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Slow slip events usually occur downdip of seismogenic zones in subduction megathrusts and6

crustal faults, with rupture speeds much slower than earthquakes. The empirical moment-7

duration scaling relation can help constrain the physical mechanism of slow slip events, yet8

it is still debated whether this scaling is linear or cubic and a fundamental model unifying9

slow slip events and earthquakes is still lacking. Here I present numerical simulations that10

show that slow slip events are regular earthquakes with negligible dynamic-wave effects. A11

continuum of rupture speeds, from arbitrarily-slow speeds up to the S-wave speed, is pri-12

marily controlled by the stress drop and a transition slip rate above which the fault friction13

transitions from rate-weakening behaviour to rate-strengthening behaviour. This contin-14

uum includes tsunami earthquakes, whose rupture speeds are about one-third of the S-wave15

speed. These numerical simulation results are predicted by the three-dimensional theory of16

dynamic fracture mechanics of elongated ruptures. This fundamental model unifies slow17

slip events and earthquakes, reconciles the observed moment-duration scaling relations, and18

opens new avenues for understanding earthquakes through investigations of the kinematics19

and dynamics of frequently occurring slow slip events.20
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Slow slip events (SSEs) have been widely observed downdip of seismogenic zones in sub-21

duction megathrusts worldwide and in crustal faults1–9, and possibly trigger large megathrust22

earthquakes10–13, therefore understanding the physical mechanisms of SSEs is of increasing im-23

portance. SSEs usually occur in an elongated section of the deep plate interface with rupture24

speeds much slower than megathrust earthquakes whose ruptures are also elongated (Figure 1a).25

Earthquake ruptures on elongated faults can steadily propagate at speeds from slower than S-wave26

up to P-wave speed, depending on the balance between dissipated and potential energies14. SSE27

ruptures can also steadily propagate on elongated faults15–17, facilitated by a frictional transition28

from rate-weakening at slow slip rates to rate-strengthening at high slip rates that has been ob-29

served experimentally18–28. It has been reported that rupture speeds, on a continuum from SSE30

speeds up to earthquake speeds, is controlled by shear stress drop in laboratory experiments21, 29, 30
31

and in a one-dimensional (1D) continuous Burridge-Knopoff model31, but the mechanical rela-32

tionship between SSE and earthquake ruptures on elongated faults is not completely understood.33

Empirical moment-duration scaling relations32–40 have been used to compare the physical mech-34

anisms of SSEs and earthquakes, yet it is still debated whether the moment-duration scaling of35

SSEs is linear32, 33 or cubic34–36 and a fundamental model that can unify SSEs and earthquakes is36

still missing. Here, I show that slow slip events are regular earthquakes with negligible dynamic-37

wave effects and the debated scaling behaviours of SSEs can be attributed to different length-scales38

of stress heterogeneities in faults.39

2



General mechanism for steady SSEs and earthquakes40

Previous theory41 predicted that dip-slip ruptures on elongated faults in 3D elastic medium can41

steadily propagate at any speed up to the S-wave speed, if fracture energy increases with speed.42

Here, I test this hypothesis and realise such a continuum of rupture speeds (Figure S1A) in numeri-43

cal simulations controlled by a rate-and-state friction law with rate-weakening behaviour at low slip44

rates and rate-strengthening behaviour at high slip rates, as observed in laboratory experiments18–28
45

(Methods A1). The numerical simulations show that the steady rupture speed (vr/vs) is primar-46

ily controlled by two parameters (Figure 2a): the stress drop (∆τ/σ) and the critical slip rate47

(Vcµ/σvs) above which the fault friction transitions from rate-weakening to rate-strengthening.48

Here, the quantities are nondimensionalized by the S-wave speed (vs), effective normal stress (σ),49

and shear modulus (µ)42. The rupture speed increases monotonically with the stress drop and crit-50

ical slip rate. The change of rupture speed controlled by the stress drop is around one order of51

magnitude, while that controlled by the critical slip rate can be more than 6 orders of magnitude.52

Remarkably, these two parameters enable steady rupture propagation at a continuum of rupture53

speeds, including speeds of ultra-slow SSEs (≪ vs), tsunami earthquakes43–46 (∼ 1

3
vs), and fast54

earthquakes (> 0.5vs).55

The dependence of rupture speed on stress drop is highly consistent for various values of56

critical slip rate except for the fast earthquakes (Figure S1b). The fast earthquakes deviate from57

the general trend of SSEs and tsunami earthquakes because of dynamic-wave effects. The effects58

of dynamic waves on rupture propagation have been theoretically investigated41 and characterised59
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by a nondimensional Lorentz contraction factor, αs =
√

1− (vr/vs)2, a well-known function in60

earthquake dynamics47. In addition, fracture mechanics theory shows that the analytical solutions61

of steady ruptures depend on vr/vs/αs rather than vr/vs (Method A4). Therefore, the effects of62

dynamic waves are trivial when vr/vs < 0.5 (that is vr/vs/αs ≈ vr/vs), a speed range including63

SSEs and tsunami earthquakes, and become significant as vr approaches vs (that is vr/vs/αs →64

