[1] Lim, G.-K.; Chen, Z.-L.; Clark, J.; Goh, R. G. S.; Ng, W.-H.; Tan, H.-W.; Friend, R.H.; Ho, P. K. H.; Chua, L.-L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554-560.
[2] Pan, T.; Qiu, C.; Wu, J.; Jiang, X.; Liu, B.; Yang, Y.; Zhou, H.; Soref, R.; Su, Y. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt. Express 2015, 23, 23357-233364.
[3] Wu, J., Jia, L., Zhang, N., Qu, Y., Jia, B. and Moss, D. J. Graphene Oxide for Integrated Photonics and Flat Optics. Adv. Mater. 2020, 32, 1-29, 2006415.
[4] Yang, Y.; Wu, J.; Xu, X.; Liang, Y.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B.; Moss, D. J. Invited Article: Enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 2018, 3, 120803.
[5] Yang, Y.; Lin, H.; Zhang, B. Y.; Zhang, Y.; Zheng, X.; Yu, A.; Hong, M.; Jia, B. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 2019, 6, 1033-1040.
[6] Wu, J.; Yang, Y.; Qu, Y.; Xu, X.; Liang, Y.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B.; Moss, D. J. Graphene oxide waveguide and micro‐ring resonator polarizers. Laser Photonics Rev. 2019, 13, 1900056.
[7] Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B.; Moss, D. J. 2D Layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 2020, 16, 1906563.
[8] Zhang, Y.; Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Moein, T.; Jia, B.; Moss, D. J. Enhanced Kerr Nonlinearity and Nonlinear Figure of Merit in Silicon Nanowires Integrated with 2D Graphene Oxide Films. ACS Appl. Mater. Interfaces 2020, 12, 33094-33103.
[9] Qu, Y., Wu, J., Yang, Y., Zhang, N., Liang, Y., Dirani, H. E., Crochemore, R., Demongodin, P., Sciancalepore, C., Grillet, C., Monat, C., Jia, B., David J. Moss. Enhanced Four‐Wave Mixing in Silicon Nitride Waveguides Integrated with 2D Layered Graphene Oxide Films. Adv. Opt. Mater. 2020, 8, 2001048.
[10] Chen, H.; Corboliou, V.; Solntsev, A. S.; Choi, D. Y.; Vincenti, M. A.; de Ceglia, D.; de Angelis, C.; Lu, Y.; Neshev, D. N. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light: Science & Applications 2017, 6, e17060.
[11] Bikorimana, S.; Lama, P.; Walser, A.; Dorsinville, R.; Anghel, S.; Mitioglu, A.; Micu, A.; Kulyuk, L. Nonlinear optical response in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express 2016, 24, 20685-20695.
[12] Dong, N.; Li, Y.; Zhang, S.; McEvoy, N.; Zhang, X.; Cui, Y.; Zhang, L.; Duesberg, G. S.; Wang, J. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt. Lett. 2016, 41, 3936-3939.
[13] Zheng, X.; Chen, R.; Shi, G.; Zhang, J.; Xu, Z.; Cheng, X.; Jiang, T. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Opt. Lett. 2015, 40, 3480.
[14] Yang, T.; Abdelwahab, I.; Lin, H.; Bao, Y.; Tan, S. J. R.; Fraser, S.; Loh, K. P.; Jia, B. Anisotropic third-order nonlinearity in pristine and lithium hydride intercalated black phosphorus ACS Photonics 2018, 5, 4969-4977.
[15] Chen, B.; Zhang, X.; Wu, K.; Wang, H.; Wang, J.; Chen, J. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723-26737.
[16] Du, L.; Jiang, G.; Miao, L.; Huang, B.; Yi, J.; Zhao, C.; Wen, S. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator. Opt. Mater. Express 2018, 8, 926-935.
