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Abstract
Our confidence in future climate projection depends on the ability of climate models to simulate the
current climate, and model performance in simulating atmospheric circulation affects the ability to
simulate extreme events. This study uses the self-organizing map (SOM) method to evaluate the
frequency, persistence, and transition characteristics of models in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) for different ensembles of the 500 hPa daily geopotential height (Z500) in Asia,
and then ranks all ensembles according to a comprehensive ranking metric (MR). Our results show that
the SOM method is a powerful tool for assessing the daily-scale circulation simulation skills in Asia, and
the results are not significantly affected by different map sizes. Positive associations between the
performance of ensembles for any two of frequency, persistence, and transition were found, indicating
that an ensemble that performs well for one metric is good for the others. The results of the MR ranking
show that the r10i1p1f1 ensemble of CanESM5 gives the best overall simulation of 500 hPa circulation in
Asia, and this is also the ensemble that best simulates frequency characteristics. The MR simulation
skills of the 10 best ensembles for the position of the Western North Pacific Subtropical High (WNPSH)
are far better than those of the 10 worst. Such differences may lead to errors in the simulation of extreme
events. This study will help future studies in the choice of ensembles with higher circulation simulation
skills to improve the credibility of their conclusions.

1. Introduction
The general circulation of the atmosphere is a key factor affecting climate variation, whether on global or
regional scales, because it drives the circulation of energy and water vapor (Maidens et al. 2021; Zhao C.
et al. 2019). With the intensification of global warming, various extreme events have occurred frequently
and have had a great impact on society and the environment (Gu et al. 2016; Kong et al. 2020; Sales et al.
2018). Some extreme events, such as extreme high temperature and extreme precipitation, are particularly
affected by the atmospheric general circulation (Boschat et al. 2014; Fischer et al. 2010; Gibson et al.
2017; Liu et al. 2015; Loikith et al. 2019; Lu et al. 2020; Ohba et al. 2020). The atmospheric circulation at
500 hPa is of great importance because it presents a strong relationship between higher level circulation
and surface variables (Gao et al. 2019; Horton et al. 2015; Mioduszewski et al. 2016).

Global climate models (GCMs) are powerful tools for simulating the current climate and predicting future
climate change (Wang et al. 2015). The Sixth Coupled Model Intercomparison Project Phase 6 (CMIP6)
was initiated by the World Climate Research Programme (WCRP), with the purpose of answering new
scientific questions facing the field of climate change and providing data support to achieve the scientific
goals established by the WCRP ‘Grand Challenge’ plan. The CMIP6 includes about 112 climate models
from 33 institutions around the world participating in 23 sub-programs. These data will support the next 5
to 10 years of global climate research (Eyring et al. 2016). The evaluation of CMIP6 climate models is an
important requirement for further research on downscaling and projection. However, most of the current
assessments of CMIP6 are for surface variables, such as temperature and precipitation (Almazroui et al.
2020). Assessments of the circulation in Asia are rare.



Page 3/29

There are many methods for evaluating model circulation, but their main purpose is always downscaling.
The mainstream downscaling methods include principal component analysis (PCA), empirical orthogonal
function (EOF) analysis, K-means clustering, and the self-organizing map (SOM) method. Previous
studies have shown that the PCA and EOF methods are not accurate enough and not very intuitive when
evaluating model circulation patterns (Wang et al. 2015). K-means clustering is an effective circulation
classification method (Agel et al. 2017), but its biggest drawback is that it can only represent some
discrete atmospheric systems and cannot organize them into a continuum (Gao et al. 2019). However, the
actual atmospheric circulation develops continuously.

The SOM method solves these issues. The SOM is an unsupervised neural network algorithm that maps
high-dimensional input data to a two-dimensional space. In the process of iteration, it not only updates
the winning node, but also updates its neighboring nodes according to the weight. The SOM method was
first proposed by Kohonen (1998), and first applied by Hewiston and Crane (2006) in the field of climate
downscaling, and has since been widely used in the field of climate research. It can organize long time
sequences of atmospheric circulation into a continuum, so that not only can the characteristics of a
specific circulation type be seen, but also how this circulation might develop, because one particular node
tends to change from its neighboring nodes. This method is effective in connecting abnormal
atmospheric circulation patterns and extreme high temperature and precipitation events (Agel et al. 2017;
Loikith et al. 2017).

Some previous studies have used the SOM method to evaluate the ability of CMIP5 models to simulate
weather-scale circulation patterns (Cassano et al. 2007; Wang et al. 2015). The circulation simulation
capabilities of models can be ranked by comparing the correlation coefficient or root mean square error
(Mioduszewski et al. 2016) between models and reanalysis products for the frequency, persistence, and
transition metrics (Gibson et al. 2016). Models with better simulation capabilities for one characteristic
(such as frequency) of circulation tend to be better for other characteristics (persistence and transition;
(Gibson et al. 2016). These research results provide a basis for studying the causes of extreme events
and for scenario projections.

The Western North Pacific Subtropical High (WNPSH) is the most important circulation system that
affects the summer in Asia at 500 hPa. Its position, shape, and strength dominate the climate of Asia
(Zhang et al. 2020; Zhao C. et al. 2019). Monsoon and typhoon activities over the western Pacific are
closely related to the WNPSH (Chen et al. 2020). For example, water vapor from the tropical ocean is
transported to China around the western ridge of the WNPSH. The convergence of warm humidity and
cold air from high latitudes means that rainfall often occurs on the northwestern edge of the WNPSH (Liu
et al. 2014; Preethi et al. 2017). Therefore, after the overall assessment of model simulation of the
circulation in Asia, it is necessary to test the skill in simulating the WNPSH.

This study has two main objectives. First, to use the SOM method to evaluate the climate models of
CMIP6 based on three metrics for frequency, persistence, and transition and to obtain rankings from the
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performance of these different aspects and a comprehensive ranking metric (MR). Second, to check
whether the top-ranked model also gives a better simulation of the WNPSH.

