[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68. 394-424. doi: 10.3322/caac.21492.
[2] D. Sargent, A. Sobrero, A. Grothey, M.J. O'Connell, M. Buyse, T. Andre, et al. (2009). Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27. 872-7. doi: 10.1200/jco.2008.19.5362.
[3] C.M. Booth, S. Nanji, X. Wei, Y. Peng, J.J. Biagi, T.P. Hanna, et al. (2016). Use and Effectiveness of Adjuvant Chemotherapy for Stage III Colon Cancer: A Population-Based Study. Journal of the National Comprehensive Cancer Network : JNCCN 14. 47-56. doi: 10.6004/jnccn.2016.0006.
[4] T. Andre, A. de Gramont, D. Vernerey, B. Chibaudel, F. Bonnetain, A. Tijeras-Raballand, et al. (2015). Adjuvant Fluorouracil, Leucovorin, and Oxaliplatin in Stage II to III Colon Cancer: Updated 10-Year Survival and Outcomes According to BRAF Mutation and Mismatch Repair Status of the MOSAIC Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 33. 4176-87. doi: 10.1200/jco.2015.63.4238.
[5] M.A. Shah, L.A. Renfro, C.J. Allegra, T. Andre, A. de Gramont, H.J. Schmoll, et al. (2016). Impact of Patient Factors on Recurrence Risk and Time Dependency of Oxaliplatin Benefit in Patients With Colon Cancer: Analysis From Modern-Era Adjuvant Studies in the Adjuvant Colon Cancer End Points (ACCENT) Database. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 34. 843-53. doi: 10.1200/jco.2015.63.0558.
[6] R. Gray, J. Barnwell, C. McConkey, R.K. Hills, N.S. Williams, and D.J. Kerr. (2007). Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet (London, England) 370. 2020-9. doi: 10.1016/s0140-6736(07)61866-2.
[7] N.W. Wilkinson, G. Yothers, S. Lopa, J.P. Costantino, N.J. Petrelli, and N. Wolmark. (2010). Long-term survival results of surgery alone versus surgery plus 5-fluorouracil and leucovorin for stage II and stage III colon cancer: pooled analysis of NSABP C-01 through C-05. A baseline from which to compare modern adjuvant trials. Annals of surgical oncology 17. 959-66. doi: 10.1245/s10434-009-0881-y.
[8] A. Costas-Chavarri, G. Nandakumar, S. Temin, G. Lopes, A. Cervantes, M. Cruz Correa, et al. (2019). Treatment of Patients With Early-Stage Colorectal Cancer: ASCO Resource-Stratified Guideline. Journal of global oncology 5. 1-19. doi: 10.1200/jgo.18.00214.
[9] J. Kannarkatt, J. Joseph, P.C. Kurniali, A. Al-Janadi, and B. Hrinczenko. (2017). Adjuvant Chemotherapy for Stage II Colon Cancer: A Clinical Dilemma. Journal of oncology practice 13. 233-241. doi: 10.1200/jop.2016.017210.
[10] G.M. Boland, G.J. Chang, A.B. Haynes, Y.J. Chiang, R. Chagpar, Y. Xing, et al. (2013). Association between adherence to National Comprehensive Cancer Network treatment guidelines and improved survival in patients with colon cancer. Cancer 119. 1593-601. doi: 10.1002/cncr.27935.
[11] L. Casadaban, G. Rauscher, M. Aklilu, D. Villenes, S. Freels, and A.V. Maker. (2016). Adjuvant chemotherapy is associated with improved survival in patients with stage II colon cancer. Cancer 122. 3277-3287. doi: 10.1002/cncr.30181.
[12] R.B. Hines, A. Barrett, P. Twumasi-Ankrah, D. Broccoli, K.K. Engelman, J. Baranda, et al. (2015). Predictors of guideline treatment nonadherence and the impact on survival in patients with colorectal cancer. Journal of the National Comprehensive Cancer Network : JNCCN 13. 51-60. doi: 10.6004/jnccn.2015.0008.
[13] A.B. Benson, A.P. Venook, M.M. Al-Hawary, L. Cederquist, Y.J. Chen, K.K. Ciombor, et al. (2018). NCCN Guidelines Insights: Colon Cancer, Version 2.2018. Journal of the National Comprehensive Cancer Network : JNCCN 16. 359-369. doi: 10.6004/jnccn.2018.0021.
