ~800 µL of supernatant, 600 µL of room temperature
isopropanol was added and mixed gently to precipitate the DNA. After centrifugation at 15,000g for 2
mins the supernatant was carefully removed before being washed with 600 µL of 70 % ethanol. The
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centrifugation step was repeated, and all supernatant carefully removed before allowing to air dry for 10
– 15 mins. Once dry, rehydrate with 100 µL of Tris/EDTA buffer by incubating for 1 hr at 65 °C.
Intermittently gently �ick the tube to aid dissolving of the DNA pellet. Solve in -20 °C freezer until use.

Ligation independent cloning of genes into H6msdGFP

Lyophilised primers (Supplementary Table 4) ordered from Sigma-Aldrich (0.025 OD scale) were made to
100 µM using deionised water. For the 50 µL PCR reactions, the �nal concentrations for the following
components were used: Primers 4 µM, dNTPs 0.4 mM and 8 pg/mL of template DNA.  0.5 µL of Phusion
HF polymerase (Thermo Fisher Scienti�c, catalogue number F-518) and the recommended
manufacturer’s buffer was used. The PCR protocol involved 30 repeat cycles of 98 °C denaturation for 30
secs, 55 – 60 °C annealing for 30 secs and 72 °C extension for 60 secs after which an additional 5
minutes at 72 °C was given. After running the PCR samples in a 1 % agarose gel in TAE buffer (40mM
Tris, 20 mM acetic acid, 1 mM EDTA), the bands of the expected size were excised using a clean blade.
The DNA fragments were puri�ed using the Thermo Scienti�c GeneJET Gel Extraction Kit. Before the
generation of overhangs, H6msfGFP (Addgene; plasmid number 29725) was linearised with SspI
(Thermo Fisher Scienti�c). After a cleaning step (GeneJet DNA Puri�cation kit), the cleaved vector was
treated with T4 polymerase in the presence of 2.5 mM dGTP. The puri�ed PCR samples were also treated
with T4 polymerase except in the presence of 2.5 mM dCTP. Following T4 treatment, samples were
incubated at 75 °C for 20 minutes before purifying the DNA using the GeneJet DNA Puri�cation kit. Before
transformation into MACH1 commercially competent E. coli cells (Thermo Fisher Scienti�c), the T4
polymerase-treated vector and insert were incubated together at a 1 vector:4 insert ratio for 30 mins at RT.
All vectors with the correct inserts were con�rmed by sequencing (Euro�ns, Germany).

Streak plating method

Freshly transformed BL21(DE3) cells with the vector containing the target genes were grown in 30 mL of
LB containing 50 µg/mL kanamycin, at 37 °C and 180 rpm until reaching an OD600 of between 0.1 to 0.2.
After centrifuging 5 mLs of cell culture to remove the supernatant, cells were washed twice in ice cold
Resuspension buffer (0.1 M Tris pH 7.5, 0.1 M NaCl), via consecutive cycles of resuspension and
centrifugation. The cell pellet was resuspended in 1 mL of ice-cold Resuspension buffer before adjusting
the �nal OD600 to 0.1. An inoculation loop was used to streak the culture onto LB agar plates containing
50 µg/mL kanamycin in one step. The loop was �amed twice between culture samples. Plates were
tightly sealed using para�lm before leaving them in a 37 °C incubator for between 12 to 72 hours. The
extended 72 hours was used to allow to produce the GFP-tagged membrane proteins to reach levels that
could be seen by eye. No additional colony forming units of any phenotype appeared after the initial 12 hr
of incubation. 

Cell storage, Resuspension OD600 and CFU counting

To ensure consistency, samples from single CFUs were used to inoculate 5 mLs of LB plus 50 µg/mL
kanamycin. The cultures were then incubated at 37 °C and 180 rpm overnight. Next, 500 µL of culture
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was thoroughly mixed with the same volume of glycerol and the cells stored in a -20 °C freezer.

For CFU counting, cells were grown to the exponential stage before cooling and diluting to ensure that the
starting cell density was consistent in all screens. This involved adding 20 µL of the frozen cell stock to
30 mLs of LB broth plus 50 µg/mL kanamycin in a 250 mL conical �ask. Cells were cultured at 37 °C and
200 rpm until the optical density at 600 nm (OD600) reached values between 0.3 – 0.4. Cells cultures
were then centrifuged using a benchtop centrifuge at full speeds for 2 minutes. The cell pellet was
resuspended in 1 mL of ice cold 0.1 M Tris pH 7.5, 100 mM NaCl. This wash step was repeated two more
times to remove any traces of spent medium as well as to ensure cell division had stopped. Using the
same ice cold buffer, each sample was then diluted to an OD600 of 0.2. This achieved a standardised
average OD600 for 218 samples of 0.205 +/- 0.015. 100 µL of this culture was used to plate on LB agar
plates plus 50 µg/mL of kanamycin and 0 – 1 mM IPTG as indicated. Cells plated onto 0 – 0.1 mM IPTG
were �rst diluted 10,000 times so that the average plate CFU count was between 200 – 400. Cells plated
onto 0.2 – 1 mM were not diluted. To aid CFU phenotype counting, the brightness and contrast for each
image was adjusted using GIMP[49] by approximately -60 and +50, respectively. All CFUs were counted
by eye using the magni�ed versions of these images on a computer. Example plates are shown in
Supplementary Fig. 2a while closeup pictures from the same plate images in Fig. 2b allow the
identi�cation of LW, LG and SCV phenotypes.