This paper is organized as follows: Sect. 2 introduces the data and methodology. Section 3 presents the
rankings of CMIP6 models from the performance of different metrics. Section 4 checks the relationship
between SOM-based model rankings and WNPSH performance. A discussion is presented in Sect. 5 and
the overall conclusions in Sect. 6.

2. Data And Methods

2.1 Reanalysis data
In this study, the geopotential height at the 500 hPa isobaric level (Z500) of the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) was mainly used, and data from the
Japanese Meteorological Agency (JMA) Reanalysis (JRA-55) were also used to test whether different
reanalysis products gave different results (Ebita et al. 2011). ERA5 is based on the Integrated Forecasting
System (IFS) Cy41r2 and has benefited from long-term development in model physics, core dynamics
and data assimilation (Hersbach et al. 2020). Compared with the previous generation JMA reanalysis,
JRA-55 uses a more advanced data assimilation scheme, increased model resolution, a new variational
bias correction for satellite data, and several additional observational data sources (Ebita et al. 2011). we
use the absolute Z500 instead of the Z500 anomaly because the absolute Z500 has a clearer physical
meaning and is more intuitive, whereas using the Z500 anomaly to train the SOM may mix different
circulation regimes (An et al. 2021). When we started the study, ERA5 was available from 1979, and
considering that the historical experiment of most of the CMIP6 models ended in 2014, we chose 1979 to
2014 as the research period. We consider only boreal summer (June to August) and calculate the daily
average for every 6 hours (0000, 0600, 1200, and 1800 coordinated Universal Time (UTC)), so the time
range is 3312 days in total. The analysis domain extends from 40 to 180 °E and from 0 to 60°N, following
the suggestion from Gao et al. (2019) that the climate of China is affected by the circulation in this
region.

2.2 Climate model data
We analyze the absolute Z500 of 140 ensembles from 23 selected climate models participating in CMIP6
(Table 1). Compared with CMIP5, CMIP6 has more institutions and models participating, and also has
more sub-experiments. CMIP6 aims to provide a scientific basis for the Intergovernmental Panel on
Climate Change (IPCC) 6th Assessment Report (AR6). The Historical experiment is started from the model
state of the piControl experiment at a certain time but is driven by various external forcings based on
observations that have changed over time since 1850 (Zhou et al. 2019), and the piControl experiment is
an experiment that maintains the external forcing (e.g., greenhouse gas, solar radiation, aerosol, land use)
at the level of 1850 to drive the global coupled model for long-term integration of more than 500 years.
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Table 1
Basic information on the models used in this study, including model identification, originating center,

atmospheric model resolution, and ensemble numbers.
Model Institution Resolution Ensemble

numbers

ACCESS-CM2 Commonwealth Scientific and Industrial Research
Organisation, Australia

250 km 1

AWI-ESM-1-1-
LR

Commonwealth Scientific and Industrial Research
Organisation, Germany

250 km 1

BCC-CSM2-
MR

Beijing Climate Center, China Meteorological
Administration, China

100 km 1

BCC-ESM1 Beijing Climate Center, China Meteorological
Administration, China

250 km 1

CanESM5 Canadian Centre for Climate Modeling and Analysis,
Canada

500 km 25

CESM2 National Center for Atmospheric Research, United
States

100 km 10

CESM2-
WACCM

National Center for Atmospheric Research, United
States

100 km 3

CESM2-
WACCM-FV2

National Center for Atmospheric Research, United
States

100 km 3

CNRM-CM6-1-
HR

Centre National de Recherches Météorologiques, France 50 km 1

CNRM-ESM2-
1

Centre National de Recherches Météorologiques, France 250 km 3

FGOALS-f3-L Institute of Atmospheric Physics, Chinese Academy of
Sciences, China

100 km 3

GFDL-CM4 Geophysical Fluid Dynamics Laboratory, USA 250 km 1

INM-CM4-8 Institute for Numerical Mathematics, Russia 100 km 1

INM-CM5-0 Institute for Numerical Mathematics, Russia 100 km 10

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 250 km 32

MIROC6 National Institute for Environmental Studies, The
University of Tokyo, Japan

250 km 10

MPI-ESM-1-2-
HAM

Max Planck Institute for Meteorology, Germany 250 km 2

MPI-ESM1-2-
HR

Max Planck Institute for Meteorology, Germany 100 km 10
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Model Institution Resolution Ensemble
numbers

MPI-ESM1-2-
LR

Max Planck Institute for Meteorology, Germany 250 km 10

MRI-ESM2-0 Meteorological Research Institute, Japan 100 km 5

NorESM2-LM Norwegian Climate Centre, Norway 250 km 3

NorESM2-MM Norwegian Climate Centre, Norway 100 km 3

TaiESM1 Research Center for Environmental Changes, Taiwan,
China

100 km 1

2.3 Methodology
In this study, the SOM method is used to classify the 500 hPa atmospheric circulation characteristics in
Asia. Each node classified represents a type of circulation pattern. The input data are the daily absolute
Z500 interpolated onto an Equal-Area Scalable Earth-type (EASE) grid at a spatial resolution of 2.5° × 2.5°
to ensure that the correct distance is calculated by the SOM procedure (Gibson et al. 2017). Each node
first initializes its parameters (i.e., weight coefficient), and the number of parameters of each node is the
same as the dimension of the input data. Then, for each input data field, the closest node is found
according to the distance function (such as Euclidean distance), and the node with the smallest distance
is the ‘winning node’. After finding the ‘winning node’, its neighboring nodes are updated, and after
updating the weight coefficient of the node, the weight vector of each node is updated according to the
gradient descent method. The algorithm iterates until it converges or meets the termination condition set
by the user.

