Genetic diversity analysis of wild boars in Lithuania
Using the 15 microsatellite markers, 147 alleles were observed in the 96 wild boar samples from nine districts, ranging from 103 alleles in Vilnius to 52 alleles in Alytus (Table 1). The number of alleles for each locus (NA) ranged from 2 to 13 with average over all loci and all sample sites of 5.02 (Table 1).
Private alleles, distinctive to a specific population, were present in all subpopulations varying from a single in Alytus to a maximum of 8 in Kaunas subpopulation (Table 1). Overall observed heterozygosity values across all loci ranged from 0.567 to 0.650, the expected heterozygosity values ranged from 0.534 to 0.678 (Table 1). Significant deviation from HWE was observed in 5 out of 15 loci at P < 0.05 (Table 1). In five subpopulations (Utena, Vilnius, Alytus, Marijampolė, Kaunas) observed heterozygosity differed significantly from expected heterozygosity under Hardy-Weinberg equilibrium toward heterozygosity deficiency (Table 1).
Table 1
Genetic diversity at 15 microsatellite loci in 9 wild boar (Sus scrofa) subpopulations
|
sw24 94–116 bp
|
s010 166–206 bp
|
sw353 140–162 bp
|
s0386 167–181 bp
|
s0355 241–261 bp
|
sw72 98–112 bp
|
Tnfb 158–193 bp
|
s0070 270–285
|
s0026 93–105 bp
|
s0155 145–161 bp
|
s0005 212–264 bp
|
sw2410 98–116 bp
|
sw830 170–182 bp
|
sw632 156–196 bp
|
swr1941 207–223 bp
|
Mean
|
Utena (N = 18)
|
NA
|
8
|
8
|
5
|
6
|
2
|
4
|
8
|
7
|
4
|
6
|
12
|
6
|
5
|
6
|
9
|
6.4
|
AP
|
-
|
1
|
-
|
1
|
-
|
-
|
-
|
-
|
-
|
1
|
1
|
-
|
-
|
-
|
2
|
4
|
HO
|
0.556
|
0.706
|
0.611
|
0.667
|
0.000
|
0.778
|
0.722
|
0.778
|
0.611
|
0.667
|
0.882
|
0.833
|
0.444
|
0.667
|
0.625
|
0.636
|
HE
|
0.725
|
0.725
|
0.670
|
0.733
|
0.111
|
0.708
|
0.753
|
0.696
|
0.542
|
0.716
|
0.862
|
0.622
|
0.548
|
0.674
|
0.791
|
0.658
|
P
|
0.014*
|
0.412
|
0.390
|
0.417
|
0.030*
|
0.306
|
0.141
|
0.736
|
0.485
|
0.430
|
0.903
|
0.005*
|
0.205
|
0.316
|
0.012*
|
0.006*
|
Vilnius (N = 24)
|
NA
|
8
|
7
|
6
|
5
|
2
|
5
|
11
|
7
|
5
|
5
|
13
|
9
|
5
|
8
|
7
|
6.9
|
AP
|
-
|
1
|
-
|
-
|
-
|
-
|
3
|
-
|
-
|
-
|
1
|
1
|
-
|
1
|
-
|
7
|
HO
|
0.625
|
0.542
|
0.708
|
0.667
|
0.000
|
0.500
|
0.917
|
0.714
|
0.417
|
0.417
|
0.909
|
0.708
|
0.542
|
0.696
|
0.818
|
0.612
|
HE
|
0.746
|
0.560
|
0.753
|
0.719
|
0.172
|
0.671
|
0.823
|
0.732
|
0.597
|
0.687
|
0.870
|
0.726
|
0.523
|
0.771
|
0.707
|
0.670
|
P
|
0.048
|
0.507
|
0.323
|
0.083
|
0.002*
|
0.018*
|
0.083
|
0.238
|
0.002*
|
0.010*
|
0.881
|
0.053
|
0.609
|
0.332
|
0.245
|
0.000*
|
Alytus (N = 4)
|
NA
|
3
|
2