[17] Zhang, C.; Ouyang, H.; Miao, R.; Sui, Y.; Hao, H.; Tang, Y.; You, J.; Zheng, X.; Xu, Z.; Cheng, X.; Jiang, T. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all‐optical switching. Adv. Opt. Mater. 2019, 7, 1900631.
[18] Oyedele, A. D.; Yang, S.; Liang, L.; Puretzky, A. A.; Wang, K.; Zhang, J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z.; Rouleau, C. M.; Sumpter, B. G.; Chisholm, M. F.; Zhou, W.; Rack, P. D.; Geohegan, D. B.; Xiao, K. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090-14097.
[19] Zhang, G.; Amani, M.; Chaturvedi, A.; Tan, C.; Bullock, J.; Song, X.; Kim, H.; Lien, D.-H.; Scott, M. C.; Zhang, H.; Javey, A. Optical and electrical properties of two-dimensional palladium diselenide. Appl. Phys. Lett. 2019, 114, 253102.
[20] Jiang, S.; Xie, C.; Gu, Y.; Zhang, Q.; Wu, X.; Sun, Y.; Li, W.; Shi, Y.; Zhao, L.; Pan, S.; Yang, P.; Huan, Y.; Xie, D.; Zhang, Q.; Liu, X.; Zou, X.; Gu, L.; Zhang, Y. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even layered PdSe2 ribbons. Small 2019, 15, 1902789.
[21] Jia, L., Wu, J., Yang, T., Jia, B., Moss, D. J. Large Third-Order Optical Kerr Nonlinearity in Nanometer-Thick PdSe2 2D Dichalcogenide Films: Implications for Nonlinear Photonic Devices. ACS Appl. Nano Mater. 2020, 3, 6876-6883.
[22] Liang, Q.; Wang, Q.; Zhang, Q.; Wei, J.; Lim, S. X.; Zhu, R.; Hu, J.; Wei, W.; Lee, C.; Sow, C.; Zhang, W.; Wee, A. T. S. High-Performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.
[23] Zeng, L.-H.; Wu, D.; Lin, S.-H.; Xie, C.; Yuan, H.-Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L.-B.; Li, Z.-J.; Tsang, Y. H. Controlled synthesis of 2D PdSe2 for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.
[24] Ma, Y.; Zhang, S.; Ding, S.; Liu, X.; Yu, X.; Peng, F.; Zhang, Q. Passively Q-switched Nd: GdLaNbO4 laser based on 2D PdSe2 nanosheet. Optics and Laser Technology, 2019, 124, 105959.
[25] Zhang, H.; Ma, P.; Zhu, M.; Zhang, W.; Wang, G.; Fu, S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, https://doi.org/10.1515/nanoph-2020-0116.
[26] Xu, H.; Zhang, H.; Liu, Y.; Zhang, S.; Sun, Y.; Guo, Z.; Sheng, Y.; Wang, X.; Luo, C.; Wu, X.; Wang, J.; Hu, W.; Xu, Z.; Sun, Q.; Zhou, P.; Shi, J.; Sun, Z.; Zhang, D. W.; Bao, W. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.
[27] Jia, L.; Cui, D.; Wu, J.; Feng, H.; Yang, Y.; Yang, T.; Qu, Y.; Du, Y.; Hao, W.; Jia, B.; Moss, D. J. Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics. APL Photonics 2019, 4, 090802.
[28] Sheik-Bahae, M.; Said, A. A.; Wei, T.-H.; Hagan, D. J.; Stryland, E. W. V. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760-769.
[29] Zheng, X.; Jia, B.; Chen, X.; Gu, M. In situ third-order nonlinear responses during laser reduction of graphene oxide thin films towards on-chip nonlinear photonic devices. Adv. Mater. 2014, 26, 2699-2703.
[30] Chantharasupawong, P.; Philip, R.; Narayanan, N. T.; Sudeep, P. M.; Mathkar, A.; Ajayan, P. M.; Thomas, J. Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J. Phys. Chem. C 2012, 116, 25955-25961.