This study uses the second version of the SOM toolbox on MATLAB developed by Helsinki University of
Technology (http://www.cis.hut.fi/projects/somtoolbox/). The ‘hexagonal’ lattice and ‘sheet’ map shape
are set up on the topological structure, the initialization scheme is the random initialization scheme, and
other settings are the default settings (Jiang et al. 2015; Liu et al. 2006). Gibson et al. (2017) has shown
that allowing the neighborhood radius of the first 50% of training iterations to decrease from 5 to 1, and
keeping the neighborhood radius at 1 for the last 50% of training iterations gives a SOM suitable for
classifying a greater number of different weather types. Therefore, in this study, a total of 1000 trainings
iterations were performed during the training of the SOM. The neighborhood radius of the first 500
trainings decreased from 5 to 1, and the neighborhood radius of the last 500 trainings was kept at 1.

One of the most important steps in the SOM approach is determining the number of nodes. Too few SOM
nodes may cause the classification results to confuse different circulation features, and too many SOM
nodes will cause the classification results to share similar features (Ford et al. 2017; Loikith et al. 2019;
Mioduszewski et al. 2016). To determine the best map size for this study, we experimented with 11
different map sizes, including 2 × 3, 3 × 4, 4 × 4, 4 × 5, 5 × 5, 5 × 6, 5 × 7, 6 × 6, 6 × 7, 7 × 7, and 7 × 8
(Fig. 1). For each configuration, we calculated the spatial correlation coefficient between the actual value
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of each day and the value of the assigned node to quantitatively evaluate the difference between
different map sizes.

We call the SOM result obtained from ERA5 the ‘Master SOM’ (Fig. 2), and then map each day onto the
‘Master SOM’ for each ensemble. Mapping is accomplished by finding the node in the ‘Master SOM’ that
is closest to (i.e., has the smallest squared distance from) the daily state of the ensemble (Cassano et al.
2007). Three metrics were used to evaluate the CMIP6 models from the SOM derived nodes: frequency,
persistence and transition metrics (Gibson et al. 2016). Node frequency refers to the probability of
occurrence of this node, and the frequency metric is defined by dividing the number of days the node
appears by the total number of days. The 95% confidence level for the node frequency of occurrence is
given by

where l represents the number of days, and p represents the node frequency for a randomly derived data
set. In other words, p = 1/N for an SOM with N nodes. Node frequency is considered significant if it
exceeds these limits. For the master SOM with 20 nodes the expected frequency of occurrence for each
node is 0.05 with a 95% confidence interval of ± 0.74%. Node persistence represents the continuity of a
node. In this study, the persistence metric is expressed by dividing the number of events that lasted more
than two days at this node by the number of events that lasted only one or two days at this node. The
transition metric refers to the transition probability from one node to another. Each node can transit to
nodes other than itself, so the SOM with N nodes can have N(N–1) kinds of transitions in total.

The performance of different ensembles on different metrics is described by calculating the Pearson
correlation coefficient between different ensembles and ERA5. For example, the frequency performance
of a particular ensemble is represented by the correlation coefficient of the frequency metrics between
this ensemble and ERA5 for all nodes. The higher the correlation coefficient, the better the frequency
performance of the ensemble, and the higher the frequency ranking. After ranking according to different
metrics, the comprehensive rankings can be obtained according to the ranking metric (MR), which is
defined as

where m is the number of ensembles, and n is the number of metrics. The closer the MR value is to 1, the
higher the comprehensive performance of the ensemble (Li et al. 2015).

In order to describe the WNPSH, we calculated the western ridge point index and the northern boundary
position index for ERA5 and each ensemble. The western ridge point index refers to the longitude of the
westernmost position of the 5880-gpm isobar at the height of 500 hPa in the domain 10 to 60 °N, and 90
to 180 °E. The northern boundary position index refers to the average latitude of the 5880-gpm isobar on
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the north side of the subtropical high along each meridian at the height of 500 hPa and in the same
domain (Liu et al. 2019).

3. Results

3.1 Determination of SOM map size
In order to determine the optimal number of nodes, we tested 11 sets of SOM configurations with
different map sizes, and calculated the spatial correlation coefficient between the actual Z500 and the
assigned nodes, as shown in Fig. 1. As the number of nodes increases, the spatial correlation coefficient
also increases. However, a larger number of nodes may produce nodes that share similar circulation
characteristics and a smaller number of nodes may confuse different circulation characteristics.
According to most research on Asia, the number of SOM nodes ranges from 12 to 20 (Gao et al. 2019; Li
M. et al. 2020; Liu et al. 2015; Wang et al. 2015). If we search to minimize the quantization error within
groups and to maximize the topographic error between groups, 20 (4 × 5) nodes are optimal (Li M. et al.
2020; Yin et al. 2010).

3.2 Master SOM
Figure 2 shows the SOM map obtained using the daily absolute Z500 from ERA5 with the
aforementioned SOM settings. In this Master SOM, node ‘a1’ refers to the node in the top-left corner of the
SOM plane and node ‘e4’ refers to the node in the bottom-right corner. The orange shading in nodes a3,
a4, b3, b4, c3, c4, d3, d4, e2, e3, and e4 to the east highlights the area with geopotential height exceeding
5880 gpm, where the 5880-gpm isobar is considered the boundary of the WNPSH (Liu et al. 2019). The
orange shading of nodes d2, e1, a3, a4, b3, b4, c3, c4, d3, d4, e2, e3, and e4 to the west indicates the North
Africa High (NAH), which often changes with the movement of the WNPSH (La et al. 2002).

According to the Master SOM, neighboring nodes share similar circulation characteristics, and the
difference along the diagonal between node a1 and node e4 is the largest. The circulation pattern shown
at node a1 is characterized by the East Asian Trough (EAT) near the Kamchatka Peninsula in middle and
high latitudes and the subtropical high represented by the 5840-gpm isobar at middle and low latitudes.
Cold advection from the west of the EAT transports cool air from the north to Asia, alleviating the high
temperature in summer. The circulation pattern shown at node e4 is more conducive to generating high
temperature. The WNPSH extends westward to southern China, and its intensity reaches 5880-gpm,
whereas the westerly jets in the middle to high latitudes are stable and block the cold air from northern
latitudes from moving south, leading to the development of high temperatures in Asia. If this type of
circulation pattern lasts for a long time, coupled with unsupported regional soil moisture conditions,
persistent high temperatures occur (Boschat et al. 2014; Ding et al. 2011). From node a1 to e4, the EAT
gradually weakens, but the WNPSH continues to expand westward and southward, which gradually has a
greater impact on the Asian weather. The NAH also gradually intensifies from node a1 to e4, but its
position does not change much. In addition, the existence of the strong WNPSH of node e4 is conducive
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to the transport inland of water vapor from the Pacific Ocean, which favors heavy rainfall in southern
China, Japan and South Korea.