∞). Accounting for the Lorentz factor, I find all values of rupture speeds of SSEs, tsunami and fast65

earthquakes, after normalization by the critical slip rate, collapse onto a universal curve (Figure 2b),66

which is predicted by the 3D theory of dynamic fracture mechanics of elongated ruptures (Methods67

A3 & A4). All values of peak slip rate also collapse onto the theoretical curve (Figure 2c). The68

collapses of the parameters and their consistency with the theory show that SSEs and earthquakes69

are mechanically the same and the link between them is the Lorentz contraction factor.70

Steady rupture propagation with a continuum of speeds can be understood and quantitatively

predicted by the 3D theory of dynamic fracture mechanics of elongated ruptures (Figure 1b). A

basic condition for steady ruptures is the energy balance condition, Gc = G0, where Gc is the

dissipated fracture energy and G0 is the energy release rate of subshear dip-slip ruptures41. In

addition, a stability condition is necessary (Methods A5)

dGc

dVp

>
dG0

dVp

, (1)

where the peak slip rate Vp is interchangeable with the rupture speed vr due to their monotonically71

increasing relation. Equation 1 requires that Gc increases with Vp faster than G0, to suppress any72

tiny perturbation acting on the steady ruptures. The numerical simulations show that in all the73
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simulated steady ruptures Gc agrees with G0 within 3% (Figure S2a), which validates the energy74

balance condition. For steady ruptures, Gc increases with Vp (Figure S2b) while G0 is a prescribed75

parameter independent of Vp (Methods A3), which validates the stability condition. The validations76

show that the two theoretical conditions are generic and their combination with a specific friction77

law leads to a practical rupture-tip equation-of-motion for steady ruptures on elongated faults.78

Along-strike rupture segmentation79

Further evidence of non-steady ruptures due to along-strike fault heterogeneities, such as piecewise-80

constant distributions of stresses, also demonstrate that SSEs and earthquakes are mechanically the81

same (Figure 3). When a steady rupture propagates into a segment of higher shear stress, the rup-82

ture jumps from one steady state to another via a transient (Figure 3a). The rupture speed transients83

of SSEs are very similar to those of tsunami earthquakes, while the transition distances of fast84

earthquakes are quantitatively longer due to the dynamic-wave effects. On the other hand, if the85

shear stress of the segment is lower than the minimum for steady ruptures, the segment behaves as86

a barrier, the rupture decelerates and finally arrests after penetrating a certain distance (Figure 3b).87

In general, the arresting distance increases with the peak slip rate before the rupture reaches the88

barrier, consistently between SSEs and tsunami earthquakes, while the arresting distances of fast89

earthquakes are longer due to the dynamic-wave effects. These non-steady ruptures show that the90

rupture behaviours of SSEs are the same as tsunami earthquakes and the quantitative differences91

between slow and fast earthquakes are caused by dynamic-wave effects.92
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The reason that fast earthquakes have longer transition and arresting distances than SSE93

and tsunami earthquakes can be understood by the 3D theory of dynamic fracture mechanics of94

elongated ruptures. Rupture propagation speed on elongated faults can be predicted by a theoretical95

rupture-tip equation-of-motion41: F (Gc/G0) = M(vr/vs) v̇r, where F is an apparent force, M is96

an apparent mass, v̇r is the rupture acceleration, the time derivative of rupture speed vr, and Gc/G097

is the energy ratio. The apparent mass M(vr/vs) is nearly constant when vr/vs < 0.5 and increases98

to infinity as vr approaches vs (Methods A5), which is similar to the relativistic mass in Einstein’s99

theory of relativity that contains the same Lorentz factor with the S-wave speed replaced by the100

speed of light. Because of this inertial effect, larger mass M(vr/vs) due to high rupture speeds101

(vr → vs) makes ruptures harder to stop within a barrier or to transition to another steady state,102

which therefore explains why the fast earthquakes require longer transition and arresting distances.103

Geophysical observations8, 36, 48, 49 show that SSEs usually rupture each segment downdip of104

the seismogenic zone separately, but some SSEs can occasionally bridge multiple segments and105

reach larger magnitudes, which conceptually resembles the supercycle behaviour of large megath-106

rusts earthquakes occurring in seismogenic zones50, 51. This supercycle-like behaviour of SSEs can107

be explained by the time-dependent evolution of SSE segmentation. Both the theory and numer-108

ical simulations demonstrate that there is a critical stress drop for steady runaway SSEs (Figure109

2b & Method A6), ∆τ run ≈ 0.01σ where σ is the effective normal stress, above which the sta-110

bility condition (equation 1) can be satisfied. On elongated dip-slip faults, a critical final slip is111

approximately related to the critical stress drop by Drun = 2W∆τ run/πµ, where W is the SSE112

fault width and µ is the shear modulus14. SSE fault segments need to accumulate sufficient slip113
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deficit (that is > 0.02Wσ/πµ) to be capable of accommodating runaway SSE ruptures, otherwise114

they act as barriers to stop rupture propagation. The recurrence interval of runaway SSE ruptures115

can be estimated by the ratio of Drun to the slip deficit rate on the fault segments during the inter-116