All samples taken were 1 mL but to stop additional cell growth and division before diluting and plating for
CFU counting, the samples were immediately spun in a benchtop centrifuge at maximum speed for 2
mins. After removing the spent medium, the cell pellet was placed on ice until further use. Before plating,
cells were carefully resuspended using 1 mL of ice cold 0.1 M Tris, pH 7.5, 150 mM NaCl. Using a
Nanodrop spectrophotometer the Resuspension OD600 was measured using the same buffer as a blank.

CFU counts from over-expression of exogeneous protein in liquid medium

Over-expression of exogeneous proteins using the pET system is only ever carried out in liquid medium
and not on agar plates. In addition, Fig. 4’s data was generated by �xing the OD600 at 0.2 so that there
was a consistent cell density that was tested against increasing IPTG concentrations. To understand
what is happening in liquid medium during exogeneous protein over-expression a new approach was
implemented.  The �rst part, the control, required counting the total number of CFUs from BL21(DE3) cells
transformed with a pET expression vector without inducing exogeneous protein over-expression over a
normal timeframe for such an experiment (from 2 – 16 hrs). If the bactericidal effect of exogeneous
protein over-expression using IPTG concentrations > 0.1 mM holds true over all cell densities then the
total CFU counts should decrease by > 99.9 % (Fig. 4). To con�rm this, uninduced samples were plated on
LB agar containing 0.4 mM IPTG. Next, repeat exogeneous protein over-expression trials were carried out
but at an OD600 of ~0.6, protein induction was carried out with the addition of 0.4 mM IPTG. The cell
density and IPTG concentration used for protein induction were based on those recommended by the
manufacturer. Samples were plated on LB agar containing 0.4 mM IPTG. Thus, the cells were continually
being exposed to IPTG both in liquid medium and on the plates. In this case, the number of CFUs would
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be expected to increase over time as the mutants begin to repopulate the system. Starter cultures of 5 mL
LB, 50 µg/mL kanamycin plus 5 µL of the frozen stock was grown overnight at 37°C and 235 rpm. These
were used to inoculate sterile 50 mL of LB and 50 µg/mL kanamycin in a 250 mL �ask. A pictorial
representation of when samples were taken for CFU counting and analysis is illustrated in Supplementary
Fig. 4. The cell culture’s OD600 was monitored until the OD600 value of approximately 0.6 was reached.
At this stage, protein over-expression was started with the addition of 0.4 mM IPTG. After the indicated
times, collected samples were treated as before to stop additional cell division. Next, depending on the
total CFU numbers, samples were diluted up to 10 million times using ice cold buffer (0.1 M Tris, pH 7.5,
150 mM NaCl) before plating in duplicate on LB agar plus 50 µg/mL kanamycin and the indicated IPTG
concentration of either 0 or 0.4 mM.

Replica plating

Velveteen squares were sterilised by autoclaving and stretching tightly over a replica plating cylinder tool.
A master plate containing cells grown on 0.75 mM IPTG was pressed on top of the replicating tool to
transfer to the sterile velveteen square. Then a fresh LB agar plate with 0 mM IPTG was pressed on top of
the tool. Replica plates were placed in an incubator at 37 °C for 48 hrs to provide enough time for
potentially inhibited cells to grow.

Genome sequencing

Selected mutant BL21-Gold(DE3)pLyS colonies or freshly transformed BL21(DE3) with the appropriate
expression vector were grown overnight in 5 mL of LB with 50 µg/mL kanamycin at 37 °C and at 180
rpm. Cells from 1 mL aliquots were pelleted by centrifugation using a bench top centrifuge. Genomic DNA
puri�cation was achieved by using the components of a Nucleospin® plasmid DNA puri�cation kit
(Macherey-Nagel, catalogue number 740588) with a modi�ed protocol. The cell pellet was resuspended
using 250 µL of Resuspension buffer A1 containing RNAse A. Then, 250 µL of Lysis buffer was added
and the tubes carefully inverted 5 – 6 times (taking care not to shear the DNA). The mixture was
incubated at room temperature for 35 minutes to allow for the breakdown of RNA. Proteolytic cleavage of
all proteins was next performed by adding 100 µg/mL of Proteinase K and incubating for 2.5 hrs at 55 °C.
The sample was next added to a Nucleospin® DNA spin column and spun at 12,000 rpm for 1 min.
Cleaning was performed by washing three times with 600 µL of Wash Buffer each time. The column was
dried by 12,000 rpm centrifugation for 2 minutes. A total of 50 µL of de-ionised water was used to elute
the DNA. If required, samples were concentrated using a rotatory evaporator at 45 °C.