[14] J. Jiang, T. Ma, W. Xi, C. Yang, J. Wu, C. Zhou, et al. (2019). Pre-treatment inflammatory biomarkers predict early treatment response and favorable survival in patients with metastatic colorectal cancer who underwent first line cetuximab plus chemotherapy. Cancer management and research 11. 8657-8668. doi: 10.2147/cmar.S211089.
[15] I.H. Kim, J.E. Lee, J.H. Yang, J.W. Jeong, S. Ro, and M.A. Lee. (2018). Clinical significance of changes in systemic inflammatory markers and carcinoembryonic antigen levels in predicting metastatic colorectal cancer prognosis and chemotherapy response. Asia-Pacific journal of clinical oncology 14. 239-246. doi: 10.1111/ajco.12784.
[16] M. Shibutani, H. Nagahara, T. Fukuoka, Y. Iseki, K. Hirakawa, and M. Ohira. (2019). Efficacy of Adjuvant Chemotherapy According to the Classification of Recurrence Risk Based on Systemic Inflammatory Markers in Patients With Liver Metastases of Colorectal Cancer. Anticancer research 39. 5039-5045. doi: 10.21873/anticanres.13695.
[17] M.X. Li, X.M. Liu, X.F. Zhang, J.F. Zhang, W.L. Wang, Y. Zhu, et al. (2014). Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. International journal of cancer 134. 2403-13. doi: 10.1002/ijc.28536.
[18] J. Sun, X. Chen, P. Gao, Y. Song, X. Huang, Y. Yang, et al. (2016). Can the Neutrophil to Lymphocyte Ratio Be Used to Determine Gastric Cancer Treatment Outcomes? A Systematic Review and Meta-Analysis. Disease markers 2016. 7862469. doi: 10.1155/2016/7862469.
[19] C. Lu, P. Gao, Y. Yang, X. Chen, L. Wang, D. Yu, et al. (2017). Prognostic evaluation of platelet to lymphocyte ratio in patients with colorectal cancer. Oncotarget 8. 86287-86295. doi: 10.18632/oncotarget.21141.
[20] Y. Yang, P. Gao, Y. Song, J. Sun, X. Chen, J. Zhao, et al. (2016). The prognostic nutritional index is a predictive indicator of prognosis and postoperative complications in gastric cancer: A meta-analysis. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 42. 1176-82. doi: 10.1016/j.ejso.2016.05.029.
[21] J.C. Chan, D.L. Chan, C.I. Diakos, A. Engel, N. Pavlakis, A. Gill, et al. (2017). The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Annals of surgery 265. 539-546. doi: 10.1097/sla.0000000000001743.
[22] K.E. de Visser, and J. Jonkers. (2009). Towards understanding the role of cancer-associated inflammation in chemoresistance. Current pharmaceutical design 15. 1844-53. doi: 10.2174/138161209788453239.
[23] M. Jinushi, and Y. Komohara. (2015). Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochimica et biophysica acta 1855. 123-30. doi: 10.1016/j.bbcan.2015.01.002.
[24] H. Sun, P. Hu, J. Du, and X. Wang. (2018). Predictive value of inflammatory indexes on the chemotherapeutic response in patients with unresectable lung cancer: A retrospective study. Oncology letters 15. 4017-4025. doi: 10.3892/ol.2018.7781.
[25] R.D. Sanderson, M. Elkin, A.C. Rapraeger, N. Ilan, and I. Vlodavsky. (2017). Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. The FEBS journal 284. 42-55. doi: 10.1111/febs.13932.
[26] K.P. Olive. (2017). Fanning the Flames of Cancer Chemoresistance: Inflammation and Anticancer Therapy. Journal of oncology practice 13. 181-183. doi: 10.1200/jop.2017.021154.
[27] T. Onodera, N. Goseki, and G. Kosaki. (1984). [Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients]. Nihon Geka Gakkai zasshi 85. 1001-5. doi:
[28] M. Bonetti, and R.D. Gelber. (2004). Patterns of treatment effects in subsets of patients in clinical trials. Biostatistics (Oxford, England) 5. 465-81. doi: 10.1093/biostatistics/5.3.465.