The node frequency of the Master SOM shows the frequency of occurrence of each circulation pattern of
ERA5 in all 3312 days (Fig. 3 (a)); node frequencies that are statistically (at the 95% level) above or below
those expected by chance are shown in red. The frequencies of nodes a1 and e4 are the highest, both
exceeding 10%. The frequencies of nodes a2, b2, b3, d2, and e3 are the lowest, only ~ 2%, suggesting
these are transition circulation patterns that appear less frequently. It shows that the SOM method is
effective in identifying weather patterns that occur less frequently. The frequencies of nodes a3, a4, b1,
b4, c1, d4, and e1 are close to the random probability of 5% and are not statistically significant at the 95%
level.

The node persistence represents the duration of each node, and the solid black line in Fig. 4 shows the
continuity of each node in the Master SOM. The persistence metric of most nodes is greater than 1 except
for nodes a2, b2, b3, d2, and e3, suggesting that, for most nodes, the number of events lasting more than
two days is greater than the number of events lasting two days or less. Nodes a2, b2, b3, d2, and e3 have
more events with a duration of two days or less. These nodes also have the lowest frequencies (~ 2%;
Fig. 3 (a)), and on average appear once or twice in summer each year. Nodes a1 and e4 are the most
persistent, and the frequencies of these two nodes are the highest (Fig. 3 (a)), indicating that the
circulation patterns corresponding to these two nodes are the two dominant circulation patterns in
summer from 1979 to 2014.

Node transition is represented by the probability of a node transitioning to another. Figure 5 (a) shows the
transition probability of each node in the Master SOM. Generally speaking, a node tends to transfer to its
neighboring nodes. This is why the high probability values are concentrated near the diagonal from a1 to
e4. The transition probability of different nodes and the circulation pattern corresponding to each node in
the Master SOM (Fig. 2) can be combined to analyze the physical explanation of the change of different
circulation patterns. Node e4 has the highest probability of transferring to nodes d4, e2, and e3, with a
total probability of 0.86, which shows that the position of the WNPSH gradually retreats eastward and
northward at low and middle latitudes. However, the probability of node e4 transferring to other nodes is
almost zero. The transition probability of node d4 to nodes c4 and e3 is higher, at 0.31 and 0.25,
respectively. This means that if the WNPSH is the same shape as in node d4, it is easier for it to shrink (to
nodes c4 and e3), but almost never to expand (to node e4), Interestingly, the transition probability of node
e4 to d4 is much higher than that of d4 to e4. This shows that although a system is not final and may
change in intensity, the probability of changing opposite ways is different, at least for the most important
system (the WNPSH) in this study region. Among the transition metrics of all nodes, that from node b4 to
a4 is the largest, with a value of 0.47, followed by the transition metric from node a4 to a3, at 0.43. The
transition metrics of node b3 to other nodes (nodes a2, a3, a4, b2, b4) are similar but not high (~ 0.1 in
each case).

3.3 Ensemble ranking of different metrics
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We calculated the correlation coefficients between all ensembles shown in Table 1 and ERA5 for the
frequency, persistence, and transition metrics to evaluate the performance skills of each ensemble on
these three different metrics. Based on this, we obtain three sets of rankings for all ensembles (Table 2).
Our research found that there is a fairly strong link between the performance for different metrics, as
shown in Fig. 6. Positive associations between any two of frequency performance, persistence
performance and transition performance were found, indicating that good simulation skill for the
frequency characteristic is related to skills in simulating persistence and transition characteristics of
circulation. There are, however, a few exceptions. For example, the persistence performance of the
r23i1p1f1 ensemble of IPSL-CM6A-LR is good, with a correlation coefficient of 0.97 with ERA5 and a
ranking of 2 for persistence metric (Table 2). However, the transition performance of this ensemble is
relatively weaker, with a correlation coefficient of 0.40 with ERA5 and a ranking of 121 for transition
metric (Table 2). Figure 6 shows that overall the relationship between frequency performance and
transition performance is the strongest, with a correlation coefficient of 0.57, while the correlation
coefficient between persistence and transition performance is 0.50, and that between frequency and
persistence performance is 0.45. These have all passed the 99% significance test. As a consequence, we
calculate the MR metric considering all three different metrics, and the final ensemble rankings are based
on the MR metric.
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Table 2
Ensemble rankings of CMIP6 based on frequency performance, persistence performance, transition

