Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Barnes PJ (2008a) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8:183–192. https://doi.org/10.1038/nri2254
Barnes PJ (2008b) The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 118:3546–3556. https://doi.org/10.1172/JCI36130
Beutler E (1975) Red cell metabolism. In: A manual of biochemical methods. Grune Strottan , Newyork
Beutler E, Dubon O, Kelly B (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888
Bolandi SM, Abdolmaleki Z, Assarehzadegan M-A (2021) Bevacizumab regulates inflammatory cytokines and inhibits VEGFR2 signaling pathway in an ovalbumin-induced rat model of airway hypersensitivity. Inflammopharmacology 1:3. https://doi.org/10.1007/s10787-021-00798-8
Boskabady MH, Kaveh M, Shakeri F, et al (2019) Alpha-linolenic acid ameliorates bronchial asthma features in ovalbumin-sensitized rats. J Pharm Pharmacol 71:1089–1099. https://doi.org/10.1111/jphp.13094
Bu Y, Rho S, Kim J, et al (2007) Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett 414:218–221. https://doi.org/10.1016/j.neulet.2006.08.094
Chan CK, Lin TC, Huang YA, et al (2016) The modulation of Th2 immune pathway in the immunosuppressive effect of human umbilical cord mesenchymal stem cells in a murine asthmatic model. Inflamm Res 65:795–801. https://doi.org/10.1007/s00011-016-0961-y
Chandramohan R, Pari L (2016) Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats. J Funct Foods 27:17–28. https://doi.org/10.1016/j.jff.2016.08.043
Chandramohan R, Pari L, Rathinam A, Sheikh BA (2015) Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem Biol Interact 229:44–54. https://doi.org/10.1016/j.cbi.2015.01.026
Chandramohan R, Saravanan S, Pari L (2017) Beneficial effects of tyrosol on altered glycoprotein components in streptozotocin-induced diabetic rats. Pharm Biol 55:1631–1637. https://doi.org/10.1080/13880209.2017.1315603
Chen W, Sivaprasad U, Gibson AM, et al (2013) IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 132:951-958.e6. https://doi.org/10.1016/j.jaci.2013.04.016
Chiappara G, Gagliardo R, Siena A, et al (2001) Airway remodelling in the pathogenesis of asthma : Current Opinion in Allergy and Clinical Immunology. Curr Opin Allergy Clin Immunol 1:85–93
Dalouchi F, Falak R, Bakhshesh M, et al (2021) Human amniotic membrane mesenchymal stem cell‐conditioned medium reduces inflammatory factors and fibrosis in ovalbumin‐induced asthma in mice. Exp Physiol 106:544–554. https://doi.org/10.1113/EP088911
Di Benedetto R, Varì R, Scazzocchio B, et al (2007) Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr Metab Cardiovasc Dis 17:535–545. https://doi.org/10.1016/j.numecd.2006.03.005
Dogan MF, Parlar A, Cam SA, et al (2020) Glabridin attenuates airway inflammation and hyperresponsiveness in a mice model of ovalbumin-induced asthma. Pulm Pharmacol Ther 63:101936. https://doi.org/10.1016/j.pupt.2020.101936
Eftekhar N, Moghimi A, Mohammadian Roshan N, et al (2019) Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement Altern Med 19:349. https://doi.org/10.1186/s12906-019-2765-4
Elaidy SM, Essawy SS, Hussain MA, et al (2018) Modulation of the IL-23/IL-17 axis by fenofibrate ameliorates the ovalbumin/lipopolysaccharide-induced airway inflammation and bronchial asthma in rats. Naunyn Schmiedebergs Arch Pharmacol 391:309–321. https://doi.org/10.1007/s00210-017-1459-z
Ezz-Eldin YM, Aboseif AA, Khalaf MM (2020) Potential anti-inflammatory and immunomodulatory effects of carvacrol against ovalbumin-induced asthma in rats. Life Sci 242:117222. https://doi.org/10.1016/j.lfs.2019.117222