|
3
|
4
|
2
|
4
|
4
|
4
|
3
|
3
|
4
|
5
|
3
|
5
|
3
|
3.5
|
AP
|
-
|
-
|
1
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
1
|
HO
|
0.750
|
0.500
|
0.500
|
0.500
|
0.000
|
0.750
|
1.000
|
0.500
|
0.000
|
0.250
|
1.000
|
1.000
|
0.667
|
0.500
|
1.000
|
0.594
|
HE
|
0.656
|
0.375
|
0.406
|
0.656
|
0.375
|
0.656
|
0.719
|
0.563
|
0.625
|
0.656
|
0.722
|
0.750
|
0.500
|
0.750
|
0.611
|
0.601
|
P
|
0.680
|
0.859
|
0.856
|
0.141
|
0.147
|
0.820
|
0.457
|
0.427
|
0.027*
|
0.090
|
0.660
|
0.526
|
0.805
|
0.087
|
0.404
|
0.007*
|
Marijampolė (N = 10)
|
NA
|
5
|
7
|
5
|
4
|
3
|
5
|
9
|
5
|
3
|
6
|
12
|
7
|
3
|
7
|
5
|
5.7
|
AP
|
1
|
1
|
-
|
-
|
1
|
1
|
1
|
-
|
-
|
-
|
1
|
-
|
-
|
-
|
-
|
6
|
HO
|
0.500
|
0.600
|
0.700
|
0.400
|
0.100
|
0.900
|
0.900
|
0.600
|
0.667
|
0.500
|
0.900
|
0.800
|
0.333
|
1.000
|
0.778
|
0.645
|
HE
|
0.480
|
0.730
|
0.705
|
0.685
|
0.485
|
0.665
|
0.855
|
0.695
|
0.623
|
0.690
|
0.890
|
0.740
|
0.438
|
0.809
|
0.679
|
0.678
|
P
|
0.744
|
0.016*
|
0.488
|
0.027*
|
1.000
|
0.104
|
0.699
|
0.058
|
0.533
|
0.075
|
0.837
|
0.989
|
0.060
|
0.243
|
0.481
|
0.001*
|
Kaunas (N = 19)
|
NA
|
6
|
7
|
6
|
6
|
3
|
5
|
8
|
10
|
5
|
6
|
11
|
7
|
4
|
7
|
6
|
6.5
|
AP
|
-
|
1
|
-
|
-
|
1
|
-
|
-
|
4
|
1
|
-
|
-
|
-
|
-
|
1
|
-
|
8
|
HO
|
0.556
|
0.556
|
0.706
|
0.611
|
0.056
|
0.611
|
0.889
|
0.647
|
0.722
|
0.333
|
0.941
|
0.667
|
0.333
|
0.765
|
0.750
|
0.609
|
HE
|
0.633
|
0.648
|
0.732
|
0.738
|
0.245
|
0.715
|
0.827
|
0.704
|
0.640
|
0.599
|
0.848
|
0.563
|
0.557
|
0.708
|
0.801
|
0.664
|
P
|
0.011*
|
0.184
|
0.293
|
0.130
|
1.000
|
0.021*
|
0.219
|
0.041*
|
0.402
|
0.047*
|
0.296
|
0.201
|
0.003*
|
0.341
|
0.381
|
0.001*
|
Tauragė (N = 4)
|
NA
|
4
|
3
|
5
|
4
|
1
|
4
|
3
|
4
|
2
|
2
|
6
|
3
|
3
|
5
|
3
|
3.5
|
AP
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
2
|
-
|
-
|
-
|
-
|
2
|
HO
|
0.750
|
0.750
|
1.000
|
0.750
|
0.000
|
0.500
|
0.750
|
0.750
|
0.250
|
0.250
|
1.000
|
0.500
|
0.500
|
0.750
|
0.000
|
0.567
|
HE
|
0.656
|
0.531
|
0.781
|
0.656
|
0.000
|
0.563
|
0.531
|
0.656
|
0.219
|
0.219
|
0.781
|
0.406
|
0.656
|
0.688
|
0.667
|
0.534
|
P
|
0.800
|
0.578
|
0.639
|
0.797
|
-
|
0.408
|
0.567
|
0.808
|
-
|
-
|
0.571
|
0.858
|
0.255
|
0.912
|
0.070
|
0.765
|
Klaipėda (N = 4)
|
NA
|
2
|
4
|
4
|
3
|
3
|
4
|
4
|
3
|
5
|
2
|
5
|
3
|
3
|
4
|
5
|
3.6
|
AP
|
-
|
-
|
-
|
-
|
1
|
-
|
-
|
-
|
1
|
-
|
-
|
-
|
-
|
-
|
-
|
2
|
HO
|
0.500
|
0.500
|
0.750
|
0.250
|
0.250
|
0.750
|
0.750
|
0.750
|
0.750
|
0.500
|
1.000
|
0.750
|
0.750
|
1.000
|
0.500
|
0.650
|
HE
|
0.375
|
0.563
|
0.688
|