performance, and MR.
Model Ensemble Frequency

ranking
Persistence
ranking

Transition
ranking

MR
ranking

CanESM5 r10i1p1f1 1 5 21 1

NorESM2-MM r1i1p1f1 19 1 13 2

CanESM5 r19i1p1f1 13 4 22 3

CESM2-WACCM-
FV2

r2i1p1f1 4 14 25 4

NorESM2-LM r2i1p1f1 11 31 6 5

CanESM5 r23i1p1f1 3 49 2 6

CanESM5 r1i1p1f1 17 36 3 7

CanESM5 r18i1p1f1 2 20 35 8

MPI-ESM1-2-LR r5i1p1f1 23 7 29 9

CanESM5 r16i1p1f1 9 21 36 10

CanESM5 r12i1p1f1 29 35 4 11

CanESM5 r24i1p1f1 20 9 40 12

CanESM5 r17i1p1f1 28 33 9 13

CanESM5 r4i1p1f1 16 23 38 14

MPI-ESM1-2-LR r4i1p1f1 26 10 41 15

MPI-ESM1-2-LR r10i1p1f1 45 22 11 16

NorESM2-LM r1i1p1f1 10 53 23 17

NorESM2-LM r3i1p1f1 7 30 49 18

CanESM5 r22i1p1f1 33 6 48 19

MPI-ESM1-2-LR r9i1p1f1 15 59 15 20

BCC-ESM1 r1i1p1f1 12 13 65 21

CanESM5 r21i1p1f1 50 3 39 22

CESM2-WACCM-
FV2

r1i1p1f1 14 46 34 23

CanESM5 r9i1p1f1 21 42 32 24

MPI-ESM1-2-LR r8i1p1f1 67 32 1 25



Page 12/29

Model Ensemble Frequency
ranking

Persistence
ranking

Transition
ranking

MR
ranking

MPI-ESM1-2-LR r2i1p1f1 68 8 28 26

CanESM5 r15i1p1f1 8 61 42 27

CanESM5 r7i1p1f1 69 38 5 28

CanESM5 r25i1p1f1 27 41 50 29

CESM2-WACCM-
FV2

r3i1p1f1 18 72 30 30

MPI-ESM1-2-LR r1i1p1f1 62 15 43 31

CanESM5 r13i1p1f1 34 28 58 32

NorESM2-MM r2i1p1f1 24 43 57 33

BCC-CSM2-MR r1i1p1f1 6 58 61 34

CanESM5 r5i1p1f1 61 12 53 35

CanESM5 r6i1p1f1 54 17 56 36

MPI-ESM1-2-LR r3i1p1f1 44 70 17 37

CESM2-WACCM r2i1p1f1 38 18 75 38

MIROC6 r10i1p1f1 113 11 8 39

CanESM5 r8i1p1f1 5 75 55 40

CESM2 r10i1p1f1 51 44 45 41

MPI-ESM1-2-HR r8i1p1f1 31 25 87 42

GFDL-CM4 r1i1p1f1 76 48 20 43

MRI-ESM2-0 r5i1p1f1 74 29 44 44

CanESM5 r20i1p1f1 71 24 52 45

CanESM5 r11i1p1f1 32 89 27 46

MPI-ESM1-2-LR r6i1p1f1 43 60 46 47

MRI-ESM2-0 r1i1p1f1 66 51 33 48

ACCESS-CM2 r1i1p1f1 77 19 54 49

CanESM5 r14i1p1f1 22 83 47 50

MPI-ESM1-2-LR r7i1p1f1 65 57 31 51

CESM2 r2i1p1f1 49 40 68 52
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Model Ensemble Frequency
ranking

Persistence
ranking

Transition
ranking

MR
ranking

CESM2-WACCM r1i1p1f1 39 50 73 53

MRI-ESM2-0 r4i1p1f1 73 54 37 54

CanESM5 r2i1p1f1 72 34 59 55

NorESM2-MM r3i1p1f1 25 80 62 56

MPI-ESM1-2-HR r1i1p1f1 30 52 88 57

MIROC6 r9i1p1f1 127 37 14 58

CanESM5 r3i1p1f1 64 63 51 59

MIROC6 r6i1p1f1 119 55 7 60

MRI-ESM2-0 r3i1p1f1 70 56 60 61

MPI-ESM1-2-HR r3i1p1f1 37 81 74 62

MPI-ESM1-2-HR r6i1p1f1 36 99 67 63

MIROC6 r3i1p1f1 114 77 16 64

CESM2 r4i1p1f1 63 67 78 65

IPSL-CM6A-LR r23i1p1f1 87 2 121 66

MIROC6 r2i1p1f1 125 68 24 67

CESM2 r7i1p1f1 52 76 89 68

MIROC6 r1i1p1f1 120 73 26 69

CESM2 r6i1p1f1 57 85 80 70

CESM2 r1i1p1f1 47 108 69 71

MPI-ESM1-2-HR r5i1p1f1 41 114 70 72

MPI-ESM1-2-HR r4i1p1f1 35 107 83 73

AWI-ESM-1-1-LR r1i1p1f1 75 86 66 74

CESM2 r9i1p1f1 55 100 72 75

IPSL-CM6A-LR r26i1p1f1 94 27 106 76

TaiESM1 r1i1p1f1 56 111 63 77

MPI-ESM1-2-HR r9i1p1f1 40 106 84 78

MIROC6 r7i1p1f1 136 90 10 79
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Model Ensemble Frequency
ranking