SSE period. The observed slip deficit rates on SSE fault segments in subduction zones globally117

are diverse, ranging from < 10% up to > 50% of the plate convergence rate8, 52–54, which can be118

explained by different values of fault properties in earthquake cycle simulations55. As rough lower119

bound estimates, values of σ ∼ 0.1 − 1 MPa, W ∼ 40 km, µ ∼ 30 GPa, and 100% of the plate120

convergence rate of 10−9 m/s yield ∆τ run ∼ 0.001− 0.01 MPa and recurrence times of ∼ 0.4− 4121

months, which are comparable to the typical stress drops, 0.001 − 0.2 MPa33, 36, 56, and typical re-122

currence times, months−years8, 57, of SSEs globally. Both theoretical and observational estimates123

of the recurrence times of SSEs are much shorter than those of large earthquakes, which are of124

the order of tens or hundreds of years51. Therefore, future investigations of the kinematics and125

dynamics of frequent SSEs shall enable the building of a comprehensive supercycle model, which126

in turn will help to better understand the supercycle behaviour of the large devastating earthquakes.127

Observations of SSEs and earthquakes128

The comparison of moment-duration scaling relations between SSEs and earthquakes has been129

considered in discussions of their physical mechanisms32–40, however the moment-duration relation130

of SSEs observed in a particular environment features a cubic scaling34–36 that is radically different131

from the linear scaling observed in a global compilation32, 33. Here, I show that the different scaling132

behaviours can be attributed to different length-scales of stress heterogeneities: heterogeneity of133

7



shear stress within a fault can produce a cubic scaling, whereas heterogeneity of effective normal134

stress among different fault environments produces a linear scaling. For elongated ruptures, the135

relation58 between moment (M0) and duration (T ) is M0 ∝ ∆τW 2L, where L = vrT is the rupture136

length and ∆τ and vr are the stress drop and rupture speed, respectively. Defining ∆τ ∝ Lα and137

vr ∝ Lβ leads to M0 ∝ T
1+α
1−β , where α and β are constant coefficients. For a homogeneous model138

(Methods A7), ruptures with different values of ∆τ produce a linear moment-duration scaling139

(Figure 4a). However if the shear stress distribution in the fault is heterogeneous, and in particular140

if it decays linearly away from the nucleation area (Methods A7), the simulated models result in141

α = 0.5 and β = 0.5, which leads to a cubic scaling relation (Figure 4a & S3). Although this is142

one specific case of heterogeneity, it demonstrates that a cubic scaling relation can be produced by143

heterogeneity of shear stress within a particular fault, as also observed in an SSE cycle model40.144

Moreover, such cubic scaling curve, assuming constant effective normal stress σ, can be diagonally145

shifted in the M0 − T space if σ systematically varies (Figure 4b), as predicted by the theoretical146

relations M0 ∝ σ and T ∝ σ (Method A7). A linear envelope scaling can be obtained by mixing147

data with diverse values of σ in different fault environments, which can explain the observed linear148

scaling based on a global compilation of slow earthquakes32, 33. In addition, another theoretical149

relation, T ∝ 1/Vc (Methods A7), predicts that as the critical slip rate increases the cubic scaling150

of SSEs can be shifted vertically toward that of earthquakes, which can reconcile the separation151

between the cubic scaling of SSEs and earthquakes.152

To explore a universal scaling relation in the global dataset that is consistent with fracture me-153

chanics theory, I calculate the rupture speed and peak slip rate of the SSEs and tsunami earthquakes154
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observed globally36, 44–46, 59. The rupture speed is estimated by vr = L/T , with an uncertainty of155

a factor of 2 for bilateral ruptures. The peak slip rate is estimated by Vp = γD/τrise, where D is156

the slip, τrise is the rise time, and γ ≈ 20 is an empirical ratio between the peak and average slip157

rates in numerical simulations (Figure S4). For pulse ruptures on elongated faults, the rise time is158

approximately estimated by τrise = TW/L. In general, there is an increasing trend between the159

observed rupture speed and peak slip rate, enveloped by two theoretical predictions assuming con-160

stant strength drops of 5 MPa and 0.05 MPa (Figure 4c). Least squares regression between the161

nondimensionalized quantities of the global observations and the theoretical prediction constrains162

the best values of the critical slip rate and effective normal stress (Figure 4d): Vc = 2 × 10−9 m/s163

and σ = 0.2 MPa for the Cascadia subduction zone, Vc = 10−9 m/s and σ = 0.4 MPa for the Japan164

subduction zone, and Vc = 10−3 m/s and σ = 10 MPa for tsunami earthquakes worldwide.165

A continuum of rupture speeds from SSE speeds up to the S-wave speed has been reported in166

laboratory experiments for a wide range of stress drop29. The basic model developed here predicts167

that such a continuum of speeds shall prevail in natural environments if wide ranges of Vcµ/σvs168

and ∆τ/σ are available (Figure 2a). A wide range of Vc between 10−9 m/s and 10−2 m/s has been169

reported in laboratory friction experiments on both natural and synthetic fault gouges22–28. Other170

frictional mechanisms, such as fault gouge dilatancy with associated change in fluid pressure60–63,171

could also play a role in the frictional transition, but the values of Vcµ/σvs remain to be determined.172