0.594
|
0.594
|
0.719
|
0.719
|
0.531
|
0.688
|
0.375
|
0.781
|
0.531
|
0.531
|
0.688
|
0.750
|
0.608
|
P
|
0.858
|
0.439
|
0.749
|
0.084
|
0.084
|
0.857
|
0.736
|
0.574
|
0.915
|
0.858
|
0.656
|
0.572
|
0.563
|
0.403
|
0.081
|
0.820
|
Šiauliai (N = 7)
|
NA
|
6
|
6
|
5
|
6
|
1
|
4
|
5
|
4
|
4
|
4
|
7
|
5
|
2
|
7
|
4
|
4.7
|
AP
|
-
|
1
|
1
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
2
|
HO
|
0.714
|
0.714
|
0.429
|
0.714
|
0.000
|
0.857
|
0.857
|
0.667
|
0.571
|
0.286
|
0.714
|
1.000
|
0.571
|
0.714
|
0.833
|
0.643
|
HE
|
0.745
|
0.796
|
0.745
|
0.786
|
0.000
|
0.704
|
0.735
|
0.597
|
0.459
|
0.653
|
0.786
|
0.704
|
0.408
|
0.704
|
0.694
|
0.634
|
P
|
0.212
|
0.256
|
0.028*
|
0.115
|
-
|
0.424
|
0.542
|
0.731
|
0.562
|
0.019*
|
0.940
|
0.114
|
0.555
|
0.876
|
0.564
|
0.982
|
Pnevėžys (N = 6)
|
NA
|
4
|
4
|
3
|
5
|
4
|
4
|
5
|
5
|
3
|
3
|
6
|
5
|
4
|
5
|
7
|
4.5
|
AP
|
-
|
1
|
-
|
-
|
2
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
-
|
1
|
4
|
HO
|
1.000
|
0.333
|
0.667
|
0.667
|
0.167
|
0.667
|
1.000
|
0.667
|
0.333
|
0.333
|
1.000
|
0.833
|
0.667
|
0.667
|
0.667
|
0.644
|
HE
|
0.694
|
0.694
|
0.569
|
0.792
|
0.514
|
0.681
|
0.792
|
0.611
|
0.292
|
0.500
|
0.778
|
0.722
|
0.514
|
0.667
|
0.833
|
0.644
|
P
|
0.172
|
0.039*
|
0.604
|
0.132
|
0.013*
|
0.484
|
0.386
|
0.788
|
0.907
|
0.173
|
0.361
|
0.631
|
0.489
|
0.825
|
0.092
|
-
|
Total (N = 96)
|
NA
|
10
|
13
|
9
|
7
|
7
|
6
|
14
|
11
|
7
|
7
|
21
|
9
|
5
|
11
|
10
|
5.015
|
AP
|
1
|
6
|
2
|
1
|
5
|
1
|
4
|
4
|
1
|
1
|
5
|
1
|
0
|
2
|
3
|
2.5
|
HO
|
0.661
|
0.578
|
0.675
|
0.581
|
0.064
|
0.701
|
0.865
|
0.675
|
0.480
|
0.393
|
0.927
|
0.788
|
0.534
|
0.751
|
0.663
|
0.622-
|
HE
|
0.635
|
0.625
|
0.672
|
0.706
|
0.277
|
0.676
|
0.750
|
0.643
|
0.521
|
0.566
|
0.813
|
0.641
|
0.520
|
0.718
|
0.726
|
0.632-
|
P
|
0.999
|
0.028*
|
0.875
|
0.002*
|
0.000*
|
0.955
|
0.212
|
0.974
|
0.007*
|
0.000*
|
0.879
|
0.622
|
0.977
|
0.548
|
0.042*
|
-
|
NA: number of alleles; AP: private alleles; H0: observed heterozygosity; HE: expected heterozygosity under HWE; P:the probability of Hardy-Weinberg equilibrium (p* < 0.05: significant departure from Hardy-Weinberg equilibrium);
Genetic differentiation and population structure analysis
Pairwise FST and Nei’s genetic distances (DNei) among subpopulations are shown in Table 2. Nei’s genetic distances and FST analysis indicated a low or no genetic differentiation between all pairs of subpopulations (Table 2). All wild boar subpopulation pairs were not significantly differentiated from one another.