Persistence
ranking

Transition
ranking

MR
ranking

MPI-ESM1-2-HR r10i1p1f1 42 113 82 80

IPSL-CM6A-LR r3i1p1f1 84 39 114 81

MPI-ESM1-2-HR r7i1p1f1 60 102 76 82

MIROC6 r5i1p1f1 126 96 19 83

CESM2-WACCM r3i1p1f1 48 124 71 84

CESM2 r3i1p1f1 46 123 77 85

CESM2 r8i1p1f1 53 115 79 86

MRI-ESM2-0 r2i1p1f1 110 74 64 87

MIROC6 r8i1p1f1 123 116 12 88

IPSL-CM6A-LR r7i1p1f1 79 71 101 89

MIROC6 r4i1p1f1 128 109 18 90

IPSL-CM6A-LR r13i1p1f1 85 64 109 91

IPSL-CM6A-LR r28i1p1f1 91 62 110 92

IPSL-CM6A-LR r10i1p1f1 88 65 112 93

MPI-ESM1-2-HR r2i1p1f1 58 125 85 94

CESM2 r5i1p1f1 59 119 91 95

INM-CM5-0 r9i1p1f1 133 16 125 96

IPSL-CM6A-LR r6i1p1f1 108 26 140 97

IPSL-CM6A-LR r4i1p1f1 80 92 104 98

IPSL-CM6A-LR r19i1p1f1 96 66 118 99

IPSL-CM6A-LR r11i1p1f1 78 79 128 100

IPSL-CM6A-LR r5i1p1f1 109 47 129 101

CNRM-CM6-1-HR r1i1p1f2 82 78 131 102

CNRM-ESM2-1 r2i1p1f2 124 87 81 103

IPSL-CM6A-LR r2i1p1f1 93 69 135 104

IPSL-CM6A-LR r1i1p1f1 98 95 108 105

IPSL-CM6A-LR r27i1p1f1 81 118 103 106



Page 15/29

Model Ensemble Frequency
ranking

Persistence
ranking

Transition
ranking

MR
ranking

IPSL-CM6A-LR r24i1p1f1 104 84 115 107

IPSL-CM6A-LR r8i1p1f1 83 101 120 108

IPSL-CM6A-LR r12i1p1f1 107 103 97 109

INM-CM5-0 r10i1p1f1 139 45 124 110

IPSL-CM6A-LR r14i1p1f1 99 82 130 111

IPSL-CM6A-LR r25i1p1f1 111 88 113 112

FGOALS-f3-L r1i1p1f1 118 104 95 113

IPSL-CM6A-LR r31i1p1f1 92 126 102 114

INM-CM5-0 r6i1p1f1 135 94 98 115

INM-CM5-0 r7i1p1f1 129 91 107 116

IPSL-CM6A-LR r16i1p1f1 86 122 119 117

MPI-ESM-1-2-
HAM

r1i1p1f1 116 121 93 118

CNRM-ESM2-1 r1i1p1f2 122 120 90 119

IPSL-CM6A-LR r20i1p1f1 102 93 137 120

IPSL-CM6A-LR r21i1p1f1 89 105 139 121

FGOALS-f3-L r2i1p1f1 115 128 94 122

CNRM-ESM2-1 r3i1p1f2 112 135 92 123

MPI-ESM-1-2-
HAM

r2i1p1f1 121 133 86 124

INM-CM5-0 r8i1p1f1 130 110 100 125

INM-CM5-0 r3i1p1f1 131 97 116 126

IPSL-CM6A-LR r17i1p1f1 90 129 127 127

INM-CM5-0 r4i1p1f1 132 98 117 128

FGOALS-f3-L r3i1p1f1 117 137 96 129

IPSL-CM6A-LR r18i1p1f1 101 117 132 130

IPSL-CM6A-LR r9i1p1f1 95 139 123 131

IPSL-CM6A-LR r32i1p1f1 105 134 126 132
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Model Ensemble Frequency
ranking

Persistence
ranking

Transition
ranking

MR
ranking

IPSL-CM6A-LR r15i1p1f1 97 132 136 133

INM-CM5-0 r5i1p1f1 134 112 122 134

INM-CM5-0 r2i1p1f1 137 127 105 135

IPSL-CM6A-LR r22i1p1f1 100 138 133 136

IPSL-CM6A-LR r30i1p1f1 103 131 138 137

IPSL-CM6A-LR r29i1p1f1 106 136 134 138

INM-CM4-8 r1i1p1f1 140 140 99 139

INM-CM5-0 r1i1p1f1 138 130 111 140

Frequency performances for the highest and lowest ranked ensembles are given in Fig. 3 (b) and (c). The
r10i1p1f1 ensemble of CanESM5 is the best ensemble for frequency performance. The frequencies of
diagonal nodes a1 and e4 are very high, while some transitional nodes in the middle, such as nodes b3,
c3, d3, and e3 have very low frequencies. The correlation coefficient between this ensemble and ERA5
reaches 0.73. However, this ensemble also obviously overestimates the frequency of some nodes, such
as a3, a4, e1, and e2, and underestimates others, such as b1 and b2. What is interesting is that nodes
with a more westward and southward WNPSH appear more frequently in the ensemble that has the
highest frequency performance. The r1i1p1f1 ensemble of INM-CM4-8 has the lowest frequency
performance, and the correlation coefficient between this ensemble and ERA5 is only 0.21. From Fig. 3
(c), almost all of the Z500s of this ensemble fall in nodes a1, b1, c1, d1, and e1, indicating that this
ensemble has a systematic negative bias in the simulation of Z500, which causes the Z500 in this
ensemble to be allocated to those nodes with weaker Z500 circulation.

Figure 4 shows the highest and lowest ranked ensembles for persistence performance. The r1i1p1f1
ensemble of NorESM2-MM is the highest performing ensemble for persistence simulation, with a
correlation coefficient of 0.97 with ERA5. The persistence metrics change of each node in this ensemble
is almost exactly the same as that of ERA5, but the persistence metrics of all nodes except d4 are lower
than those of ERA5. This shows that in the r1i1p1f1 ensemble of NorESM2-MM, there are fewer events
with a duration of more than two days, and more events with a duration of less than two days for each
node. The r1i1p1f1 ensemble of INM-CM4-8 has the lowest persistence performance, with correlation
coefficient of 0.39 with ERA5. It is also the lowest ranked ensemble for node frequency performance. The
persistence metrics of this ensemble in some nodes are very high (nodes a1, b1, c1, d1, and e1), but in
other nodes are zero (nodes a2, a3, b4, d1, e1, c3, c4, d4, and e4), which leads to the strange oscillation of
the blue curve in Fig. 4. Compared with Fig. 3, it is easy to understand that some nodes do not have even
one day allocated to them, so the persistence metric of these nodes is of course 0, whereas the
persistence metric of other nodes is very high.
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Transition performance represents the ability of CMIP6 to simulate the intensity and location changes of
the weather in the region. Figure 5 (b) and (c) show the highest and lowest ranked ensembles for
transition performance. The r8i1p1f1 ensemble of MPI-ESM1-2-LR is the best ensemble for transition
performance, and the correlation coefficient with ERA5 is 0.86. The node transition distribution of this
ensemble (Fig. 5(b)) is similar to that of ERA5 (Fig. 5(a)), but the transition probability is lower overall.
This may be because this ensemble’s persistence metrics are larger overall. That is, the persistence of
each node is longer. For example, node a1 may be more inclined to stay at node a1 for several days, and
other nodes have similar characteristics. The r6i1p1f1 ensemble of IPSL-CM6A-LR is the lowest ranked
ensemble for transition performance, and the correlation coefficient with ERA5 is only 0.37. The transition
distribution of this ensemble is very different from that of ERA5. First, node a1 almost always transfers to
nodes a2 and b1, and the probability of transferring to other nodes is almost zero. However, in ERA5, node
a1 not only transfers to nodes a2 and b1, but sometimes transfers to other nodes such as a3 and c1.
Secondly, some nodes, such as a2, a3, b3, and e3, do not even have a probability of transferring to other
nodes. This is because these nodes do not have any days assigned to them, so there will be no transition
probability for this node. However, the transition probability of some nodes in this ensemble is more
consistent with ERA5. For example, this ensemble and ERA5 all have a high probability of transitioning
from node d1 to e1.