If the values of Vc in the natural environments are as diverse as the laboratory observations, then173

continuous rupture speeds of SSEs are expected, otherwise, the current model predicts a rupture174

speed gap that depends on the unavailable range of Vcµ/σvs. So far, no large SSE (Mw > 6) of175
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vr > 1m/s has been detected (Figure 4c), although such SSEs would be detectable by continuous176

GPS. But, recent studies have made progress in detecting smaller SSEs by connecting seismic177

and geodetic data35, 64 or by examining the spatiotemporal features of tremors65 and low-frequency178

earthquakes66, whose rupture speeds might lie within the speed gap. More work is needed in the179

future that can either fill the observational gap of rupture speeds shown in Figure 4c, or explain180

why Vc in nature is not as diverse as in the laboratory observations.181

Earthquake ruptures on elongated faults can steadily propagate at speeds of ∼ 1

3
vs if Vcµ/σvs >182

10−4, which provides a new mechanism to explain the anomalously slow tsunami earthquakes43–46.183

Given σ = 10 MPa, values of Vc are required to be larger than 10−4 m/s, which is supported by184

laboratory experiments22, 25–27, although the frictional strength may change from rate-strengthening185

to rate-weakening at slip rates higher than 0.1 m/s due to the strong weakening mechanisms that186

facilitate the fast earthquakes25–27, 67. The narrow range of rate-strengthening behaviour between187

∼ 10−4 m/s and 0.1 m/s may explain the scarcity of tsunami earthquakes. The alternative expla-188

nations for tsunami earthquakes are low rigidity materials68, 69 and inelastic material within and/or189

around the fault70, and the density and size of asperities71, which remain to be confirmed by further190

investigations.191

Although the current theoretical model and previous studies35, 38, 65 have suggested a contin-192

uous spectrum of slip mode, further investigations are warranted to monitor and constrain rupture193

kinematics and dynamics of global SSEs over a wider spectrum of rupture speeds. The supercycle194

model of large earthquakes50, 51, which would enable assessment of the future seismic hazard, has195
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not yet been validated by at least one complete cycle of modern seismological data, due to their196

long recurrence intervals. The rupture behaviours of SSEs, whose recurrence intervals are much197

shorter than the large earthquakes, have been unified with regular earthquakes by the basic theory198

of rupture dynamics, and therefore can be used to understand the supercycle behaviour of large199

devastating earthquakes.200
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Methods201

A1. Quasi-dynamic SSE rupture simulations I consider a 3D dip-slip rupture problem on an202

infinitely long fault with finite seismogenic width W embedded in a full-space, linear elastic, ho-203

mogeneous medium. This 3D elongated rupture problem has been successfully approximated by204

a reduced-dimensionality (2.5D) model, which accounts for the elongated features while having a205

low computational cost15, 41. To facilitate a comprehensive comparison between numerical simula-206

tions and fracture mechanics theory, I investigate the rupture propagation of SSEs and earthquakes207

using 2.5D single-rupture simulations with prescribed initial conditions. The simulations of SSEs208

are quasi-dynamic, while the simulations of earthquakes are fully dynamic, as explained in Meth-209

ods A2. The shear modulus and S-wave speed of the medium are denoted µ and vs, respectively.210

The frictional strength, τ , of faults is controlled by a rate-and-state friction law with rate-

weakening behaviour at low slip rates and rate-strengthening behaviour at high slip rates72, which

has been used to investigate the rupture propagation of SSEs15–17, 73

τ = f ∗σ + aσ ln

(

V

V ∗

)

+ bσ ln

(

Vcθ

Dc

+ 1

)

, (2)

where σ is the effective normal stress, f ∗ and V ∗ are arbitrary reference values, Dc is the charac-

teristic slip distance, a and b are nondimensional parameters, V is the slip rate, θ is the state, and

Vc is a critical slip rate. Rock exhibits rate-weakening frictional behaviour when a − b < 0, and

the critical slip rate Vc controls the transition from rate-weakening to rate-strengthening15. The

evolution of state θ is described by the aging law74

θ̇ = 1−
V θ

Dc

, (3)
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where θ̇ is the time derivative of θ.211

For each single-rupture model, one of the primary parameters that affects the rupture propa-

gation is the initial shear stress τi, which equals to the frictional strength and is prescribed by the

values of initial slip rate Vi and state θi

τi = f ∗σ + aσ ln

(

Vi

V ∗

)

+ bσ ln

(

Vcθi
Dc

+ 1

)

, (4)

The nondimensional parameters, a/b and W/Lb, also affect the rupture propagation15, where

Lb =
µDc

bσ
. (5)

In this study, I fix the nondimensional ratios of a/b = 0.8 and W/Lb = 400, and systematically212

vary τi and Vc. The specific values of the frictional parameters are prescribed as: σ = 20 MPa,213

b = 0.015, W = 40 km, Dc = 10−3 m, f ∗ = 0.6, and V ∗ = 10−9 m/s; although the choice214

of them doesn’t affect the conclusion of this paper because both the computational and analytical215

results are presented in nondimensional form. To facilitate the comparison with fracture mechanics216

theory, the loading due to the plate convergence during rupture propagation is not considered and217

the systematically varied τi in this study represents different interseismic or inter-SSE phases.218