Table 2
Pairwise FST (above diagonal) and Nei’s genetic distance DNei (below diagonal) between Lithuanian wild boar subpopulations
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
1.Utena
|
|
0.004NS
|
0.025 NS
|
0.014 NS
|
-0.006 NS
|
0.048 NS
|
0.032 NS
|
0.019 NS
|
-0.032 NS
|
2.Vilnius
|
0.084
|
|
0.007 NS
|
-0.011 NS
|
-0.007 NS
|
0.005 NS
|
-0.007 NS
|
0.012 NS
|
-0.003 NS
|
3.Alytus
|
0.194
|
0.135
|
|
-0.032 NS
|
-0.004 NS
|
0.069 NS
|
-0.016 NS
|
0.039 NS
|
0.006 NS
|
4.Marijampolė
|
0.132
|
0.071
|
0.176
|
|
-0.019 NS
|
0.029 NS
|
-0.033 NS
|
0.013 NS
|
0.023 NS
|
5.Kaunas
|
0.067
|
0.052
|
0.151
|
0.071
|
|
0.005 NS
|
-0.010 NS
|
0.002 NS
|
-0.001 NS
|
6.Tauragė
|
0.239
|
0.166
|
0.268
|
0.257
|
0.160
|
|
0.027 NS
|
0.046 NS
|
0.072 NS
|
7.Klaipėda
|
0.255
|
0.161
|
0.267
|
0.159
|
0.152
|
0.293
|
|
0.032 NS
|
0.038 NS
|
8.Šiauliai
|
0.090
|
0.095
|
0.215
|
0.141
|
0.085
|
0.233
|
0.231
|
|
0.047 NS
|
9.Panevėžys
|
0.096
|
0.148
|
0.201
|
0.206
|
0.126
|
0.321
|
0.294
|
0.152
|
|
NS-non-significant population differentiation |
Additionally, three-dimensional factorial correspondence analysis (3D-FCA) was also conducted in order to determine the degree of structuring of wild boar subpopulations (Fig. 1). FCA results indicated admixture between individuals from different districts. These results suggested that intensive hunting pressure, widespread distribution, no presence of geographical barriers can influence genetic composition and population structure of the wild boar subpopulations in Lithuania.
The result of analysis of molecular variance (AMOVA) showed that 85% of the total genetic variation originated from individuals, while 15% came from differences among individuals within the populations, and 0% was observed among populations (Table 3). Statistical analysis of fixation index (FST=0.000) and analysis of molecular variance revealed no significant genetic differentiation between the wild boar subpopulations (Table 3). Other F-statistics revealed significant values for FIS = 0.150 (p < 0.001) and FIT = 0.150 (p < 0.001). These data indicate that higher genetic variability of S. scrofa is mainly distributed within individuals (Table 3).
Table 3
Analysis of molecular variance (AMOVA) of wild boar subpopulations based on various genetic groupings
Source of variation
|
df
|
SS
|
MS
|
Est. Var.
|
%
|
F-statistics
|
Value
|
P-value
|
Among populations
|
8
|
48.766
|
6.096
|
0.000
|
0%
|
FST
|
0.000
|
0.507
|
Among individuals
within population
|
87
|
531.270
|
6.107
|
0.795
|
15%
|
FIS
|
0.150
|
0.001
|
Within individuals
|
96
|
433.500
|
4.516
|
4.516
|
85%
|
FIT
|
0.150
|
0.001
|
Total
|
191
|
1013.536
|
|
5.311
|
100%
|
|
|
|
The population structure analysis showed the optimum number of subpopulations K which explained that wild boar subpopulations could be divided into two clusters (K = 2) using the Evanno method (Fig. 2). Through the graphic visualization of the population structure, there was no separation of genetic groups, and each of the 9 subpopulations had more than 1 cluster (Fig. 2). Increasing the number of structure groups beyond K = 2 did not influence changes in population structure.