Guan Y, Shen H juan, Shen J, et al (2019) Anti-allergic activities of 5,7-dimethoxy-3,4′-dihydroxyflavone via inhalation in rat allergic models. Eur J Pharmacol 848:55–61. https://doi.org/10.1016/j.ejphar.2019.01.046
Güvenç M, Cellat M, Gökçek İ, et al (2020) Tyrosol prevents AlCl 3 induced male reproductive damage by suppressing apoptosis and activating the Nrf‐2/HO‐1 pathway. Andrologia 52:e13499. https://doi.org/10.1111/and.13499
Güvenç M, Cellat M, Özkan H, et al (2019) Protective Effects of Tyrosol Against DSS-Induced Ulcerative Colitis in Rats. Inflammation 42:1680–1691. https://doi.org/10.1007/s10753-019-01028-8
Hanna DA, Khalaf MM, Abo-Saif AA (2019) Polydatin protects against ovalbumin-induced bronchial asthma in rats; involvement of urocortin and surfactant-D expression. Immunopharmacol Immunotoxicol 41:403–412. https://doi.org/10.1080/08923973.2018.1536985
Je I-G, Kim D-S, Kim S-W, et al (2015) Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells. PLoS One 10:e0129829. https://doi.org/10.1371/journal.pone.0129829
Jehangir A, Shahzad M, Shahid K, et al (2019) Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats. Inflammopharmacology 27:1179–1192. https://doi.org/10.1007/s10787-019-00597-2
Jiang J, Mehrabi Nasab E, Athari SM, Athari SS (2021) Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir Physiol Neurobiol 286:103614. https://doi.org/10.1016/j.resp.2020.103614
Kao S Te, Wang S Der, Lin CC, Lin LJ (2018) Jin Gui Shen Qi Wan, a traditional Chinese medicine, alleviated allergic airway hypersensitivity and inflammatory cell infiltration in a chronic asthma mouse model. J Ethnopharmacol 227:181–190. https://doi.org/10.1016/j.jep.2018.08.028
Kim YY, Hur G, Lee SW, et al (2020) AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcεRI/TGF-β signaling pathway. Pharmacol Res 159:105027. https://doi.org/10.1016/j.phrs.2020.105027
Kim YY, Lee S, Kim MJ, et al (2017) Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier. Food Chem Toxicol 109:526–533. https://doi.org/10.1016/j.fct.2017.09.053
Kuzu M, Kandemir FM, Yildirim S, et al (2018) Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 106:443–453. https://doi.org/10.1016/j.biopha.2018.06.161
Kuzu M, Yıldırım S, Kandemir FM, et al (2019) Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem Biol Interact 308:89–100. https://doi.org/10.1016/j.cbi.2019.05.017
Lee H, Im SW, Jung CH, et al (2016) Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling. Biochem Biophys Res Commun 469:748–752. https://doi.org/10.1016/j.bbrc.2015.12.036
Lin LJ, Lin CC, Wang S Der, et al (2012) The immunomodulatory effect of You-Gui-Wan on Dermatogoides-pteronyssinus- induced asthma. Evidence-based Complement Altern Med 2012:. https://doi.org/10.1155/2012/476060
Lin LJ, Wu CJ, Wang S Der, Kao S Te (2020) Qi-Wei-Du-Qi-Wan and its major constituents exert an anti-asthmatic effect by inhibiting mast cell degranulation. J Ethnopharmacol 254:112406. https://doi.org/10.1016/j.jep.2019.112406
Liou C-J, Chen Y-L, Yu M-C, et al (2020) Sesamol Alleviates Airway Hyperresponsiveness and Oxidative Stress in Asthmatic Mice. Antioxidants 9:295. https://doi.org/10.3390/antiox9040295
Liu Y, Zhang B, Zhang T, et al (2020) Effect of NF-κB signal pathway on mucus secretion induced by atmospheric PM2.5 in asthmatic rats. Ecotoxicol Environ Saf 190:110094. https://doi.org/10.1016/j.ecoenv.2019.110094