A nucleation zone of length 0.5W with higher slip rates (≥ 10Vc) is prescribed to smoothly219

nucleate unilateral ruptures. Outside the nucleation zone rupture propagation is spontaneous. A220

stronger nucleation, such as the overstressed nucleation condition, results in slight oscillations of221

rupture speed in the fully dynamic rupture models, but does not affect the steady rupture speed222

(Figure S5). I use the boundary element software QDYN75 for the quasi-dynamic SSE simulation,223
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where the fault is infinitely long and the fault slip is horizontally periodic with a prescribed length,224

11W . To avoid the interaction of the periodic fault segments, a buffing segment of length 5.5W is225

set, where the frictional behaviour is rate-strengthening with a > b. Sufficient numerical resolution226

is guaranteed by setting a small grid size (∆x), that is, Lc/∆x = 8. The simulated time is set long227

enough to capture the whole rupture propagation. For each single-rupture model, the rupture time228

on each node of faults is determined by a criterion of slip rate, 10Vi, and the rupture speed is229

computed based on the along-strike gradient of the rupture time.230

A2. Fully dynamic earthquake rupture simulations The 2.5D single-rupture simulations for231

earthquakes are fully dynamic, conducted by a spectral element software SEM2DPACK76. For a232

quantitative comparison between SSE and earthquake simulations, the same friction law and pa-233

rameters are assumed in the dynamic earthquake rupture simulations, except for larger values of234

Vc, and the additional thermal weakening67, 77 at slip rate > 0.1 m/s is not considered. Previous235

theoretical studies41 have suggested that the additional thermal weakening can affect the rupture236

speeds via controlling the dissipated78 and potential77 energies on faults, which remains to be quan-237

titatively investigated in the future. For simulations with rupture speeds close to the S-wave speed,238

a sufficiently large computational domain is set to avoid the effects of the reflected waves from239

the domain boundaries within the simulated time. For simulations with slow rupture speeds, the240

seismic radiation is relatively weak and can be well absorbed by the default absorbing boundaries241

in SEM2DPACK, and therefore, the simulated times are allowed to be several times longer than242

those for fast rupture speeds. The time step is set based on the Courant-Friedrichs-Lewy stability243

condition, and the grid size is the same as the quasi-dynamic SSE simulation, that is Lc/∆x = 8.244

14



A3. Energy balance of steady SSEs and earthquakes For SSE and earthquake ruptures on long

faults with finite width W , the energy release rate and dissipated fracture energy can be derived

in the theoretical framework of 3D dynamic fracture mechanics of elongated ruptures. The energy

release rate G0 is the rate of mechanical energy flow into the rupture tip per unit rupture advance,

which is dissipated by the fracture energy Gc for steady ruptures. For dip-slip faulting, the energy

release rate G0 depends on the static stress drop (∆τ ) and fault width:

G0 =
λ∆τ 2W

µ
, (6)

where λ is a geometrical factor, with λ = 1/π for a deep buried fault41. The fracture energy Gc

depends on the strength evolution on the fault79:

Gc =

∫ D

0

[τ(δ)− τ(D)] · dδ, (7)

where τ(δ) is the fault strength as a function of fault slip δ and D is the final slip. Equations 6 and245

7 are the generic definitions of energies of ruptures on elongated faults regardless of the specific246

friction law. Below, I propose an approach to estimate G0 and Gc under the framework of the247

V-shape rate-and-state friction law explained in Methods A1.248

G0 is a function of the static stress drop, the difference of shear stress before and after the

ruptures

∆τ = τi − τf , (8)

where τi are τf are the initial shear stress and final shear stress, respectively. Previous rupture

simulations of V-shape rate-and-state friction15 have shown that the fault strength approximately
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drops to the minimum steady-state strength and stays there until the end of the ruptures, which

is a feature different from the regular rate-and-state friction law with aging law80. The minimum

steady-state strength15 is

τf = f ∗σ + aσ ln

(

b− a

a

Vc

V ∗

)

+ bσ ln

(

a

b− a
+ 1

)

. (9)

Combining equations 4 and 8 yields the close-form static stress drop

∆τ = aσ ln
aVi

(b− a)Vc

+ bσ ln
Vcθi
Dc

+ 1
a

b−a
+ 1

. (10)

Equation 10 well predicts the numerical values of ∆τ in all the simulated steady models (Figure

S2c). Substituting equation 10 into equation 6 yields the theoretical energy release rate

G0 =
λb2σ2W

µ
·

[

a

b
ln

aVi

(b− a)Vc

+ ln
Vcθi
Dc

+ 1
a

b−a
+ 1

]2

. (11)

The main feature in equation 11 is that G0 only depends on the prescribed parameters and is249

independent of the peak slip rate Vp. As only τi and Vc are systematically investigated in this study,250

G0 can be written as G0(τi, Vc).251

Gc is an integral function of the fault strength τ(δ) about the slip δ. The numerical sim-

ulations show that fault strength governed by V-shape rate-and-state friction has two weakening

stages: the first stage accounts for the fast weakening process within the narrow cohesive zone and

the second stage accounts for the slow weakening process outside the cohesive zone (Figure S6).