[31] Wang, G.; Bennett, D.; Zhang, C.; Ó Coileáin, C.; Liang, M.; McEvoy, N.; Wang, J. J.; Wang, J.; Wang, K.; Nicolosi, V.; Blau, W. J. Two‐photon absorption in monolayer MXenes. Adv. Opt. Mater. 2020, 8, 1902021.
[32] Wang, L.; Zhang, S.; McEvoy, N.; Sun, Y.; Huang, J.; Xie, Y.; Dong, N.; Zhang, X.; Kislyakov, I. M.; Nunzi, J. M.; Zhang, L.; Wang, J. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 2019, 13, 1900052.
[33] Hagan, D. J.; Van Stryland, E. W.; Soileau, M. J.; Wu, Y. Y. Self-protecting semiconductor optical limiters. Opt. Lett., 1988, 13, 315-317.
[34] Said, A. A.; Sheik-Bahae, M.; Hagan, D. J.; Wei, T. H.; Wang, J.; Young, J.; Van Stryland, E. W. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B 1992, 9, 405-414.
[35] Pasquazi, A.; Peccianti, M.; Razzari, L.; Moss, D. J.; Coen, S.; Erkintalo, M.; Chembo, Y. K.; Hansson, T.; Wabnitz, S.; Del’Haye, P.; Xue, X.; Weiner, A. M.; Morandotti, R. Micro-Combs: A Novel Generation of Optical Sources. Physics Reports 2018, 729, 1-81.
[36] Moss, D. J.; Morandotti, R.; Gaeta, A. L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597-607.
[37] DeSalvo, R.; Hagan, D. J.; Sheik-Bahae, M.; Stegeman, G.; Van Stryland, E. W.; Vanherzeele, H. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett. 1992, 17, 28-30.
[38] Kriso, C.; Kress, S.; Munshi, T.; Grossmann, M.; Bek, R.; Jetter, M.; Michler, P.; Stolz, W.; Koch, M.; Rahimi-Iman, A. Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser. Opt. Express 2019, 27, 11914-11929.
[39] Liu, Y.; Xuan, Y.; Xue, X.; Wang, P.-H.; Chen, S.; Metcalf, A. J.; Wang, J.; Leaird, D. E.; Qi, M.; Weiner, A. M. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 2014, 1, 137-144.
[40] Lu, S.; Zhao, C.; Zou, Y.; Chen, S.; Chen, Y.; Li, Y.; Zhang, H.; Wen, S.; Tang, D. Third order nonlinear optical property of Bi2Se3. Opt. Express 2013, 21, 2072-2082.
[41] Sheik-Bahae, M.; Hagan, D. J.; Van Stryland, E. W. Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 1991, 27, 1296-1309.
[42] Demetriou, G.; Bookey, H. T.; Biancalana, F.; Abraham, E.; Wang, Y.; Ji, W.; Kar, A. K. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express 2016, 24, 13033-13043.
[43] Wang, G.; Wang, K.; McEvoy, N.; Bai, Z.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S.; Kaminer, I.; Wang, J.; Blau, W. J. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.
[44] Huang, J.; Dong, N.; McEvoy, N.; Wang, L.; Coileain, C. O.; Wang, H.; Cullen, C. P.; Chen, C.; Zhang, S.; Zhang, L.; Wang, J. Surface-State Assisted Carrier Recombination and Optical Nonlinearities in Bulk to 2D Nonlayered PtS. ACS Nano 2019, 13, 13390.
[45] Moss, D. J.; Ghahramani, E.; Sipe, J. E.; van Driel, H. M. Band structure calculation of dispersion and anisotropy in ꭓ(3) for third harmonic generation in Si, Ge, and GaAs. Phys. Rev. B 1990, 41, 1542-1560.
[46] Yang Qu, Jiayang Wu, Yuning Zhang, Yao Liang, Baohua Jia, and David J. Moss, “Analysis of four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films”, Journal of Lightwave Technology 39 Early Access (2021). DOI: 10.1109/JLT.2021.3059721.