The above results show that the highest performing ensembles for node frequency, persistence and
transition in CMIP6 are the r10i1p1f1 ensemble of CanESM5, the r1i1p1f1 ensemble of NorESM2-MM
and the r8i1p1f1 ensemble of MPI-ESM1-2-LR, respectively. The lowest performing ensemble for
frequency and persistence is the r1i1p1f1 ensemble of INM-CM4-8, and the lowest performing ensemble
for transition is the r6i1p1f1 ensemble of IPSL-CM6A-LR. To better describe the ability of CMIP6 models
to simulate the overall circulation pattern in the Asian region, the MR metric is used here. According to the
MR metric (Table 2), the top (1) ranking is the r10i1p1f1 ensemble of CanESM5, which is also the top
ranking ensemble for frequency performance, and the second ranking ensemble is the r1i1p1f1 ensemble
of NorESM2-MM, which is the top ranking for persistence performance. The lowest ranked ensemble is
the r1i1p1f1 ensemble of INM-CM5-0. The r1i1p1f1 ensemble of INM-CM4-8 is ranked last for frequency
performance and persistence performance, but due to its relatively high ranking for transition
performance, it ranked second last rather than last by the MR metric.

3.4 Model ranking and the WNPSH simulation
The WNPSH is a key circulation system that controls the western Pacific summer monsoon and typhoon
activities, and is an important indicator of summer weather in countries along the Northwest Pacific
(Chen et al. 2020). In order to test whether the top-ranked ensembles can better represent the actual
climate in Asia, we calculated the daily WNPSH metrics for ERA5 and all ensembles shown in Table 1.
The probability density functions (pdf) of the 10 top and 10 lowest ensembles are then calculated, and
compared with ERA5.

Figures 7 and 8 show the pdf distributions after normal distribution fitting of the western ridge point index
and the northern boundary position index of ERA5 and the top and lowest 10 ensembles, respectively. In
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Fig. 7, the average western ridge point index of ERA5 is around 130°E, and that of the top 10 ensembles is
around 125°E, which is about 5°E west of ERA5. The pdf distribution of the lowest 10 ensembles shows
that the western ridge point index is around 160°E on average, which is about 30°E east of that of ERA5
and even 10°E east of the average of the CMIP5 simulations (Zhao C. et al. 2019). This may be because
only the CMIP5 r1i1p1f1 ensembles were evaluated, and here we evaluated all ensembles. In Fig. 8, the
average northern boundary position index of ERA5 is around 31°N, and the average of the top 10
ensembles is around 29°N, about 2° to the south. The average northern boundary position index of the
last 10 ensembles is around 40°N, which shows that the last 10 ensembles shift the northern boundary of
the WNPSH northward by about 10°. As extreme events like heatwaves, droughts, and typhoons are
greatly affected by the location of the WNPSH (Choi et al. 2019; Zhao Y. et al. 2019), such differences will
inevitably lead to errors in the simulation of extreme events.

4. Discussion
In order to test whether different reanalysis data give different results, we generate another ‘Master SOM’
using JRA-55 reanalysis data (Ebita et al. 2011; Kobayashi et al. 2016), and then apply the same
procedure to rank all ensembles listed in Table 1. The rankings (Supplementary Table 1) are similar to
those shown in Table 2, which is obtained using ERA5 reanalysis data. For example, the 25 ensembles of
CanESM5 are still ranked high, and the 32 ensembles of IPS-CM6A-LR are still ranked low, although there
are slight differences in the specific ranking numbers. Therefore, we consider that the SOM results
obtained from these two different reanalysis datasets are consistent.

The simulation capability of a model is affected by many factors, such as its dynamic core, parametric
scheme, resolution and so on. Our research results show that the model's ability to simulate Z500 does
not seem to have much to do with resolution. The top ranked ensemble for the MR metric, the r10i1p1f1
ensemble of CanESM5, has a relatively coarse spatial resolution of 500 km, while the second ranked
r1i1p1f1 ensemble of NorESM2-MM has a relatively fine horizontal resolution of 100 km. The lower-
ranking ensembles are mainly from the IPSL-CM6A-LR and INM-CM5-0 models, with resolutions of 250
km and 100 km, respectively. However, we have only four different resolutions here, 500 km, 250 km, 100
km, and 50 km, and there is only one ensemble with 50-km resolution, so we cannot draw a significant
conclusion. Subsequent work needs to add more samples with different resolutions to analyze the
relationship between circulation simulation skills and model resolution. In addition, the influence of
different dynamic cores and parameterization schemes on the circulation simulation is worth further
analysis.

Extreme events have seriously affected the world in recent years (Kong et al. 2020; Lee et al. 2020; Li D. et
al. 2020; Lu et al. 2020; Meehl et al. 2004). Many previous studies have pointed out the close connections
between circulation and extreme weather events (Boschat et al. 2014; Ding et al. 2011; Horton et al. 2015;
Li et al. 2018; Liu et al. 2015; Pezza et al. 2011; Raymond et al. 2017). As mentioned above, the
circulation pattern of node e4 favors the occurrence of extreme high temperature and heavy rainfall
events in summer. Also, node e4 has a long duration (Figure 4), which will be more likely to lead to long
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lasting extreme high temperature events and even compound extreme events (Faranda et al. 2020). Our
next work will focus on the extent to which extreme events in Asia, such as extreme high temperatures
and heavy precipitation, are affected by the circulation, and how the circulation affects these extreme
events. If these issues can be studied thoroughly, it will help improve the accuracy of projections of
extreme events and reduce the economic losses and casualties in Asia caused by extreme events.