[29] A.A. Lazar, B.F. Cole, M. Bonetti, and R.D. Gelber. (2010). Evaluation of treatment-effect heterogeneity using biomarkers measured on a continuous scale: subpopulation treatment effect pattern plot. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28. 4539-44. doi: 10.1200/jco.2009.27.9182.
[30] L. Zhao, B. Claggett, L. Tian, H. Uno, M.A. Pfeffer, S.D. Solomon, et al. (2016). On the restricted mean survival time curve in survival analysis. Biometrics 72. 215-21. doi: 10.1111/biom.12384.
[31] X. Wang, and D.E. Schaubel. (2018). Modeling restricted mean survival time under general censoring mechanisms. Lifetime data analysis 24. 176-199. doi: 10.1007/s10985-017-9391-6.
[32] R.J. Little, and D.B. Rubin. (2000). Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annual review of public health 21. 121-45. doi: 10.1146/annurev.publhealth.21.1.121.
[33] D.B. Rubin. (1997). Estimating causal effects from large data sets using propensity scores. Annals of internal medicine 127. 757-63. doi: 10.7326/0003-4819-127-8_part_2-199710151-00064.
[34] R.B. D'Agostino, Jr. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in medicine 17. 2265-81. doi: 10.1002/(sici)1097-0258(19981015)17:19<2265::aid-sim918>3.0.co;2-b.
[35] H.S. Hochster, L.L. Hart, R.K. Ramanathan, B.H. Childs, J.D. Hainsworth, A.L. Cohn, et al. (2008). Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26. 3523-9. doi: 10.1200/jco.2007.15.4138.
[36] S. Dueland, A.H. Ree, K.K. Groholt, M.G. Saelen, S. Folkvord, K.H. Hole, et al. (2016). Oxaliplatin-containing Preoperative Therapy in Locally Advanced Rectal Cancer: Local Response, Toxicity and Long-term Outcome. Clinical oncology (Royal College of Radiologists (Great Britain)) 28. 532-9. doi: 10.1016/j.clon.2016.01.014.
[37] C.S. Roxburgh, and D.C. McMillan. (2010). Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Future oncology (London, England) 6. 149-63. doi: 10.2217/fon.09.136.
[38] J. Yang, H. Xu, X. Guo, J. Zhang, X. Ye, Y. Yang, et al. (2018). Pretreatment Inflammatory Indexes as Prognostic Predictors for Survival in Colorectal Cancer Patients Receiving Neoadjuvant Chemoradiotherapy. Scientific reports 8. 3044. doi: 10.1038/s41598-018-21093-7.
[39] M. Murata. (2018). Inflammation and cancer. Environmental health and preventive medicine 23. 50. doi: 10.1186/s12199-018-0740-1.
[40] Kwon HC, Kim SH, Oh SY, Lee S, Lee JH, Choi HJ, et al. Clinical significance of preoperative neutrophil-lymphocyte versus platelet-lymphocyte ratio in patients with operable colorectal cancer. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2012;17(3):216-22. doi: 10.3109/1354750X.2012.656705.
[41] Ozawa T, Ishihara S, Nishikawa T, Tanaka T, Tanaka J, Kiyomatsu T, et al. The preoperative platelet to lymphocyte ratio is a prognostic marker in patients with stage II colorectal cancer. International journal of colorectal disease. 2015;30(9):1165-71. doi: 10.1007/s00384-015-2276-9.
[42] Szkandera J, Pichler M, Absenger G, Stotz M, Arminger F, Weissmueller M, et al. The elevated preoperative platelet to lymphocyte ratio predicts decreased time to recurrence in colon cancer patients. American journal of surgery. 2014;208(2):210-4. doi: 10.1016/j.amjsurg.2013.10.030.
[43] Lee IH, Hwang S, Lee SJ, Kang BW, Baek D, Kim HJ, et al. Systemic Inflammatory Response After Preoperative Chemoradiotherapy Can Affect Oncologic Outcomes in Locally Advanced Rectal Cancer. Anticancer research. 2017;37(3):1459-65. doi: 10.21873/anticanres.11470.
[44] You J, Zhu GQ, Xie L, Liu WY, Shi L, Wang OC, et al. Preoperative platelet to lymphocyte ratio is a valuable prognostic biomarker in patients with colorectal cancer. Oncotarget. 2016;7(18):25516-27. doi: 10.18632/oncotarget.8334.