[47] Yuning Zhang, Jiayang Wu, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Analysis of self-phase modulation in silicon-on-insulator nanowires integrated with 2D layered graphene oxide films, Journal of Lightwave Technology (2021).
[48] Moss, David. “Design of silicon waveguides integrated with 2D graphene oxide films for Kerr nonlinear optics”. TechRxiv. Preprint. (2020), https://doi.org/10.36227/techrxiv.13203278.v1
[49] Zhang, Y.; Wu, J.; Qu, Y.; Jia, L.; Jia, B.; Moss, D., “Design of Silicon Waveguides Integrated with 2D Graphene Oxide Films for Kerr Nonlinear Optics”, Preprints (2020), 2020110279.
[50] Alberto Della Torre, Milan Sinobad, Remi Armand, Barry Luther-Davies, Pan Ma, Stephen Madden, Arnan Mitchel, David J. Moss, Jean-Michel Hartmann, Vincent Reboud, Jean-Marc Fedeli, Christelle Monat, Christian Grillet, “Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide”, APL Photonics 6, 016102 (2021); doi: 10.1063/5.0033070.
[51] Milan Sinobad, Alberto Della Torre, Remi Armand, Barry Luther-Davies, Pan Ma, Stephen Madden, Arnan Mitchell, David J. Moss, Jean-Michel Hartmann, Jean-Marc Fedeli, Christelle Monat, and Christian Grillet,“Mid-infrared supercontinuum generation in silicon-germanium all-normal dispersion waveguides”, Optics Letters 45 (18), 5008-5011 (2020). DOI: 10.1364/OL.402159.
[52] Milan Sinobad, Alberto Della Torre, Barry Luther-Davis, Pan Ma, Stephen Madden, Arnan Mitchell, David J. Moss, Jean-Michel Hartmann, Jean-Marc Fédéli, Christelle Monat and Christian Grillet, “High coherence at f and 2f of a mid-infrared supercontinuum in a silicon germanium waveguide”, IEEE Journal of Selected Topics in Quantum Electronics (JSTQE) 26 (2) (March/April) 8201008 (2020). DOI:10.1109/JSTQE.2019.2943358.
[53] Milan Sinobad, Alberto Della Torre, Barry Luther-Davis, Pan Ma, Stephen Madden, Sukanta Debbarma, Khu Vu, David J. Moss, Arnan Mitchell, Regis Orobtchouk, Jean-Marc Fedeli, Christelle Monat, and Christian Grillet, “Dispersion trimming for mid-infrared supercontinuum generation in a hybrid chalcogenide/silicon-germanium waveguide”, Journal of the Optical Society of America B (JOSA B) 36, (2) A98-A104 (2019). DOI: 10.1364/JOSAB.36.000A98.
[54] Milan Sinobad, Christelle Monat, Barry Luther-Davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, Christian Grillet, “High brightness mid-infrared octave spanning supercontinuum generation to 8.5μm in chip-based Si-Ge waveguides”, Optica 5 (4) 360-366 (2018). DOI:10.1364/OPTICA.5.000360.
[55] L. Carletti, P. Ma, B. Luther-Davies, D. Hudson, C. Monat, S. Madden, M. Brun, S. Ortiz, S. Nicoletti, D. J. Moss, and C. Grillet, “Nonlinear optical properties of SiGe waveguides in the mid-infrared”, Optics Express 23, (7) pp. 8261–8271 (2015).
[56] A. Frigg, A. Boes, G. Ren, T.G. Nguyen, D.Y. Choi, S. Gees, D. Moss, A. Mitchell, “Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides”, APL Photonics, vol.5, Issue 1, 011302 (2020).
[57] T. Moein et al., “Optically-Thin Broadband Graphene-Membrane Photodetector”, Nanomaterials, vol. 10, issue 3, 407 (2020).