In the first weakening stage, the strength drop ∆τp−r and the critical slip-weakening distance dc

16



can be well predicted by previous theoretical equations15

∆τp−r = bσ

[

ln
(Vcθi
3Dc

+ 1
)

− ln
(3Vc

Vp

+ 1
)

]

,

dc = Dc

[

ln
(Vcθi
3Dc

+ 1
)

− ln
(3Vc

Vp

+ 1
)

]

,

(12)

where Vp is the peak slip rate and the factor 3 is an approximation of the non-uniform slip rate

within the cohesive zone, which was proposed to be 2 by Hawthorne and Rubin15. Thus, the

fracture energy within the cohesive zone is estimated as

Gc1 =
1

2
dc∆τp−r =

1

2
bσDc

[

ln
(Vcθi
3Dc

+ 1
)

− ln
(3Vc

Vp

+ 1
)

]2

. (13)

The contribution of fracture energy of the second weakening stage has not explicitly been consid-

ered before. Here, I account for this part of the total fracture energy by

Gc2 =
1

2
(dc +D)(τr − τf ), (14)

where D is the final slip, τr − τf is the overshooting stress, and τr is the fault strength at the tail of

the cohesive zone

τr = f ∗σ + aσ ln

(

Vp

3V ∗

)

+ bσ ln

(

3Vc

Vp

+ 1

)

, (15)

τr − τf = aσ ln

(

aVp

3(b− a)Vc

)

+ bσ ln

( 3Vc

Vp
+ 1

a
b−a

+ 1

)

. (16)

For ruptures on long faults with finite width W , the final slip D is linearly proportional to the static

stress drop ∆τ , that is14

D =
2λW

µ
·∆τ. (17)

Substituting equations 10, 17, 12, and 16 into equation 14 yields the close-form function of the252

second part of the fracture energy, Gc2. Therefore, the close-form function of total fracture energy253

17



is given by Gc = Gc1 + Gc2. As Gc depends on τi, Vc, and the undetermined peak slip rate Vp, it254

can be written as Gc(Vp, τi, Vc).255

For steady ruptures, the energy release rate shall be balanced by the dissipated fracture en-

ergy:

Gc(Vp, τi, Vc) = G0(τi, Vc). (18)

Equation 18 shows that the peak slip rate Vp of steady ruptures can be uniquely determined from256

the energy balance condition of V-shape rate-and-state friction. I find that equation 18 well predicts257

the relations among Vp, ∆τ , G0, and Gc in all the simulated steady ruptures (Figure 2c & S2).258

A4. Relation between peak slip rate and rupture speed A linear relation between peak slip rate

and rupture speed for steady SSEs has been proposed by Hawthorne and Rubin15

Vp =
vr
C

·
∆τp−r

µ
, (19)

where C ≈ 0.5 − 0.55 is an empirical geometrical factor. But this relation does not include the259

effects of dynamic waves when the rupture speed approaches the S-wave speed. Alternatively,260

Gabriel et al81 have provided a theoretical relation between peak slip rate and rupture speed for261

2D strike-slip faulting earthquakes whose rupture speeds are close to the S-wave speed. Here, I262

extend their 2D strike-slip relation to a dip-slip relation for 3D elongated rupture problem, which263

physically incorporates equation 19, as explained below.264

Weng and Ampuero41 demonstrated that if the cohesive zone size on elongated faults is much
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smaller than fault width, Lc ≪ W , then the energy release rate has the following form:

Gtip =
1

2µ
A(vr)K

2

tip, (20)

where A(vr) = 1/αs, αs =
√

1− (vr/vs)2 is the Lorentz contraction term and Ktip is the stress

intensity factor. By removing the strike-slip term 1 − ν and replacing A(vr) by 1/αs in equation

(18) in Gabriel et al81, I obtain the dip-slip relation between peak slip rate and rupture speed,

similar to a classical 2D result82

Vp =
vr
αs

·
2∆τp−r

µ
, (21)

where the correction of a factor of 2 is made to fit the numerical results. If vr ≪ vs, then the

Lorentz term αs = 1, and equation 21 is the same as equation 19 proposed for SSEs by Hawthorne

and Rubin15. Note that ∆τp−r is a function of Vp/Vc (equation 12), and thus equation 21 can be

written as

vr/Vc

αs

=
µ

2
·
Vp/Vc

∆τp−r

. (22)

Equation 22 and 18 can well predict the relation among stress drop, peak slip rate, and rupture265

speed for both SSEs and earthquakes (Figure 2).266

A5. Stability conditions for steady ruptures on elongated faults Rupture propagation on elon-

gated faults can be predicted by a theoretical rupture-tip equation-of-motion41

F (Gc/G0) = M(vr) · v̇r, (23)

where

F (Gc/G0) = 1−Gc/G0,

M(vr) =
W

v2s

γ

AαP
s

,

(24)
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Gc and G0 are the fracture energy and energy release rate, γ, A, and P are known coefficients, and

αs =
√

1− (vr/vs)2 is the Lorentz contraction factor. M(vr) is nearly constant when vr/vs ≪ 1

and increases to infinity when vr/vs → 1. For a steady rupture, the acceleration v̇r is zero, thus