Bioinformatic analysis of genomic data

Whole genome sequencing was carried out using Illumina HiseqX at Novogene (Hong Kong) producing
150 bp paired-end reads. Raw fastqs were assessed for quality using fastQC (v0.11.3) and multiQC
(v1.4). Reads were aligned to a combined fasta reference sequence containing the E. coli genome, and
vector and insert sequences. Samples 7 and 8 were mapped against the reference genome
‘gi|296142109|gb|CP001509.3| E. coli BL21(DE3), complete genome’, and samples 1 – 6 were mapped
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against the reference genome ‘gi|253322479|gb|CP001665.1| E. coli 'BL21-Gold(DE3)pLysS AG', complete
genome’ both downloaded from NCBI genbank (https://www.ncbi.nlm.nih.gov/genbank/). The plasmid
vector sequence ‘pET Biotin His6 GFP LIC cloning vector (H6-msfGFP)’ was available from Addgene
(plasmid number 29725). The pLysS plasmid sequence was also downloaded from Addgene (plasmid
number 3494).

Sequence reads were aligned using BWA (v0.7.17-r1188) and duplicates marked with Picard (v 2.15.0).
Coverage was assessed using Samtools (v 1.6.0) and Bedtools (v2.26.0).  Variants were called using
GATK haplotype caller (v3.7) with ploidy set as 1 and annotated with SnpEff (v 4.3t). PanISA (v 0.1.4)
was used to search for and identify insertion sequences using the ISFinder database. Alignment data
were visualised with IGV (V2.3.98). Speci�cally, the promoters were visualised to identify erroneous
mapping of reads between promoter sites, which allowed the conversion of the lacUV5 promoter’s -10 site
(TATAAT) back to the lacI -10 sequence (TATGTT) to be determined.
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Figures

Figure 1

. Streak plating to show the effect of increasing IPTG concentration on CFU formation. a Protein over-
expression in BL21(DE3) and CFU numbers for �ve IMPs and sfGFP. The �nal IPTG concentration (mM) is
indicated. All cultures were plated at OD600 of 0.1. b Close up view of sfGFP sample at 1 mM IPTG
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showing 1 LW, 1 LG and 4 SCVs. c Close up view of mdtL-sfGFP at 0.5 mM IPTG showing 4 LW, 5 LG and
5 SCVs.

Figure 2

Change in CFU numbers with increasing IPTG concentration. For all IPTG concentrations, the same cell
culture density was used. a, E. coli BL21-Gold(DE3)pLysS and BL21(DE3) strains were transformed with
the soluble protein sfGFP while, b, BL21-Gold(DE3)pLysS was transformed with the integral membrane
protein mdfA. For both �gures, standard error bars are included (for A, n = 8 to 12 while for B, n = 5 – 6).
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Figure 3

A schematic representation of the IS10 insertion sites in the genome encoded T7 RNAP gene. The start
and ending base pair numbers are indicated below the bar while the location of the IS10 insertions are
indicated above. Base pair locations relative to reference sequence: gi|253322479|gb|CP001665.1| E. coli
BL21-Gold(DE3)pLysS AG.
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Figure 4

Effect of protein over-expression on the phenotype population in solution upon protein induction with 0.4
mM IPTG. a The change in total CFU number (LW+LG+SCV) with increasing OD600. Values above OD600
>3.5 are overnight samples. Blue circles indicate the CFU numbers from BL21(DE3) transformed with
H6msfGFP and plated on LB agar plus kanamycin. The red circles are the predicted 99.99 % decrease in
CFU numbers (Fig. 2) as a result of the induction of exogeneous protein over-expression. The green
spheres are the measured CFU counts due to exogeneous protein over-expression induction on LB agar
plates only. Clear diamonds are the measured CFU numbers due to exogeneous protein over-expression
(protein induction) when 0.4 mM IPTG is added to the liquid medium. The dashed line represents the
recommended protein induction OD600 value of 0.6. All measured points are an average of duplicate
plating. b Percentage of LW, LG and SCV phenotypes observed during the protein over-expression
experiment. Preinduction samples were taken at an average OD600 of 0.5 (Supplementary Fig. 4b).
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Protein over-expression was started approximately seven minutes later with the addition of 0.4 mM IPTG.
The remaining samples were taken at the indicated times after the start of protein over-expression.
Overnight represented ~14.5 hrs after the start of exogeneous protein over-expression. The phenotype
percentages for each of the sampled points were generated from CFU counts based on six individual cell
cultures and the averaging of duplicate plates for each individual point.

Figure 5

Comparison of the processes of the development of bacterial antibiotic resistance with exogenous
protein over-expression in E. coli. Non-resistant cells and BL21(DE3) bacterial cells are both shown in
grey. Exogenous protein production will only occur in the LG and SCV variants.
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