[45] M. Labelle, S. Begum, and R.O. Hynes. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer cell 20. 576-90. doi: 10.1016/j.ccr.2011.09.009.
[46] L.J. Gay, and B. Felding-Habermann. (2011). Contribution of platelets to tumour metastasis. Nature reviews. Cancer 11. 123-34. doi: 10.1038/nrc3004.
[47] T. Tsuji, T. Sawai, H. Yamashita, H. Takeshita, T. Nakagoe, H. Shindou, et al. (2004). Platelet-derived endothelial cell growth factor expression is an independent prognostic factor in colorectal cancer patients after curative surgery. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 30. 296-302. doi: 10.1016/j.ejso.2003.11.019.
[48] J.S. Palumbo, K.E. Talmage, J.V. Massari, C.M. La Jeunesse, M.J. Flick, K.W. Kombrinck, et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105. 178-85. doi: 10.1182/blood-2004-06-2272.
[49] C.N. Jenne, R. Urrutia, and P. Kubes. (2013). Platelets: bridging hemostasis, inflammation, and immunity. International journal of laboratory hematology 35. 254-61. doi: 10.1111/ijlh.12084.
[50] S. Raungkaewmanee, S. Tangjitgamol, S. Manusirivithaya, S. Srijaipracharoen, and T. Thavaramara. (2012). Platelet to lymphocyte ratio as a prognostic factor for epithelial ovarian cancer. Journal of gynecologic oncology 23. 265-73. doi: 10.3802/jgo.2012.23.4.265.
[51] C.S. Roxburgh, and D.C. McMillan. (2014). Cancer and systemic inflammation: treat the tumour and treat the host. British journal of cancer 110. 1409-12. doi: 10.1038/bjc.2014.90.
[52] U. De Giorgi, M. Mego, E. Scarpi, M. Giuliano, A. Giordano, J.M. Reuben, et al. (2012). Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clinical breast cancer 12. 264-9. doi: 10.1016/j.clbc.2012.04.004.
[53] S.A. Rosenberg. (2001). Progress in human tumour immunology and immunotherapy. Nature 411. 380-4. doi: 10.1038/35077246.
[54] D.D. Wagner. (2005). New links between inflammation and thrombosis. Arteriosclerosis, thrombosis, and vascular biology 25. 1321-4. doi: 10.1161/01.Atv.0000166521.90532.44.
[55] R.L. Gross, and P.M. Newberne. (1980). Role of nutrition in immunologic function. Physiological reviews 60. 188-302. doi: 10.1152/physrev.1980.60.1.188.
[56] J. Volz, E. Mammadova-Bach, J. Gil-Pulido, R. Nandigama, K. Remer, L. Sorokin, et al. (2019). Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood 133. 2696-2706. doi: 10.1182/blood.2018877043.
[57] R.K. Jain. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (New York, N.Y.) 307. 58-62. doi: 10.1126/science.1104819.
[58] M.S. Beg, R.S. Komrokji, K. Ahmed, and M.M. Safa. (2008). Oxaliplatin-induced immune mediated thrombocytopenia. Cancer chemotherapy and pharmacology 62. 925-7. doi: 10.1007/s00280-007-0675-5.
[59] B.R. Curtis, J. Kaliszewski, M.B. Marques, M.W. Saif, L. Nabelle, J. Blank, et al. (2006). Immune-mediated thrombocytopenia resulting from sensitivity to oxaliplatin. American journal of hematology 81. 193-8. doi: 10.1002/ajh.20516.
[60] Y. Ito, S. Kobuchi, R. Shimizu, and Y. Katsuyama. (2018). Pharmacokinetic and toxicodynamic evaluation of oxaliplatin-induced neuropathy and hematological toxicity in rats. Cancer chemotherapy and pharmacology 81. 155-161. doi: 10.1007/s00280-017-3485-4.
[61] A.S. Zandvliet, W.S. Siegel-Lakhai, J.H. Beijnen, W. Copalu, M.C. Etienne-Grimaldi, G. Milano, et al. (2008). PK/PD model of indisulam and capecitabine: interaction causes excessive myelosuppression. Clinical pharmacology and therapeutics 83. 829-39. doi: 10.1038/sj.clpt.6100344.