Gc = G0, which is the energy balance condition. In addition, the stability of steady ruptures

also depends on the sign of dF (Gc/G0)/dvr. If dF (Gc/G0)/dvr > 0, a tiny positive/negative

perturbation of vr acting on the steady rupture induces a further increase/decrease of vr. Therefore,

dF (Gc/G0)/dvr < 0 is another condition for steady ruptures. Combining this inequality equation

with Gc = G0 results in

dGc

dvr
>

dG0

dvr
. (25)

Considering the monotonic relation between vr and Vp (Method A4), equation 25 can also be

written as

dGc

dVp

>
dG0

dVp

. (26)

Therefore, Gc = G0 and equation 25 are two generic conditions for steady ruptures on elongated267

faults independent of the specific friction law.268

A6. Critical stress drop for runaway ruptures I approximately derive the minimum stress drop

for runaway/steady ruptures. Under the framework of V-shape rate-and-state friction law, G0 and

Gc can be written as

G0 =
λW

µ
∆τ 2,

Gc =
λW

µ

[

Lc

2λW
∆τ 2p−r +

( Lc

2λW
∆τp−r +∆τ

)

(τr − τf )

]

.

(27)
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For runaway/steady ruptures, the energy balance condition of equation 27 is

(

∆τ

bσ

)2

=
Lc

2λW

(

∆τp−r

bσ

)2

+

(

Lc

2λW

∆τp−r

bσ
+

∆τ

bσ

)

τr − τf
bσ

. (28)

Assuming the fault is steady-state before rupture, that is Viθi/Dc = 1, equations 10 and 12 yield a

lengthy expression of ∆τp−r/bσ that depends on ∆τ/bσ, a/b, and Vp/Vc. Although the derivation

of closed-form ∆τ is complex and lengthy, the dimensional analysis of equation 28 shows that

∆τ/bσ is a function of Vp/Vc, a/b, and W/Lc. For an extreme condition, W/Lc ≫ 1, equations

28 and 16 leads to a minimum stress drop

∆τ run

bσ
=

a

b
ln

(

aVp

3(b− a)Vc

)

+ ln

( 3Vc

Vp
+ 1

a
b−a

+ 1

)

. (29)

Hawthorne and Rubin15 noted that the minimum stress drop for steady ruptures can be approxi-269

mated with Vp/Vc ≈ 15(b − a)/a. Here, I approximately use the value of Vp/Vc ≈ 30(b − a)/a270

and numerically solve ∆τ/bσ in equations 28 and 29, which can explain the current single-rupture271

simulation results with an uncertainty of a factor of 2 (Figure S7). Given the values of a/b = 0.8,272

b = 0.015, and W/Lc = 400 used in this paper, the critical stress drop for runaway ruptures273

is about ∆τ run ≈ 0.01σ. Substituting the critical stress drop and minimum peak slip rate into274

equations 22 yields vrunr ≈ 50αsVcµ/σ.275

A7. Moment-duration scaling relations of SSEs I simulate single-rupture models by prescribing276

different values of initial shear stress to obtain moment-duration scaling relations of SSEs. The277

other model parameters are fixed and are the same as those described in Methods A1, except for278

a smaller W/Lb = 100 that reduces the computational cost and thus allows for a longer simulated279

fault, 20W . For the homogeneous shear stress model, the stress drop is always lower than the280
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runaway stress drop ∆τ run, which only results in self-arresting ruptures. For the linearly decaying281

shear stress model, the initial shear stress is largest near the nucleation zone and linearly decreases282

to zero at the other side of the fault. A minimum nucleation length, 0.1W , with higher slip rates283

is prescribed to smoothly nucleate unilateral ruptures. For each rupture model, the rupture length,284

L, is determined by the end of the rupture tip, and the SSE duration, T , is estimated by a slip rate285

threshold, 0.1Vc. Note that the SSE duration is slightly longer than the rupture time by a rise time.286

As the prescribed initial shear stress increases, the rupture length L, moment M0, and duration T287

of SSEs increase accordingly. In the homogeneous shear stress model, L and M0 increase toward288

infinity as stress drop asymptotically approaches ∆τ run.289

For elongated ruptures, the moment is M0 ∼ ∆τW 2L, where L is the rupture length and ∆τ

and vr are the average stress drop and rupture speed, respectively. The duration is T ≈ L/vr. The

theory and numerical simulations predict two characteristic quantities for runaway SSEs (Figure

2b): ∆τ run ≈ 0.01σ and vrunr ≈ 50Vcµ/σ, where σ is the effective normal stress, Vc is the critical

slip rate, and µ is the shear modulus. Therefore, the moment and duration can be normalized

M0

∆τ runW 3
∼

∆τ

∆τ run
·
L

W

T

W/vrunr

∼
vrunr

vr
·
L

W
.