Louis R, Lau LCK, Bron AO, et al (2000) The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med 161:9–16. https://doi.org/10.1164/ajrccm.161.1.9802048
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with pholin phenol reagent. J Biol Chem 193:265–275
Ma C, Zou L, Xia Y, et al (2019) Extracts of Coleus forskohlii relieves cough and asthma symptoms via modulating inflammation and the extracellular matrix. J Cell Biochem 120:9648–9655. https://doi.org/10.1002/jcb.28243
Mäkelä MJ, Kanehiro A, Borish L, et al (2000) IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization. Proc Natl Acad Sci U S A 97:6007–6012. https://doi.org/10.1073/pnas.100118997
Martínez-Martos JM, Mayas MD, Carrera P, et al (2014) Phenolic compounds oleuropein and hydroxytyrosol exert differential effects on glioma development via antioxidant defense systems. J Funct Foods 11:221–234. https://doi.org/10.1016/j.jff.2014.09.006
Maslan J, Mims JW (2014) What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngol Clin North Am 47:13–22. https://doi.org/10.1016/j.otc.2013.09.010
Masoli M, Fabian D, Holt S, Beasley R (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy 59:469–478. https://doi.org/10.1111/j.1398-9995.2004.00526.x
Menzella F, Ruggiero P, Galeone C, et al (2020) Significant improvement in lung function and asthma control after benralizumab treatment for severe refractory eosinophilic asthma. Pulm Pharmacol Ther 64:101966. https://doi.org/10.1016/j.pupt.2020.101966
Migliorati G, Nicoletti I, Nocentini G, et al (1994) Dexamethasone and interleukins modulate apoptosis of murine thymocytes and peripheral T-lymphocytes. Pharmacol Res 30:43–52. https://doi.org/10.1016/1043-6618(94)80086-3
Myou S, Leff AR, Myo S, et al (2003) Blockade of Inflammation and Airway Hyperresponsiveness in Immune-sensitized Mice by Dominant-Negative Phosphoinositide 3-Kinase-TAT. J Exp Med 198:1573–1582. https://doi.org/10.1084/jem.20030298
Nader MA, El-Awady MS, Shalaby AA, El-Agamy DS (2012) Sitagliptin exerts anti-inflammatory and anti-allergic effects in ovalbumin-induced murine model of allergic airway disease. Naunyn Schmiedebergs Arch Pharmacol 385:909–919. https://doi.org/10.1007/s00210-012-0772-9
Nguyen LP, Singh B, Okulate AA, et al (2012) Complementary anti-inflammatory effects of a β-blocker and a corticosteroid in an asthma model. Naunyn Schmiedebergs Arch Pharmacol 385:203–210. https://doi.org/10.1007/s00210-011-0692-0
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Pacifici F, Farias CLA, Rea S, et al (2020) Tyrosol May Prevent Obesity by Inhibiting Adipogenesis in 3T3-L1 Preadipocytes. Oxid Med Cell Longev 2020:1–12. https://doi.org/10.1155/2020/4794780
Parlar A, Arslan SO (2020) CB2 Agonist (AM1241) Improving Effect on Ovalbumin-Induced Asthma in Rats. Iran J Pharm Res 19:3–17. https://doi.org/10.22037/ijpr.2019.1101002
Périz M, Pérez-Cano FJ, Rodríguez-Lagunas MJ, et al (2020) Development and Characterization of an Allergic Asthma Rat Model for Interventional Studies. Int J Mol Sci 21:3841. https://doi.org/10.3390/ijms21113841
Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A 95:3071–3076. https://doi.org/10.1073/pnas.95.6.3071
Pourmehdi A, Sakhaei Z, Alirezaei M, Dezfoulian O (2020) Betaine effects against asthma-induced oxidative stress in the liver and kidney of mice. Mol Biol Rep 47:5729–5735. https://doi.org/10.1007/s11033-020-05620-2
Qi W, Ren D, Wang P, et al (2020) Upregulation of Sirt1 by tyrosol suppresses apoptosis and inflammation and modulates extracellular matrix remodeling in interleukin-1β-stimulated human nucleus pulposus cells through activation of PI3K/Akt pathway. Int Immunopharmacol 88:106904. https://doi.org/10.1016/j.intimp.2020.106904