5. Conclusions
The Asian summer climate is significantly affected by the large-scale atmospheric circulation. The ability
of models to simulate circulation characteristics is one of the most important factors affecting the future
progress of Asian regional climate research. This paper uses the SOM method to evaluate the ability of
CMIP6 models in simulating Z500 in the Asian region. Our results show that the r10i1p1f1 ensemble of
CanESM5 is the best ensemble for frequency performance, and it is also the top ensemble for
comprehensive performance, measured as the MR metric. The r1i1p1f1 ensemble of NorESM2-MM is the
best ensemble for persistence performance, and the r8i1p1f1 ensemble of MPI-ESM1-2-LR is the top
ensemble for transition performance. The r1i1p1f1 ensemble of INM-CM4-8 is the lowest ranked
ensemble for frequency performance and persistence performance. The r6i1p1f1 ensemble of IPSL-
CM6A-LR has the lowest transition ranking. The r1i1p1f1 ensemble of INM-CM5-0 is the ensemble with
the lowest ranking according to the MR metric. Generally speaking, the rankings of different ensembles
from the same model are relatively close. For example, the MR rankings of the 25 ensembles of CanESM5
are relatively high, whereas the MR rankings of the 32 ensembles of IPSL-CM6A-LR are relatively low. In
addition, pairwise correlation coefficients between the frequency performance, persistence performance
and transition performance are all around 0.5 and significant, which means that good simulation skill for
one type of circulation characteristic (like frequency) is related to skills in simulating other types of
circulation characteristics (persistence and transition).

Judging from the pdf distributions of the western ridge point index and the northern boundary position
index of the WNPSH, the top-ranked ensembles indeed simulate the position of the WNPSH better,
although it is a little farther west and south than in reality, indicating that the rankings based on the SOM
method are credible. The lower-ranked ensembles mainly simulate the WNPSH farther eastward and
northward. The simulation of the western ridge point index is 30° farther east, and the simulation of the
northern boundary position index is 10° farther north. Overall, the evaluation of the WNPSH’s location
supports the rankings based on the SOM method.
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Figure 1

The “violin” plot showing pattern correlations under different node configurations between each daily
absolute 500 hPa geopotential height and the SOM node it was assigned to, displaying the mean (black
line), median (red line), and probability distribution (gray violin).
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Figure 2

Master 20 node (4 × 5) SOM derived from ERA5 daily absolute 500 hPa geopotential height (shading and
black contours every 40 gpm) in summer (June–August) over 1979–2014. In terms of the node
referencing, node ‘a1’ refers to the node in the top-left corner of the SOM plane and node ‘e4’ refers to the
node in the bottom-right corner. Note: The designations employed and the presentation of the material on
this map do not imply the expression of any opinion whatsoever on the part of Research Square
concerning the legal status of any country, territory, city or area or of its authorities, or concerning the
delimitation of its frontiers or boundaries. This map has been provided by the authors.

Figure 3

Contour plots of node frequencies corresponding to (a) the Master SOM from ERA5, (b) the highest
ranked ensemble for frequency performance, and (c) the lowest ranked ensemble for frequency
performance. The highest/lowest ranked ensembles for frequency performance are defined here based
on the correlation coefficients of frequency metrics between ensembles and ERA5. Particular node
frequencies statistically (at p < 0.05) above or below those expected values by chance are shown in red.
Node locations correspond to those in Figure 2. The correlation coefficient between ERA5 and (b) the
highest ranked ensemble for frequency performance is 0.73, while the correlation coefficient between
ERA5 and (c) the lowest ranked ensemble for frequency performance is 0.21.
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Figure 4

Line graphs of persistence metric corresponding to ERA5 (black line), the highest ranked ensemble for
persistence performance (red line), and the lowest ranked ensemble for persistence performance (blue
line). The highest/lowest ranked ensembles of persistence performance are defined here based on the
correlation coefficients of persistence metrics between ensembles and ERA5. Node locations correspond
to those in Figure 2. The correlation coefficient between ERA5 and the highest ranked ensemble for
persistence performance is 0.97, while the correlation coefficient between ERA5 and the lowest ranked
ensemble for persistence performance is 0.39.



Page 27/29

Figure 5

Transition probability plots (grayscale indicates probability) for (a) ERA5, (b) the highest ranked ensemble
for transition performance, and (c) the lowest ranked ensemble for transition performance. The
highest/lowest ranked ensembles for transition performance are defined here based on the correlation
coefficients of transition metrics between ensembles and ERA5. Node locations correspond to those in
Figure 2. The correlation coefficient between ERA5 and (b) the highest ranked ensemble for transition
performance is 0.86, while the correlation coefficient between ERA5 and (c) the lowest ranked ensemble
for transition performance is 0.37.

Figure 6

Scatterplots showing relationship between the performance of different metrics in the various CMIP6
ensembles and ERA5. The correlation coefficients between (a) frequency performance and persistence
performance, (b) frequency performance and transition performance and (c) persistence performance
and transition performance are 0.45, 0.57 and 0.50, respectively.
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Figure 7

Probability density function distribution of the WNPSH western ridge point index from ERA5 (black curve)
and the 10 highest ranked ensembles (red curve) and 10 lowest ranked ensembles (blue curve) after
fitting to normal distributions.
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Figure 8

Probability density function distribution of the WNPSH northern boundary position index of ERA5 (black
curve) and the 10 ranked ensembles (red curve) and 10 lowest ranked ensembles (blue curve) after fitting
to normal distributions.
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