(30)

In the numerical simulations, L/W , ∆τ/∆τ run, and vr/v
run
r are calculated. Defining ∆τ/∆τ run ∝

(L/W )α and vr/v
run
r ∝ (L/W )β leads to

M0

∆τ runW 3
∼

(

T

W/vrunr

)
1+α
1−β

(31)

In the homogeneous shear stress model, if ∆τ > ∆τ run, runaway ruptures steadily propagate290
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through the entire fault with ∆τ and vr independent of rupture length L, that is α = 0 and β = 0.291

If ∆τ < ∆τ run, self-arresting ruptures decelerate and gradually stop for various values of ∆τ ,292

which roughly results in α = 0.25 and β = −0.25 (Figure S3). Therefore, both runaway and293

self-arresting ruptures in the homogeneous stress model produce a linear moment-duration scaling294

relation. In the linearly decaying shear stress model, the simulated models result in α = 0.5 and295

β = 0.5 (Figure S3), which leads to a cubic scaling relation.296

Because ∆τ ∝ σ and vr ∝ 1/σ (equations 10, 22, and 12), the dimensional analysis of297

equation 30 shows that α and β are independent of σ, M0 ∝ ∆τ run ∝ σ, and T ∝
1

vrunr
∝ σ.298

Therefore, as σ systematically varies, the scaling curve between M0/(∆τ runW 3) and T/(W/vrunr )299

is invariable (Figure 4a), while the scaling curve between M0 and T moves diagonally in the M0−T300

space (Figure 4b). In addition, similar dimensional analysis shows that M0 is independent of Vc301

and T ∼ 1/Vc. As Vc systematically varies, the scaling curve between M0 and T moves vertically302

in the M0 − T space.303
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Figure 1 Sketch of SSE and earthquake ruptures on subduction zone and stability497

conditions. (a) Sketch of subduction zone comprised of tsunamigenic, seismogenic, and498

SSE zones with finite widths. Elongated SSE (blue curves) and earthquake (red curves)499

ruptures start at the hypocenters, indicated by red stars. (b) Sketches of dissipated frac-500

ture energy and energy release rate of ruptures as functions of peak slip rate or rupture501

speed.502

Figure 2 A continuum of rupture speeds predicted by theory. (a) Symbols represent503

rupture speed as a function of stress drop based on fully dynamic (stars) and quasi-504

dynamic (diamonds) simulations, with colour coded by critical slip rate (legend in (b)). vs505

and σ are the S-wave speed and effective normal stress, respectively. (b) Comparison506

of rupture speeds between numerical simulations (stars and diamonds) and theoretical507

prediction (black curve). (c) Comparison of peak slip rates between numerical simulations508

(stars and diamonds) and theoretical prediction (black curve).509

Figure 3 Non-steady ruptures due to along-strike heterogeneities. (a) Curves show510

the transition of rupture speeds from one steady state at segment 1 to another steady511

state at segment 2 based on fully dynamic (coloured curves) and quasi-dynamic (grey512

curves) simulations. The colour is coded by the steady rupture speed at segment 2. (b)513

Rupture arresting distances inside a barrier versus the peak slip rate before reaching514

the barrier, based on fully dynamic (coloured stars) and quasi-dynamic (grey diamonds)515
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simulations. The colour is coded by the steady rupture speed before reaching the barrier.516

The inset shows the sketch of rupture propagation after reaching a barrier.517

Figure 4 Scaling relation of SSEs and earthquakes. (a) Linear and cubic moment-518

duration scaling relations based on homogeneous (pink circles) and linear decay (green519

triangles) models. ∆τ run and vrunr are the critical stress drop and rupture speed for steady520

SSEs (Methods A7). (b) Cubic scaling relations for different values of effective normal521

stress σ. The grey region marks a linear envelope scaling. (c) Symbols represent esti-522

mates of rupture speed versus peak slip rate of global SSEs and tsunami earthquakes523

(error bar indicates uncertainty when available; aspect ratios are larger than 2), compiled524

from refs36,44–46,59. Dashed curves mark the theoretical predictions assuming constant525

strength drops. (d) The scaling relation between normalized rupture speed and peak slip526

rate for global SSEs and tsunami earthquakes. The thick curve marks the theoretical527

prediction.528
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Figure S1: Rupture propagation of SSEs and earthquakes. (a) Coloured curves represent

rupture speed as a function of normalized rupture distance based on fully dynamic and quasi-

dynamic simulations (coloured curves coded by critical slip rate). (b) Normalized rupture speed

(not accounting for the Lorentz contraction factor) versus normalized stress drop for simulated

ruptures shown in the legend.
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Figure S2: Energies of steady SSE and earthquake ruptures. (a) Symbols represent fracture

energy and energy release rate numerically estimated from the fully dynamic and quasi-dynamic

simulations (legend). The dashed line indicates the energy balance predicted by theory. (b) Frac-

ture energy versus peak slip rate based on fully dynamic and quasi-dynamic simulations. The

black curve is the theoretical prediction. (c) Comparison of stress drop between the numerical and

theoretical estimates based on fully dynamic and quasi-dynamic simulations.
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Figure S5: Effects of nucleation conditions on steady rupture propagation. (a) Rupture speeds

as a function of normalized distance for two quasi-dynamic SSE simulations with different nucle-

ation strategies: strong overstressed nucleation and smooth nucleation. The grey region marks the

nucleation zone. (b) same as (a), but for fully dynamic earthquake simulations.
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