Rahman I, Biswas SK, Kode A (2006) Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 533:222–239. https://doi.org/10.1016/j.ejphar.2005.12.087
Rajizadeh MA, Najafipour H, Fekri MS, et al (2019) Anti-inflammatory and anti-oxidative effects of myrtenol in the rats with allergic asthma. Iran J Pharm Res 18:1488–1498. https://doi.org/10.22037/ijpr.2019.1100749
Regele R (2000) The pathology of asthma: Brief review. In: Immunopharmacology. Elsevier, pp 257–262
Salama AAA, Zaki HF, El-Shenawy SM, et al (2012) Effects of Fish oil and Dexamethasone in Experimentally-Induced Bronchial Asthma. Aust J Basic Appl Sci 6:497–506
Selzman CH, McIntyre RC, Shames BD, et al (1998) Interleukin-10 inhibits human vascular smooth muscle proliferation. J Mol Cell Cardiol 30:889–896. https://doi.org/10.1006/jmcc.1998.0642
Smith K, Mrozek J, Simonton S, et al (1997) Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory. Crit Care Med 25:1888–1897
Sun L-Z, Elsayed S, Aasen TB, et al (2010) Comparison between Ovalbumin and Ovalbumin Peptide 323-339 Responses in Allergic Mice: Humoral and Cellular Aspects. Scand J Immunol 71:329–335. https://doi.org/10.1111/j.1365-3083.2010.02382.x
Sussan TE, Gajghate S, Chatterjee S, et al (2015) Nrf2 reduces allergic asthma in mice through enhanced airway epithelial cytoprotective function. Am J Physiol Cell Mol Physiol 309:27–36. https://doi.org/10.1152/ajplung.00398.2014
Tanaka H, Masuda T, Tokuoka S, et al (2001) The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 50:616–624. https://doi.org/10.1007/PL00000243
Thakur VR, Khuman V, Beladiya J V., et al (2019) An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon 5:e02864. https://doi.org/10.1016/j.heliyon.2019.e02864
Tiwari M, Dwivedi UN, Kakkar P (2014) Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J Ethnopharmacol 153:326–337. https://doi.org/10.1016/j.jep.2014.01.031
Türk E, Güvenç M, Cellat M, et al (2020) Zingerone protects liver and kidney tissues by preventing oxidative stress, inflammation, and apoptosis in methotrexate-treated rats. Drug Chem Toxicol 1–12. https://doi.org/10.1080/01480545.2020.1804397
Wang W, Xia Y, Yang B, et al (2017) Protective Effects of Tyrosol against LPS-Induced Acute Lung Injury via Inhibiting NF-κB and AP-1 Activation and Activating the HO-1/Nrf2 Pathways. Biol Pharm Bull 40:583–593. https://doi.org/10.1248/bpb.b16-00756
Westergaard CG, Porsbjerg C, Backer V (2015) Emerging corticosteroid agonists for the treatment of asthma. Expert Opin Emerg Drugs 20:653–662. https://doi.org/10.1517/14728214.2015.1061503
Yan S, Ci X, Chen N, et al (2011) Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res 60:589–596. https://doi.org/10.1007/s00011-011-0307-8
Yang CH, Tian JJ, Ko WS, et al (2019) Oligo-fucoidan improved unbalance the Th1/Th2 and Treg/Th17 ratios in asthmatic patients: An ex vivo study. Exp Ther Med 17:3–10. https://doi.org/10.3892/etm.2018.6939
Yosri H, Elkashef WF, Said E, Gameil NM (2017) Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 50:305–312. https://doi.org/10.1016/j.intimp.2017.07.012
Zhong Z, Umemura A, Sanchez-Lopez E, et al (2016) NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell 164:896–910. https://doi.org/10.1016/j.cell.2015.12.057
Zhu S, Wang H, Zhang J, et al (2019) Antiasthmatic activity of quercetin glycosides in neonatal asthmatic rats. 3 Biotech 9:189. https://doi.org/10.1007/s13205-019-1618-7